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Abstract. In this paper, we investigate the uniqueness problem of meromorphic functions when nonlinear
differential polynomials generated by them share a set of values with finite weight and obtain some results
which generalize the results due to H.Y. Xu [ J. Computational Analysis and Applications 16 (2014) 942–954].

1. Introduction, Definitionnitions and Results

In this paper, by meromorphic function we shall always mean meromorphic function in the complex
plane. We shall use the standard notations of the Nevanlinna’s theory of meromorphic functions as ex-
plained in [4], [5] and [21]. For a nonconstant meromorphic function f , we denote by T(r, f ) the Nevanlinna
Characteristic function of f and by S(r, f ) any quantity satisfying S(r, f ) = o{T(r, f )} for all r outside a possible
exceptional set of finite logarithmic measure. For a ∈ C ∪ {∞} and S ⊂ C ∪ {∞}, we define

E(S, f ) =
⋃
a∈S

{z : f (z) − a = 0, counting multiplicity},

E(S, f ) =
⋃
a∈S

{z : f (z) − a = 0, ignoring multiplicity}.

Let f and 1 be two nonconstant meromorphic functions. If E(S, f ) = E(S, 1), we say that f and 1 share
the set S CM and if E(S, f ) = E(S, 1), we say that f and 1 share the set S IM. Especially if S = {a}, we say that
f and 1 share the value a CM when E(S, f ) = E(S, 1) and a IM when E(S, f ) = E(S, 1).

Let k be a positive integer or infinity. For a ∈ C ∪ {∞}, we denote by Ek)(a, f ) the set of all a-points of f
whose multiplicities are not greater than k. Also by Ek)(a, f ), we denote the set of all distinct a-points of f
whose multiplicities are not greater than k. If E∞)(a, f ) = E∞)(a, 1), we say that f and 1 share the value a CM
and if E∞)(a, f ) = E∞)(a, 1), we say that f and 1 share the value a IM. For a ∈ C ∪ {∞} and S ⊂ C ∪ {∞}, we
define

Ek)(S, f ) =
⋃
a∈S

Ek)(a, f ) and Ek)(S, f ) =
⋃
a∈S

Ek)(a, f ).
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Many research works on differential polynomials of meromorphic functions sharing certain value have
been done by many mathematicians worldwide (see [1], [3], [10], [12], [14], [15], [16], [17], [19], [20]).
Recently, there have been an increasing interest in studying differential polynomials of meromorphic
functions sharing a set of values. In this direction we need the following definitions.

Definition 1.1. [6, 7] Let f be a nonconstant meromorphic function and k be a positive integer or infinity. For
a ∈ C∪ {∞}, we denote by Nk)(r, a; f ) the counting function of those a-points of f whose multiplicities are not greater
than k and by Nk)(r, a; f ) the corresponding reduced counting function of f . We denote N(k+1(r, a; f ) by the counting
function of those a-points of f whose multiplicities are greater than k and N(k+1(r, a; f ) by the corresponding reduced
counting function of f .

Definition 1.2. [7] Let f be a nonconstant meromorphic function and k be a positive integer or infinity. For
a ∈ C ∪ {∞}, we denote by Nk(r, a; f ) the counting function of a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f ) = N(r, a; f ) + N(2(r, a; f ) + . . . + N(k(r, a; f ).

Clearly N1(r, a; f ) = N(r, a; f ).

Definition 1.3. [21] Let f and 1 be two nonconstant meromorphic functions such that f and 1 share the value 1 IM.
We denote by N1)

E (r, 1; f ) the counting function of common simple 1-points of f and 1.

In 1997, C.C. Yang, X.H. Hua [18] proved the following theorem.

Theorem 1.1. Let f and 1 be two nonconstant meromorphic functions, and n (≥ 11) be an integer. If f n f ′ and 1n1′

share the value a CM where a ∈ C\{0}, then either f = t1 for tn+1 = 1 or 1 = c1ecz and f = c2e−cz, where c, c1 and c2
are constants satisfying (c1c2)n+1c2 = −a2.

Regarding Theorem 1.1, one may ask the following question.

Question 1.1. Whether there exists a differential polynomial d such that for any pair of nonconstant meromorphic
functions f and 1 we can get f ≡ 1 when d( f ) and d(1) share one value CM?

In 2002, C.Y. Fang, M.L. Fang [2] and in 2004, W.C. Lin, H.X. Yi [9] gave a positive answer to the above
question and proved the following results respectively.

Theorem 1.2. [2] Let f and 1 be two nonconstant meromorphic functions, and n be a positive integer. If Ek)(1, f n( f −
1)2 f ′) = Ek)(1, 1n(1 − 1)21′) and one of the following conditions is satisfied: (a) k ≥ 3 and n ≥ 13, (b) k = 2 and
n ≥ 15, (c) k = 1 and n ≥ 23, then f ≡ 1.

Theorem 1.3. [9] Let f and 1 be two nonconstant meromorphic functions satisfying Θ(∞, f ) > 2
n+1 and n (≥ 12) be

an integer. If f n( f − 1) f ′ and 1n(1 − 1)1′ share 1 CM, then f ≡ 1.

In 2006, I. Lahiri, R. Pal [8] also proved the following results corresponding to the above question.

Theorem 1.4. Let f and 1 be two nonconstant meromorphic functions and n (≥ 13) be an integer. If E3)(1, f n( f −
1)2 f ′) = E3)(1, 1n(1 − 1)21′), then f ≡ 1.

Theorem 1.5. Let f and 1 be two nonconstant meromorphic functions and n (≥ 14) be an integer. If E3)(1, f n( f 3
−

1) f ′) = E3)(1, 1n(13
− 1)1′), then f ≡ 1.

In 2014, H.Y. Xu [13] investigated the uniqueness of meromorphic functions when differential polynomials
generated by them share a set Sm = {1, ω, ω2, . . . , ωm−1

}, where ω = cos 2π
m + i sin 2π

m , m is an integer and
obtained the following results.
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Theorem 1.6. Let f and 1 be two nonconstant meromorphic functions and n, m (≥ 2) be two positive integers. For
a, b ∈ C\{0}, let Ek)(Sm, f n( f − a)( f − b) f ′) = Ek)(Sm, 1n(1 − a)(1 − b)1′) and let f or 1 be meromorphic function
having only multiple poles. If the expressions a+b

n+21
∑n+1

s=0

( f
1

)s
−

ab
n+1

∑n
s=0

( f
1

)s
and

∑n+2
s=0

( f
1

)s
have no common simple

zeros and one of the following conditions holds:
(i) k ≥ 3: n > 4 + 8

m when 2 ≤ m ≤ 3 and n > 4 + 4
m when m ≥ 4;

(ii) k = 2: n > 4 + 11
m when 2 ≤ m ≤ 3 and n > 4 + 4

m when m ≥ 4;
(iii) k = 1: n > 4 + 20

m when 2 ≤ m ≤ 3 and n > 4 + 4
m when m ≥ 4,

then f ≡ 1.

Theorem 1.7. Let f and 1 be two nonconstant meromorphic functions and n, m (≥ 2) be two positive integers. If
Ek)(Sm, f n( f − a)2 f ′) = Ek)(Sm, 1n(1 − a)21′) and one of the following conditions holds:

(i) k ≥ 3 and n > 4 + 8
m ;

(ii) k = 2 and n > max{4 + 4
m , 2 + 10

m };
(iii) k = 1: n > 4 + 20

m when 2 ≤ m ≤ 3 and n > 4 + 4
m when m ≥ 4,

then f ≡ 1.

Note 1.1. There are some lacuna in the lower bound of n in Theorem 1.7. In the proof (not given in details) of the
theorem, Case (i) of Lemma 2.4 [13] is required where the lower bound of n is taken as n ≥ 8.

In this paper we consider the more general differential polynomial namely, f n( f − a)( f − b)( f − c) f ′ where
a, b, c ∈ C\{0} and obtain the following results.

Theorem 1.8. Let f and 1 be two nonconstant meromorphic functions and n, m (≥ 2) be two positive integers. Let
Ek)(Sm, f n( f − a)( f − b)( f − c) f ′) = Ek)(Sm, 1n(1− a)(1− b)(1− c)1′), where a, b, c ∈ C\{0} and a , b , c and let f
or 1 be meromorphic function having only multiple poles. If the expressions a+b+c

n+3 1
2 ∑n+2

s=0

( f
1

)s
−

ab+bc+ca
n+2 1

∑n+1
s=0

( f
1

)s
+

abc
n+1

∑n
s=0

( f
1

)s
and

∑n+3
s=0

( f
1

)s
have no common simple zeros and one of the following conditions holds:

(i) k ≥ 3: n > 5 + 8
m when 2 ≤ m ≤ 3 and n > 5 + 3

m when m ≥ 4;
(ii) k = 2: n > 5 + 23

2m when 2 ≤ m ≤ 3 and n > 5 + 3
m when m ≥ 4;

(iii) k = 1: n > 5 + 22
m when 2 ≤ m ≤ 3 and n > 5 + 3

m when m ≥ 4,
then f ≡ t1, where tm = 1.

Theorem 1.9. Let f and 1 be two nonconstant meromorphic functions and n, m (≥ 2) be two positive integers. Let
Ek)(Sm, f n( f − a)2( f − b) f ′) = Ek)(Sm, 1n(1 − a)2(1 − b)1′), where a, b ∈ C\{0}, a , b and let f or 1 be meromorphic
function having only multiple poles. If the expressions 2a+b

n+3 1
2 ∑n+2

s=0

( f
1

)s
−

a2+2ab
n+2 1

∑n+1
s=0

( f
1

)s
+ a2b

n+1

∑n
s=0

( f
1

)s
and∑n+3

s=0

( f
1

)s
have no common simple zeros and one of the following conditions holds:

(i) k ≥ 3: n > 3 + 8
m when 2 ≤ m ≤ 3 and n > 5 + 2

m when m ≥ 4;
(ii) k = 2: n > 3 + 11

m when 2 ≤ m ≤ 3 and n > 5 + 2
m when m ≥ 4;

(iii) k = 1: n > 3 + 20
m when 2 ≤ m ≤ 3 and n > 5 + 2

m when m ≥ 4,
then f ≡ t1, where tm = 1.

Theorem 1.10. Let f and 1 be two nonconstant meromorphic functions and n, m (≥ 2) be two positive integers.
For a ∈ C\{0}, let Ek)(Sm, f n( f − a)3 f ′) = Ek)(Sm, 1n(1 − a)31′) and let f or 1 be meromorphic function having only
multiple poles. If the expressions 3a

n+31
2 ∑n+2

s=0

( f
1

)s
−

3a2

n+21
∑n+1

s=0

( f
1

)s
+ a3

n+1

∑n
s=0

( f
1

)s
and

∑n+3
s=0

( f
1

)s
have no common

simple zeros and one of the following conditions holds:
(i) k ≥ 3: n > max{10, 2 + 8

m } when 2 ≤ m ≤ 3 and n > max{10, 8
m } when m ≥ 4;

(ii) k = 2: n > max{10, 2 + 10
m } when 2 ≤ m ≤ 3 and n > max{10, 10

m } when m ≥ 4;
(iii) k = 1: n > max{10, 2 + 16

m } when 2 ≤ m ≤ 3 and n > max{10, 16
m } when m ≥ 4,

then f ≡ t1, where tm = 1.
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2. Lemmas

We now state some lemmas which will be needed in the sequel.

Lemma 2.1. [11] Let f be a nonconstant meromorphic function and let

R( f ) =
ap f p + ap−1 f p−1 + . . . + a1 f + a0

bq f q + bq−1 f q−1 + . . . + b1 f + b0

be an irreducible rational function in f where ap (, 0), ap−1, . . . , a1, a0 and bq (, 0), bq−1, . . . , b1, b0 are
constants. Then

T(r,R( f )) = dT(r, f ) + S(r, f ),

where d = max{p, q}.

Lemma 2.2. [21] Let f be a nonconstant meromorphic function and k be a positive integer. Then

T(r, f (k)) ≤ T(r, f ) + kN(r,∞; f ) + S(r, f )

and
N(r, 0; f (k)) ≤ N(r, 0; f ) + kN(r,∞; f ) + S(r, f ).

Lemma 2.3. [2] Let f and 1 be two nonconstant meromorphic functions and k be a positive integer. If Ek)(1, f ) =
Ek)(1, 1), then one of the following cases holds:

(i) T(r, f ) + T(r, 1) ≤ N2(r,∞; f ) + N2(r, 0; f ) + N2(r,∞; 1) + N2(r, 0; 1) + N(r, 1; f ) + N(r, 1; 1)

−N1)
E (r, 1; f ) + N(k+1(r, 1; f ) + N(k+1(r, 1; 1) + S(r, f ) + S(r, 1);

(ii) f =
(B+1)1+(A−B−1)

B1+(A−B) , where A (, 0), B are two constants.

Lemma 2.4. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers such that
n > 2

m + 4
m2 − 1. If one of f and 1 is meromorphic function having only multiple poles and the expressions

a+b+c
n+3 1

2 ∑n+2
s=0

( f
1

)s
−

ab+bc+ca
n+2 1

∑n+1
s=0

( f
1

)s
+ abc

n+1

∑n
s=0

( f
1

)s
and

∑n+3
s=0

( f
1

)s
have no common simple zeros, and(

1
n + 4

f n+4
−

a + b + c
n + 3

f n+3 +
ab + bc + ca

n + 2
f n+2
−

abc
n + 1

f n+1

)m

≡

(
1

n + 4
1n+4
−

a + b + c
n + 3

1n+3 +
ab + bc + ca

n + 2
1n+2
−

abc
n + 1

1n+1

)m

,

where a, b, c ∈ C\{0}, then f ≡ t1 where tm = 1.

Proof. From the assumption of Lemma 2.4, we have(
1

n + 4
f n+4
−

a + b + c
n + 3

f n+3 +
ab + bc + ca

n + 2
f n+2
−

abc
n + 1

f n+1

)
≡ t

(
1

n + 4
1n+4
−

a + b + c
n + 3

1n+3 +
ab + bc + ca

n + 2
1n+2
−

abc
n + 1

1n+1

)
, (1)

where tm = 1. From (1), we see that f and 1 share∞ CM. Without loss of generality, we assume that 1 has
some multiple poles. Put h =

f
1
. Suppose that h is not constant. Then from (1), we have

A13(hn+4
− t) + B12(hn+3

− t) + C1(hn+2
− t) + D(hn+1

− t) ≡ 0,
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i.e., A13 = −B12 hn+3
− t

hn+4 − t
− C1

hn+2
− t

hn+4 − t
−D

hn+1
− t

hn+4 − t
, (2)

where A = 1
n+4 , B = − a+b+c

n+3 , C = ab+bc+ca
n+2 and D = − abc

n+1 .

Let z0 be a pole of 1 with multiplicity p0 (≥ 2), which is not a zero of h − uk,r where un+4
k,r = t = ωr

(k = 0, 1, . . . , n + 3; r = 0, 1, . . . , m − 1) such that ω = cos 2π
m + i sin 2π

m . From (2), we have 3p0 = 2p0 i.e.,
p0 = 0. Thus, we get a contradiction. Hence the poles of 1 are precisely the zeros of h − uk,r.

Let z1 be a zero of h − uk,r with multiplicity q1 which is a pole of 1 with multiplicity p1. From (2), we
have 3p1 = 2p1 + q1 i.e., p1 = q1. Since 1 has no simple pole, it follows that such points are multiple zeros of
h − uk,r. For r = 0, 1, . . . , m − 1, we obtain from (2),

A13 = −
B12(hn+3

− ωr) + C1(hn+2
− ωr) + D(hn+1

− ωr)
hn+4 − ωr , (3)

where A = 1
n+4 , B = − a+b+c

n+3 , C = ab+bc+ca
n+2 and D = − abc

n+1 .

Let z2 be a simple zero of h−uk,r (k = 0, 1, . . . , n+3; r = 0, 1, 2, . . . , m−1) which is a zero of multiplicity
q2 (≥ 2) of numerator of (3). Then from (3), we see that z2 would be a zero of 13 of order q2 − 1. Therefore
z2 would be a zero of hn+1

− ωr. We note that the number of common factors of hn+1
− wr and hn+4

− wr are
less or equal to the number of common factors of hm(n+1)

− 1 and hm(n+4)
− 1 for r = 0, 1, 2, . . . , m − 1.

Since gcd(m(n + 1), m(n + 4)) is either m or 3m, it follows that hn+1
− ωr and hn+4

− ωr may have at most 3m
common factors for r = 0, 1, 2, . . . , m − 1, where gcd(p, q) means greatest common divisor of p and q.
Again a meromorphic function can not have more than two Picard exceptional values. Therefore, we see
that h − uk,r has multiple zeros for at least (n + 4)m − 3m − 2 values of k ∈ {0, 1, . . . , m(n + 4) − 1} when
r = 0, 1, 2, . . . , m−1. Thus, Θ(uk,r; h) ≥ 1

2 for at least (n+4)m−3m−2 values of k ∈ {0, 1, 2, . . . , m(n+4)−1}
when r = 0, 1, 2, . . . , m− 1,which is a contradiction as n > 2

m + 4
m2 − 1. Hence h is a constant. If h , t, from

(2) we see that 1will be a constant function which is impossible. Thus f ≡ t1where tm = 1. This proves the
Lemma.

Lemma 2.5. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers such that
n > 2. Then

( f n( f − a)( f − b)( f − c) f ′)m(1n(1 − a)(1 − b)(1 − c)1′)m . 1,

where a, b, c ∈ C\{0} and a , b , c.

Proof. In the contrary, we may assume that

( f n( f − a)( f − b)( f − c) f ′)m(1n(1 − a)(1 − b)(1 − c)1′)m
≡ 1.

Then

f n( f − a)( f − b)( f − c) f ′1n(1 − a)(1 − b)(1 − c)1′ ≡ t, (4)

where tm = 1. Let z0 be a zero of f with multiplicity p0. Then from (4), we see that z0 is a pole of 1 (say with
multiplicity q0). Thus, we have np0 + p0 − 1 = nq0 + 3q0 + q0 + 1, i.e., 3q0 + 2 = (n + 1)(p0 − q0) ≥ n + 1, i.e.,
q0 ≥

n−1
3 . Hence, we obtain

(n + 1)p0 ≥
(n + 4)(n − 1) + 6

3
i.e., p0 ≥

n + 2
3

. (5)

Let z1 be a zero of f − a with multiplicity p1. Then from (4), we see that z1 is a pole of 1 (say with multiplicity
q1). Thus, we have p1 + p1 − 1 = (n + 4)q1 + 1, i.e., 2p1 = (n + 4)q1 + 2. Hence, we obtain

p1 ≥
(n + 4)q1 + 2

2
≥

n + 6
2

. (6)
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We can get the similar results for the zeros of f − b and f − c. Similarly, we get the same results for the zeros
of 1(1 − a)(1 − b)(1 − c).

Since a pole of f is either a zero of 1(1 − a)(1 − b)(1 − c) or a zero of 1′, we have

N(r,∞; f ) ≤ N(r, 0; 1) + N(r, a; 1) + N(r, b; 1) + N(r, c; 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1)

≤
3

n + 2
N(r, 0; 1) +

2
n + 6

N(r, a; 1) +
2

n + 6
N(r, b; 1) +

2
n + 6

N(r, c; 1)

+N0(r, 0; 1′) + S(r, f ) + S(r, 1)

≤

( 3
n + 2

+
6

n + 6

)
T(r, 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1), (7)

where N0(r, 0; 1′) denotes the reduced counting function of those zeros of 1′ which are not the zeros of
1(1 − a)(1 − b)(1 − c).

By the second fundamental theorem of Nevanlinna and from (5)–(7), we obtain

3T(r, f ) ≤ N(r, 0; f ) + N(r, a; f ) + N(r, b; f ) + N(r, c; f ) + N(r,∞; f ) −N0(r, 0; f ′) + S(r, f )

≤
3

n + 2
N(r, 0; f ) +

2
n + 6

N(r, a; f ) +
2

n + 6
N(r, b; f ) +

2
n + 6

N(r, c; f )

+
( 3

n + 2
+

6
n + 6

)
T(r, 1) + N0(r, 0; 1′) −N0(r, 0; f ′) + S(r, f ) + S(r, 1)

≤

( 3
n + 2

+
6

n + 6

)
{T(r, f ) + T(r, 1)} + N0(r, 0; 1′) −N0(r, 0; f ′) + S(r, f ) + S(r, 1). (8)

Similarly, we have

3T(r, 1) ≤

( 3
n + 2

+
6

n + 6

)
{T(r, f ) + T(r, 1)} + N0(r, 0; f ′) −N0(r, 0; 1′) + S(r, f ) + S(r, 1). (9)

Adding (8) and (9) we get (
3 −

6
n + 2

−
12

n + 6

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

a contradiction as n > 2 and the proof of Lemma 2.5 is complete.

Lemma 2.6. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers such that
n > 4. Then

( f n( f − a)2( f − b) f ′)m(1n(1 − a)2(1 − b)1′)m . 1,

where a, b ∈ C\{0} and a , b.

Proof. In the contrary, we may assume that

( f n( f − a)2( f − b) f ′)m(1n(1 − a)2(1 − b)1′)m
≡ 1.

Then

f n( f − a)2( f − b) f ′1n(1 − a)2(1 − b)1′ ≡ t, (10)

where tm = 1. Let z0 be a zero of f with multiplicity p0. Then from (10), we see that z0 is a pole of 1 (say
with multiplicity q0). Thus we have np0 + p0 − 1 = nq0 + 3q0 + q0 + 1, i.e., 3q0 + 2 = (n + 1)(p0 − q0) ≥ n + 1,
i.e., q0 ≥

n−1
3 . Hence we obtain

(n + 1)p0 ≥
(n + 4)(n − 1) + 6

3
i.e., p0 ≥

n + 2
3

. (11)
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Let z1 be a zero of f −a with multiplicity p1. Then from (10), we see that z1 is a pole of 1 (say with multiplicity
q1). Thus we have 2p1 + p1 − 1 = (n + 4)q1 + 1, i.e., 3p1 = (n + 4)q1 + 2. Hence

p1 ≥
(n + 4)q1 + 2

3
≥

n + 6
3

. (12)

Let z2 be a zero of f −b with multiplicity p2. Then from (10), we see that z2 is a pole of 1 (say with multiplicity
q2). Thus we have p2 + p2 − 1 = (n + 4)q2 + 1, i.e., 2p2 = (n + 4)q2 + 2. Hence we obtain

p2 ≥
(n + 4)q2 + 2

2
≥

n + 6
2

. (13)

Similarly, we have the same results for the zeros of 1(1 − a)(1 − b).

Since a pole of f is either a zero of 1(1 − a)(1 − b) or a zero of 1′, we have

N(r,∞; f ) ≤ N(r, 0; 1) + N(r, a; 1) + N(r, b; 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1)

≤
3

n + 2
N(r, 0; 1) +

3
n + 6

N(r, a; 1) +
2

n + 6
N(r, b; 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1)

≤

( 3
n + 2

+
5

n + 6

)
T(r, 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1), (14)

where N0(r, 0; 1′) denotes the reduced counting function of those zeros of 1′ which are not the zeros of
1(1 − a)(1 − b). By the second fundamental theorem of Nevanlinna and from (11)–(14), we obtain

2T(r, f ) ≤ N(r, 0; f ) + N(r, a; f ) + N(r, b; f ) + N(r,∞; f ) −N0(r, 0; f ′) + S(r, f )

≤
3

n + 2
N(r, 0; f ) +

3
n + 6

N(r, a; f ) +
2

n + 6
N(r, b; f ) +

( 3
n + 2

+
5

n + 6

)
T(r, 1)

+N0(r, 0; 1′) −N0(r, 0; f ′) + S(r, f ) + S(r, 1)

≤

( 3
n + 2

+
5

n + 6

)
{T(r, f ) + T(r, 1)} + N0(r, 0; 1′) −N0(r, 0; f ′) + S(r, f ) + S(r, 1). (15)

Similarly,

2T(r, 1) ≤

( 3
n + 2

+
5

n + 6

)
{T(r, f ) + T(r, 1)} + N0(r, 0; f ′) −N0(r, 0; 1′) + +S(r, f ) + S(r, 1). (16)

Adding (15) and (16) we get(
2 −

6
n + 2

−
10

n + 6

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which contradicts to the assumption that n > 4. This proves the lemma.

Lemma 2.7. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers satisfying
n > 10. Then

( f n( f − a)3 f ′)m(1n(1 − a)31′)m . 1,

where a ∈ C\{0}.

Proof. If possible, we may assume that

( f n( f − a)3 f ′)m(1n(1 − a)31′)m
≡ 1.

Then

f n( f − a)3 f ′1n(1 − a)31′ ≡ t, (17)

where tm = 1.
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Let z0 be a zero of f with multiplicity p0. Then from (17), we see that z0 is a pole of 1 (say with multiplicity
q0). Thus, we have np0 + p0 − 1 = nq0 + 3q0 + q0 + 1, i.e., 3q0 + 2 = (n + 1)(p0 − q0) ≥ n + 1, i.e., q0 ≥

n−1
3 . Hence

we obtain

(n + 1)p0 ≥
(n + 4)(n − 1) + 6

3
i.e., p0 ≥

n + 2
3

. (18)

Let z1 be a zero of f −a with multiplicity p1. Then from (17), we see that z1 is a pole of 1 (say with multiplicity
q1). Thus we have 3p1 + p1 − 1 = (n + 4)q1 + 1, i.e., 4p1 = (n + 4)q1 + 2. Hence

p1 ≥
(n + 4)q1 + 2

4
≥

n + 6
4

. (19)

Similarly, we have the same results for the zeros of 1(1 − a).

Since a pole of f is either a zero of 1(1 − a) or a zero of 1′, we have

N(r,∞; f ) ≤ N(r, 0; 1) + N(r, a; 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1)

≤
3

n + 2
N(r, 0; 1) +

4
n + 6

N(r, a; 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1)

≤

( 3
n + 2

+
4

n + 6

)
T(r, 1) + N0(r, 0; 1′) + S(r, f ) + S(r, 1), (20)

where N0(r, 0; 1′) is the reduced counting function of those zeros of 1′ which are not the zeros of 1(1 − a).

By the second fundamental theorem of Nevanlinna and from (18)–(20), we obtain

T(r, f ) ≤ N(r, 0; f ) + N(r, a; f ) + N(r,∞; f ) −N0(r, 0; f ′) + S(r, f )

≤
3

n + 2
N(r, 0; f ) +

4
n + 6

N(r, a; f ) +
( 3

n + 2
+

4
n + 6

)
T(r, 1) + N0(r, 0; 1′)

−N0(r, 0; f ′) + S(r, f ) + S(r, 1)

≤

( 3
n + 2

+
4

n + 6

)
{T(r, f ) + T(r, 1)} + N0(r, 0; 1′) −N0(r, 0; f ′) + S(r, f ) + S(r, 1). (21)

Similarly,

T(r, 1) ≤

( 3
n + 2

+
4

n + 6

)
{T(r, f ) + T(r, 1)} + N0(r, 0; f ′) −N0(r, 0; 1′) + S(r, f ) + S(r, 1). (22)

Adding (21) and (22) we get(
1 −

6
n + 2

−
8

n + 6

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

a contradiction to the assumption that n > 10. This proves Lemma 2.7.

Lemma 2.8. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers such that
n > 5 + 3

m . Let F = f n( f − a)( f − b)( f − c) f ′ and G = 1n(1− a)(1− b)(1− c)1′ where a, b, c ∈ C\{0} and a , b , c.

If one of f and 1 is meromorphic function having only multiple poles and the expressions a+b+c
n+3 1

2 ∑n+2
s=0

( f
1

)s
−

ab+bc+ca
n+2 1

∑n+1
s=0

( f
1

)s
+ abc

n+1

∑n
s=0

( f
1

)s
and

∑n+3
s=0

( f
1

)s
have no common simple zeros, and

Fm =
(B + 1)Gm + (A − B − 1)

BGm + (A − B)
, (23)

where A (, 0), B are two constants, then f ≡ t1, where tm = 1.
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Proof. Let

P(z) =
1

n + 4
zn+4
−

a + b + c
n + 3

zn+3 +
ab + bc + ca

n + 2
zn+2
−

abc
n + 1

zn+1. (24)

Then we have

F = (P( f ))′ = f n( f − a)( f − b)( f − c) f ′, G = (P(1))′ = 1n(1 − a)(1 − b)(1 − c)1′. (25)

By Lemma 2.1, we have

(n + 4)T(r, f ) = T(r,P( f ))
≤ T(r, (P( f ))′) + N(r, 0; P( f )) −N(r, 0; (P( f ))′) + S(r, f )
≤ T(r,F) + N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f )
−N(r, a; f ) −N(r, b; f ) −N(r, c; f ) −N(r, 0; f ′) + S(r, f ), (26)

where γ1, γ2 and γ3 are three roots of the equation 1
n+4 z3

−
a+b+c
n+3 z2 + ab+bc+ca

n+2 z− abc
n+1 = 0. Similarly, we can get

(n + 4)T(r, 1) = T(r,P(1))
≤ T(r,G) + N(r, 0; 1) + N(r, γ1; 1) + N(r, γ2; 1) + N(r, γ3; 1)
−N(r, a; 1) −N(r, b; 1) −N(r, c; 1) −N(r, 0; 1′) + S(r, 1). (27)

We now consider the following three cases.

Case 2.8.1. Suppose B , 0, −1. From (23), we have N(r, B+1
B ; Fm) = N(r,∞; Gm). By the second main theorem

and Lemma 2.1, we get

mT(r,F) = T(r,Fm)

≤ N(r,∞; Fm) + N(r, 0; Fm) + N(r,
B + 1

B
; Fm) + S(r, f )

= N(r,∞; Fm) + N(r, 0; Fm) + N(r,∞; Gm) + S(r, f )

≤ N(r,∞; f ) + N(r, 0; f ) + N(r, a; f ) + N(r, b; f ) + N(r, c; f )

+N(r, 0; f ′) + N(r,∞; 1) + S(r, f ). (28)

From (26), (28) and Lemma 2.1, we can get

(n + 4)T(r, f ) ≤
1
m

N(r,∞; f ) +
(
1 +

1
m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f )

+N(r, γ3; f ) +
1
m

N(r,∞; 1) + S(r, f )

≤

(
4 +

2
m

)
T(r, f ) +

1
m

T(r, 1) + S(r, f ). (29)

Similarly, we have

(n + 4)T(r, 1) ≤
(
4 +

2
m

)
T(r, 1) +

1
m

T(r, f ) + S(r, 1). (30)

Adding (29) and (30) we have (
n −

3
m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which is a contradiction as n > 5 + 3
m > 3

m .

Case 2.8.2. Suppose B = 0. From (23), we have N(r, A−1
A ; Fm) = N(r, 0; Gm). We consider two subcases as

follows.
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Subcase (i). Let A , 1. By the second main theorem and Lemma 2.1, we have

mT(r,F) = T(r,Fm)

≤ N(r,∞; Fm) + N(r, 0; Fm) + N(r,
A − 1

A
; Fm) + S(r, f )

= N(r,∞; Fm) + N(r, 0; Fm) + N(r, 0; Gm) + S(r, f )

≤ N(r,∞; f ) + N(r, 0; f ) + N(r, a; f ) + N(r, b; f )

+N(r, c; f ) + N(r, 0; f ′) + N(r, 0; 1) + N(r, a; 1)

+N(r, b; 1) + N(r, c; 1) + N(r, 0; 1′) + S(r, f ). (31)

From (26) and (31), we get

(n + 4)T(r, f ) ≤

(
4 +

2
m

)
T(r, f ) +

6
m

T(r, 1) + S(r, f ). (32)

Similarly, we have

(n + 4)T(r, 1) ≤
(
4 +

2
m

)
T(r, 1) +

6
m

T(r, f ) + S(r, 1). (33)

From (32) and (33), we have (
n −

8
m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which is a contradiction as n > 5 + 3
m > 8

m .

Subcase (ii). Let A = 1. Then from (23) we obtain Fm = Gm, i.e., F = tG where tm = 1. On integration we
obtain P( f ) = tP(1) + d, where d is a constant. If d , 0, by the second main theorem and Lemma 2.1, we
obtain

(n + 4)T(r, f ) = T(r,P( f ))

≤ N(r,∞; P( f )) + N(r, 0; P( f )) + N(r, d; P( f )) + S(r, f )

= N(r,∞; P( f )) + N(r, 0; P( f )) + N(r, 0; P(1)) + S(r, f )

≤ N(r,∞; f ) + N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f )
+N(r, 0; 1) + N(r, γ1; 1) + N(r, γ2; 1) + N(r, γ3; 1) + S(r, f )

≤ 5T(r, f ) + 4T(r, 1) + S(r, f ). (34)

Similarly,

(n + 4)T(r, 1) ≤ 5T(r, 1) + 4T(r, f ) + S(r, 1). (35)

Combining (34) and (35), we get

(n − 5){T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

a contradiction as n > 5 + 3
m > 5. Hence d = 0 and so P( f ) ≡ tP(1). Therefore by Lemma 2.4, we get f ≡ t1,

where tm = 1.

Case 2.8.3. Let B = −1. Arguing similarly as in the proof of Case 2.8.2, we get FmGm = 1, a contradiction by
Lemma 2.5.

Lemma 2.9. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers such that
n > 5 + 2

m . Let F = f n( f − a)2( f − b) f ′ and G = 1n(1 − a)2(1 − b)1′ where a, b ∈ C\{0} and a , b. If one of f

and 1 is meromorphic function having only multiple poles and the expressions 2a+b
n+3 1

2 ∑n+2
s=0

( f
1

)s
−

a2+2ab
n+2 1

∑n+1
s=0

( f
1

)s
+

a2b
n+1

∑n
s=0

( f
1

)s
and

∑n+3
s=0

( f
1

)s
have no common simple zeros, and (23) holds, then f ≡ t1, where tm = 1.
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Proof. Let

P(z) =
1

n + 4
zn+4
−

2a + b
n + 3

zn+3 +
a2 + 2ab

n + 2
zn+2
−

a2b
n + 1

zn+1.

Then we have
F = (P( f ))′ = f n( f − a)2( f − b) f ′, G = (P(1))′ = 1n(1 − a)2(1 − b)1′.

Proceeding similarly as in Lemma 2.8 and using Lemmas 2.4 and 2.6 we can get the required result.

Lemma 2.10. Let f and 1 be two nonconstant meromorphic functions and n, m be two positive integers such that
n > 10. Let F = f n( f − a)3 f ′ and G = 1n(1 − a)31′ where a ∈ C\{0}. If one of f and 1 is meromorphic function
having only multiple poles and the expressions 3a

n+31
2 ∑n+2

s=0

( f
1

)s
−

3a2

n+21
∑n+1

s=0

( f
1

)s
+ a3

n+1

∑n
s=0

( f
1

)s
and

∑n+3
s=0

( f
1

)s
have

no common simple zeros, and (23) holds, then f ≡ t1, where tm = 1.

Proof. Let

P(z) =
1

n + 4
zn+4
−

3a
n + 3

zn+3 +
3a2

n + 2
zn+2
−

a3

n + 1
zn+1.

Then we have
F = (P( f ))′ = f n( f − a)3 f ′, G = (P(1))′ = 1n(1 − a)31′.

Proceeding similarly as in Lemma 2.8 and applying Lemmas 2.4 and 2.7 we can deduce the required
result.

3. Proof of Theorems

Proof. [Proof of Theorem 1.8] Let F and G be given by (25) and P(z) by (24). From the hypothesis of the
Theorem we have Ek)(Sm,F) = Ek)(Sm,G) i.e., Ek)(1,Fm) = Ek)(1,Gm). It is obvious that

N2(r, 0; Fm) + N2(r,∞; Fm) ≤ 2N(r, 0, f ) + 2N(r, a; f ) + 2N(r, b; f ) + 2N(r, c; f )

+2N(r, 0; f ′) + 2N(r,∞; f ) + S(r, f ), (36)

and

N2(r, 0; Gm) + N2(r,∞; Gm) ≤ 2N(r, 0, 1) + 2N(r, a; 1) + 2N(r, b; 1) + 2N(r, c; 1)

+2N(r, 0; 1′) + 2N(r,∞; 1) + S(r, 1). (37)

We now consider the following three cases.

Case 3.1. Let k ≥ 3. We can easily see that

N(r, 1; Fm) + N(r, 1; Gm) + N(k+1(r, 1; Fm) + N(k+1(r, 1; Gm) −N1)
E (r, 1; Fm)

≤
1
2

N(r, 1; Fm) +
1
2

N(r, 1; Gm) + S(r,Fm) + S(r,Gm)

≤
m
2

T(r,F) +
m
2

T(r,G) + S(r,F) + S(r,G). (38)

Suppose that Fm and Gm satisfy (i) of Lemma 2.3. Then using Lemma 2.1 and (38), we get

mT(r,F) + mT(r,G) = T(r,Fm) + T(r,Gm)

≤
m
2

T(r,F) +
m
2

T(r,G) + N2(r, 0; Fm) + N2(r,∞; Fm)

+N2(r, 0; Gm) + N2(r,∞; Gm) + S(r,F) + S(r,G),

i.e., T(r,F) + T(r,G) ≤
2
m

N2(r, 0; Fm) +
2
m

N2(r,∞; Fm) +
2
m

N2(r, 0; Gm)

+
2
m

N2(r,∞; Gm) + S(r,F) + S(r,G). (39)
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Now we consider following two subcases.

Subcase 3.1.1. We assume that 2 ≤ m ≤ 3. Then from (26), (27), (36), (37) and (39) we have

(n + 4)T(r, f ) + (n + 4)T(r, 1)

≤

(
1 +

4
m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f ) + N(r, a; f ) + N(r, b; f ) + N(r, c; f )

+N(r, 0; f ′) +
4
m

N(r,∞; f ) +
(
1 +

4
m

)
N(r, 0; 1) + N(r, γ1; 1) + N(r, γ2; 1) + N(r, γ3; 1)

+N(r, a; 1) + N(r, b; 1) + N(r, c; 1) + N(r, 0; 1′) +
4
m

N(r,∞; 1) + S(r, f ) + S(r, 1)

≤

(
9 +

8
m

)
T(r, f ) +

(
9 +

8
m

)
T(r, 1) + S(r, f ) + S(r, 1),

i.e.,
(
n − 5 −

8
m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which is a contradiction as n > 5 + 8
m . Thus, by Lemma 2.3, we have

Fm =
(B + 1)Gm + (A − B − 1)

BGm + (A − B)
,

where A (, 0), B are two constants. Therefore f ≡ t1, where tm = 1, by Lemma 2.8.

Subcase 3.1.2. Next we assume that m ≥ 4. Then from (26), (27), (36), (37) and (39), we have

(n + 4)T(r, f ) + (n + 4)T(r, 1)

≤

(
1 +

4
m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f ) +

4
m

N(r,∞; f ) +
(
1 +

4
m

)
N(r, 0; 1)

+N(r, γ1; 1) + N(r, γ2; 1) + N(r, γ3; 1) +
4
m

N(r,∞; 1) + S(r, f ) + S(r, 1)

≤

(
4 +

8
m

)
T(r, f ) +

(
4 +

8
m

)
T(r, 1) + S(r, f ) + S(r, 1),

i.e.,
(
n −

8
m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

a contradiction as n > 5 + 3
m > 8

m . Thus by Lemma 2.3, we have

Fm =
(B + 1)Gm + (A − B − 1)

BGm + (A − B)
,

where A (, 0), B are two constants. Then by Lemma 2.8 and n > 5 + 3
m , we have f ≡ t1, where tm = 1.

Case 3.2. Let k = 2. We can easily see that

N(r, 1; Fm) + N(r, 1; Gm) +
1
2

N(3(r, 1; Fm) +
1
2

N(3(r, 1; Gm) −N1)
E (r, 1; Fm)

≤
1
2

N(r, 1; Fm) +
1
2

N(r, 1; Gm) + S(r,Fm) + S(r,Gm)

≤
m
2

T(r,F) +
m
2

T(r,G) + S(r,F) + S(r,G). (40)
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Suppose that Fm and Gm satisfy (i) of Lemma 2.3. Then from Lemma 2.1 and (40), we get

mT(r,F) + mT(r,G) = T(r,Fm) + T(r,Gm)

≤
m
2

T(r,F) +
m
2

T(r,G) + N2(r, 0; Fm) + N2(r,∞; Fm) + N2(r, 0; Gm)

+N2(r,∞; Gm) +
1
2

N(3(r, 1; Fm) +
1
2

N(3(r, 1; Gm) + S(r,F) + S(r,G),

i.e., T(r,F) + T(r,G) ≤
2
m

N2(r, 0; Fm) +
2
m

N2(r,∞; Fm) +
2
m

N2(r, 0; Gm) +
2
m

N2(r,∞; Gm)

+
1
m

N(3(r, 1; Fm) +
1
m

N(3(r, 1; Gm) + S(r,F) + S(r,G). (41)

Also we see that

N(3(r, 1; Fm) ≤
1
2

N
(
r,∞;

Fm

(Fm)′

)
=

1
2

N
(
r,∞;

(Fm)′

Fm

)
+ S(r,F)

≤
1
2

N(r,∞; Fm) +
1
2

N(r, 0; Fm) + S(r,F)

≤
1
2

N(r,∞; f ) +
1
2

N(r, 0; f ) +
1
2

N(r, a; f ) +
1
2

N(r, b; f )

+
1
2

N(r, c; f ) +
1
2

N(r, 0; f ′) + S(r, f ), (42)

and N(3(r, 1; Gm) ≤
1
2

N(r,∞; 1) +
1
2

N(r, 0; 1) +
1
2

N(r, a; 1) +
1
2

N(r, b; 1)

+
1
2

N(r, c; 1) +
1
2

N(r, 0; 1′) + S(r, 1). (43)

Now we discuss following two subcases:

Subcase 3.2.1. We assume that 2 ≤ m ≤ 3. From (26), (27), (36), (37), (41)–(43), we have

(n + 4)T(r, f ) + (n + 4)T(r, 1)

≤

(
1 +

9
2m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f ) +

(
1 +

1
2m

)
N(r, a; f )

+
(
1 +

1
2m

)
N(r, b; f ) +

(
1 +

1
2m

)
N(r, c; f ) +

(
1 +

1
2m

)
N(r, 0; f ′) +

9
2m

N(r,∞; f )

+
(
1 +

9
2m

)
N(r, 0; 1) + N(r, γ1; 1) + N(r, γ2; 1) + N(r, γ3; 1) +

(
1 +

1
2m

)
N(r, a; 1)

+
(
1 +

1
2m

)
N(r, b; 1) +

(
1 +

1
2m

)
N(r, c; 1) +

(
1 +

1
2m

)
N(r, 0; 1′) +

9
2m

N(r,∞; 1)

+S(r, f ) + S(r, 1)

≤

(
9 +

23
2m

)
T(r, f ) +

(
9 +

23
2m

)
T(r, 1) + S(r, f ) + S(r, 1),

i.e.,
(
n − 5 −

23
2m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which is a contradiction as n > 5 + 23
2m . Thus by Lemma 2.3, we have

Fm =
(B + 1)Gm + (A − B − 1)

BGm + (A − B)
,
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where A (, 0), B are two constants. Then by Lemma 2.8 and n > 5 + 23
2m , we have f ≡ t1, where tm = 1.

Subcase 3.2.2. Next we assume that m ≥ 4. Proceeding similarly as in Subcase 3.1.2, we can get

(n + 4)T(r, f ) + (n + 4)T(r, 1)

≤

(
1 +

9
2m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f ) +

1
2m

N(r, a; f ) +
1

2m
N(r, b; f )

+
1

2m
N(r, c; f ) +

1
2m

N(r, 0; f ′) +
9

2m
N(r,∞; f ) +

(
1 +

9
2m

)
N(r, 0; 1) + N(r, γ1; 1)

+N(r, γ2; 1) + N(r, γ3; 1) +
1

2m
N(r, a; 1) +

1
2m

N(r, b; 1) +
1

2m
N(r, c; 1)

+
1

2m
N(r, 0; 1′) +

9
2m

N(r,∞; 1) + S(r, f ) + S(r, 1)

≤

(
4 +

23
2m

)
T(r, f ) +

(
4 +

23
2m

)
T(r, 1) + S(r, f ) + S(r, 1),

i.e.,
(
n −

23
2m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

a contradiction as n > 5 + 3
m > 23

2m and m ≥ 4. Then using (ii) of Lemma 2.3 and Lemma 2.8 we can conclude that
f ≡ t1, where tm = 1.

Case 3.3. Let k = 1. We have

N(r, 1; Fm) + N(r, 1; Gm) −N1)
E (r, 1; Fm)

≤
1
2

N(r, 1; Fm) +
1
2

N(r, 1; Gm) + S(r,Fm) + S(r,Gm)

≤
m
2

T(r,F) +
m
2

T(r,G) + S(r,F) + S(r,G). (44)

Suppose that Fm and Gm satisfy (i) of Lemma 2.3. Then from Lemma 2.1 and (44), we get

mT(r,F) + mT(r,G) = T(r,Fm) + T(r,Gm)

≤
m
2

T(r,F) +
m
2

T(r,G) + N2(r, 0; Fm) + N2(r,∞; Fm) + N2(r, 0; Gm)

+N2(r,∞; Gm) + N(2(r, 1; Fm) + N(2(r, 1; Gm) + S(r,F) + S(r,G),

i.e., T(r,F) + T(r,G) ≤
2
m

N2(r, 0; Fm) +
2
m

N2(r,∞; Fm) +
2
m

N2(r, 0; Gm) +
2
m

N2(r,∞; Gm)

+
2
m

N(2(r, 1; Fm) +
2
m

N(2(r, 1; Gm) + S(r,F) + S(r,G). (45)

Also we see that

N(2(r, 1; Fm) ≤ N
(
r,∞;

Fm

(Fm)′

)
= N

(
r,∞;

(Fm)′

Fm

)
+ S(r,F)

≤ N(r,∞; Fm) + N(r, 0; Fm) + S(r,F)
≤ N(r,∞; f ) + N(r, 0; f ) + N(r, a; f ) + N(r, b; f ) + N(r, c; f ) + N(r, 0; f ′) + S(r, f ), (46)

and

N(2(r, 1; Gm) ≤ N(r,∞; 1) + N(r, 0; 1) + N(r, a; 1) + N(r, b; 1) + N(r, c; 1) + N(r, 0; 1′) + S(r, 1). (47)

We now discuss following two subcases.
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Subcase 3.3.1. Let 2 ≤ m ≤ 3. Then using (26), (27), (36), (37), (45)–(47), we obtain

(n + 4)T(r, f ) + (n + 4)T(r, 1)

≤

(
1 +

6
m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f ) +

(
1 +

2
m

)
N(r, a; f )

+
(
1 +

2
m

)
N(r, b; f ) +

(
1 +

2
m

)
N(r, c; f ) +

(
1 +

2
m

)
N(r, 0; f ′) +

6
m

N(r,∞; f )

+
(
1 +

6
m

)
N(r, 0; 1) + N(r, γ1; 1) + N(r, γ2; 1) + N(r, γ3; 1) +

(
1 +

2
m

)
N(r, a; 1)

+
(
1 +

2
m

)
N(r, b; 1) +

(
1 +

2
m

)
N(r, c; 1) +

(
1 +

2
m

)
N(r, 0; 1′) +

6
m

N(r,∞; 1)

+S(r, f ) + S(r, 1)

≤

(
9 +

22
m

)
T(r, f ) +

(
9 +

22
m

)
T(r, 1) + S(r, f ) + S(r, 1),

i.e.,
(
n − 5 −

22
m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which contradicts the fact that n > 5 + 22
m . Thus by Lemma 2.3, we have

Fm =
(B + 1)Gm + (A − B − 1)

BGm + (A − B)
,

where A (, 0), B are two constants. Thus f ≡ t1, where tm = 1, by Lemma 2.8.

Subcase 3.3.2. Let m ≥ 4. Proceeding similarly as in Subcases 3.1.2 and 3.3.1 we can get

(n + 4)T(r, f ) + (n + 4)T(r, 1)

≤

(
1 +

6
m

)
N(r, 0; f ) + N(r, γ1; f ) + N(r, γ2; f ) + N(r, γ3; f ) +

2
m

N(r, a; f ) +
2
m

N(r, b; f )

+
2
m

N(r, c; f ) +
2
m

N(r, 0; f ′) +
6
m

N(r,∞; f ) +
(
1 +

6
m

)
N(r, 0; 1) + N(r, γ1; 1)

+N(r, γ2; 1) + N(r, γ3; 1) +
2
m

N(r, a; 1) +
2
m

N(r, b; 1) +
2
m

N(r, c; 1)

+
2
m

N(r, 0; 1′) +
6
m

N(r,∞; 1) + S(r, f ) + S(r, 1)

≤

(
4 +

22
m

)
T(r, f ) +

(
4 +

22
m

)
T(r, 1) + S(r, f ) + S(r, 1),

i.e.,
(
n −

22
m

)
{T(r, f ) + T(r, 1)} ≤ S(r, f ) + S(r, 1),

which contradicts the fact that n > 5 + 3
m > 22

m and m ≥ 4. Then using (ii) of Lemma 2.3 and Lemma 2.8 we obtain
f ≡ t1, where tm = 1.

This completes the proof of Theorem 1.8.

Proof. [Proof of the Theorem 1.9] Proceeding in a similar manner as in the proof of Theorem 1.8 and using
Lemmas 2.4, 2.6 and 2.9 we can get the result of the theorem and we omit the details here.

Proof. [Proof of the Theorem 1.10] Proceeding similarly as in the proof of Theorem 1.8 and using Lemmas
2.4, 2.7 and 2.10 we can deduce the conclusion of the theorem.
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