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Abstract. In this paper, we develop the theory of the multiple q-analogue of the Heine’s binomial for-
mula, chain rule and Leibniz’s rule. We also derive many useful definitions and results involving multiple
q-antiderivative and multiple q-Jackson’s integral. Finally, we list here multiple q-analogue of some el-
ementary functions including trigonometric functions and hyperbolic functions. This may be a good
consideration in developing the multiple q-calculus in combinatorics, number theory and other fields of
mathematics.

1. Introduction

In the year 1910, Jackson [6] first considered the q-difference calculus (or the so-called quantum calculus),
which is an old subject. From Jackson’s time to the present, this theory was widely-investigated in the theory
of special functions, differential equations (also fractional differential equations), and other related theories:
that is, quantum calculus (also known as q-calculus) was one of the most active area of research in the
physics and mathematics. While one takes care of q-calculus with one base q, Nalci and Pashaev [10]
concerned with multiple q-calculus for the functions including independent several variables. Thereby, the
necessity of multiple q-calculus has been emerged in several physical and mathematical problems.

We now review briefly some concepts of the multiple q-calculus taken in [10].
Throughout the paper, the indexes i and j will be considered as

i = 1, 2, · · · ,N and j = 1, 2, · · · ,N.

Let −→q :=
(
q1, q2, · · · , qN

)
. Then the multiple q-number (a generalization of q-number) is defined by

[n]qi,q j
:=

qn
i − qn

j

qi − q j
.
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It is clear that [n]qi,q j
= [n]q j,qi

. These numbers are represented as

(
[n]qi,q j

)
=


[n]q1,q1

[n]q1,q2
· · · [n]q1,qN

[n]q2,q1
[n]q2,q2

· · · [n]q2,qn

· · · · · · · · · · · ·

[n]qN ,q1
[n]qN ,q2

· · · [n]qN ,qN

 (1)

where i denotes the number of rows and j denotes the number of columns. One can see that the diagonal
terms of the matrix can be considered as the limit qi → q j: that is,

lim
qi→q j

[n]qi,q j
= nqn−1

j . (2)

In view of multiple q-calculus, multiple q-derivative is defined by the following linear operator:

Dqi,q j f (x) =
f
(
qix

)
− f

(
q jx

)(
qi − q j

)
x

, (3)

representing N×N matrix of multiple q-derivative operators D :=
(
Dqi,q j

)
which is symmetric, Dqi,q j = Dq j,qi .

The multiple q-analogue of (x − a)n is given by

(x − a)n
qi,q j

=

{
(x − qn−1

i a)(x − qn−2
i q ja) · · · (x − qiqn−2

j a)(x − qn−1
j a), if n ≥ 1

1, if n = 0
(4)

=

n∑
k=0

(
n
k

)
qi,q j

(−1)k
(
qiq j

) k(k−1)
2 xn−kak (xa = ax)

where the notations
(n

k
)

qi,q j
(called multiple q-Gauss Binomial coefficients) and [n]qi,q j

! (called multiple q-
factorial) are defined by(

n
k

)
qi,q j

=
[n]qi,q j

!

[n − k]qi,q j
! [k]qi,q j

!
(n ≥ k)

[n]qi,q j
! = [n]qi,q j

[n − 1]qi,q j
· · · [2]qi,q j

[1]qi,q j
(n ∈N) .

The multiple q-exponential functions are introduced by

eqiq j (x) =

∞∑
n=0

1
[n]qi,q j

!
xn and Eqiq j (x) =

∞∑
n=0

1
[n]qi,q j

!

(
qiq j

) n(n−1)
2 xn (5)

whose multiple q-derivatives, respectively, are as follows:

Dqi,q j eqiq j (x) = eqiq j (x) and Dqi,q j Eqiq j (x) = Eqiq j (qiq jx).

Under circumstance commutative x and y (xy = yx), we have addition formula

eqiq j (x + y)qiq j = eqiq j (x)Eqiq j (x). (6)
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The multiple q-integral (a generalization of Jackson’s integral) is given by

∫
f
(

x
qi

)
d qj

qi

x = (qi − q j)
∞∑

k=0

qk
jx

qk+1
i

f

 qk
j

qk+1
i

x

 . (7)

Let f (x) =
∑
∞

k=0 akxk be a formal power series. Then it has multiple q-integral representation as follows:∫
f (x) d qj

qi

x =

∞∑
k=0

qk+1
i ak

xk+1

[k + 1]qi,q j

+ C

where C is a constant.
In the special cases for qi and q j, the notations given in this part reduce to the notations of known

q-calculus (see, for details, [8], [9], [5], [11], [7], [2], [3], [4], [12], [13], [14], [15]). Recently, Nalci and
Pashaev [10] have represented multiple q-calculus and investigated many important notions and results
in the course of developing multiple q-calculus along the traditional lines of q-calculus. In [1], Acikgoz et
al. also considered some new identities involving a new class of some special polynomials in the light of
multiple q-calculus. They also derived a further investigation of some new identities related to multiple
q-Jackson integral.

In this paper, we develop the theory of the multiple q-analogue of the Heine’s binomial formula,
chain rule and Leibniz’s rule. We also derive many useful definitions and results involving multiple
q-antiderivative and multiple q-Jackson’s integral. Finally, we list here multiple q-analogue of some el-
ementary functions including trigonometric functions and hyperbolic functions. This may be a good
consideration in developing the multiple q-calculus in combinatorics, number theory and other fields of
mathematics.

2. Generalizations of some Elementary Functions belonging to q-Calculus

As it has been q-calculus, there doesn’t exist a general chain rule for multiple q-derivatives. That is, if
we consider the function f (u(x)), where u = u(x) = λxµ with λ, µ being constants, we have a chain rule as
special cases:

Dqi,q j

[
f (u(x))

]
= Dqi,q j

[
f (λxµ)

]
(8)

=
(
Dqµi ,q

µ
j

f
)

(u(x))Dqi,q j u(x).

Conversely, if we consider the function u(x) = x3 + x2 or u(x) = cos x, the quantity u(qix) and u(q jx) can
not be derived in terms of u in a basic way, and thereby it is impossible to write a general chain rule. Now
let us investigate the derivative of the function 1

(x−a)n
qi ,qj

. For any integer n, we have

Dqi,q j

 1
(x − a)n

qi,q j

 = Dqi,q j

 1

(x − q−n
i

(
qn

i a
)
)n
qi,q j


= −

(
q jqi

)−n
[n]qi,q j

(x −
(
q jqi

)n
a)−n−1

qi,q j
,

where

(x − qn
j a)−n

qi,q j
=

1
(x − q−n

i a)n
qi,q j

.

By the similar way, we have for n ≥ 0:
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Dqi,q j (a − x)n
qi,q j

= − [n]qi,q j
(a − qiq jx)n−1

qi,q j

and

Dqi,q j

 1
(a − x)n

qi,q j

 =
[n]qi,q j

(a − q jx)n+1
qi,q j

. (9)

Taking the value a = 1 in the Eq. (9), we derive multiple q-derivative of k-th order as follows:

Dk
qi,q j

 1
(1 − x)n

qi,q j

 =
[n]qi,q j

[n + 1]qi,q j
· · · [n + k − 1]qi,q j

(1 − qk
jx)n+k

qi,q j

. (10)

In the case when x = 0 in the Eq. (10) gives

[n]qi,q j
[n + 1]qi,q j

· · · [n + k − 1]qi,q j
. (11)

By the Eq. (11), we have, i.e., a Taylor expansion for 1
(1−x)n

qi ,qj
about x = 0:

1
(1 − x)n

qi,q j

=

∞∑
k=0

[n]qi,q j
[n + 1]qi,q j

· · · [n + k − 1]qi,q j

[k]qi,q j
!

xk

=

∞∑
k=0

(1 −Qn)k
Q

(1 −Q)k
Q

q(n−k)k
i xk

(
Q =

q j

qi

)

which is called Heine’s multiple q-Binomial formula.
We now give the multiple q-analogue of Leibniz rule as follows.

Theorem 2.1. Let f (x) and 1(x) be n-times multiple q-differentiable functions. Then
(

f1
)

(x) is also n-times multiple
q-differentiable and

Dn
qi,q j

(
f1

)
(x) =

n∑
k=0

(
n
k

)
qi,q j

Dk
qi,q j

(
f
) (

xqn−k
i

)
Dn−k

qi,q j

(
1
) (

xqk
j

)
.

Proof. The theorem can be easily proved by mathematical induction method. So we omit the proof of
theorem.

Corollary 2.2. Each multiple q-binomial coefficient is a polynomial including the parameters qi and q j of degree
k(n − k) whose leading coefficient is 1.

Proof. It is proved by making use of the same technique in [7]. So we omit the proof.

Note that the multiple q-binomial coefficients also have combinatorial interpretations like q-binomial
coefficients.
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3. Multiple q-Antiderivative

Some information and useful methods in this section will be utilized from the book [7].

Definition 3.1. The function F(x) is a q-antiderivative of f (x) if Dqi,q j F(x) = f (x). It is shown by∫
f
(

x
qi

)
d qj

qi

x.

Proposition 3.2. Let 0 <
q j

qi
< 1. Then, any function f (x) has at most one multiple q-antiderivative which is

continuous at x = 0, up to adding a constant.

Proof. Let us consider F1 and F2 as two multiple q-antiderivatives of f , which are both continuous at 0. Let
$ = F1 − F2, which also must be continuous at 0. Moreover

Dqi,q j$ (x) = Dqi,q j (F1 (x) − F2 (x)) = f (x) − f (x) = 0

implies that $
(
qix

)
= $

(
q jx

)
for any x. For some U > 0, let

s = inf
{
$(x) |

q j

qi
U ≤ x ≤ U

}
,

S = sup
{
$(x) |

q j

qi
U ≤ x ≤ U

}
,

which may be infinity if $ is unbounded above and/or below. It should be clear that because of s , S, $ (0)
can not be both s and S. It is not problem that we select s or S, so we can suppose $ (0) , s. By the definition
of continuous at x = 0, for every ε > 0 there exists a δ > 0 such that

s + ε < $(0, δ).

However there exists for some sufficiently N such that
( q j

qi

)N
U < δ, which implies that

s + ε ∈ (s,S) ⊂ $
[

q j

qi
U,U

]
= $

(q j

qi

)N+1

U,
(

q j

qi

)N

U

 ⊂ $(0, δ),

bringing about a contradiction. So, we have s = S,$ is a constant in that$
[ q j

qi
U,U

]
, which shows that F1−F2

is also constant everywhere.

4. Multiple q-Jackson Integral

By the expression of the Eq. (7), we develop a more general formula:

∫
f
(

x
qi

)
Dqi,q j1

(
x
qi

)
d qj

qi

x =

∞∑
k=0

f

 qk
j

qk+1
i

x


1

qk
j

qk
i

x

 − 1
qk+1

j

qk+1
i

x


 .

Theorem 4.1. Let qi, q j ∈ (0, 1) with 0 < q j

qi
< 1 and let

∣∣∣ f (x)xτ
∣∣∣ be bounded on the interval (0,A] for some 0 ≤ τ < 1.

Then the Jackson integral defined by (7) converges to a function F(x) on (0,A], which is a multiple q-antiderivative of
f (x). Moreover, F(x) is continuous at x = 0 with F(0) = 0.
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Proof. Suppose
∣∣∣ f (x)xτ

∣∣∣ < M on (0,A] and fix 0 < x ≤ A. Then for k ≥ 0,∣∣∣∣∣∣∣ f
 qk

j

qk+1
i

x


 qk

j

qk+1
i

x


τ∣∣∣∣∣∣∣ < M∣∣∣∣∣∣∣ f

 qk
j

qk+1
i

x


∣∣∣∣∣∣∣ < M

 qk
j

qk+1
i

x


−τ

.

Hence, for any 0 < x ≤ A, we get

∣∣∣∣∣∣∣
 qk

j

qk+1
i

 f

 qk
j

qk+1
i

x


∣∣∣∣∣∣∣ < Mx−τ

1(
q1−τ

i

) q1−τ
j

q1−τ
i


k

. (12)

If we write in the following sum including Jackson integral that is majorized by a convergent geometric series.
Then, (7) converges pointwise to some functions. Namely, one can see without difficulty that F(0) = 0. It is the fact
that F(x) is continuous at x = 0, i.e., F(x) approaches zero as x −→ 0 using (12), for 0 < x ≤ A as∣∣∣∣∣∣∣(qi − q j)

∞∑
k=0

qk
jx

qk+1
i

f

 qk
j

qk+1
i

x


∣∣∣∣∣∣∣ <

∣∣∣qi − q j

∣∣∣ |x| ∞∑
k=0

qk
j

qk+1
i

f

 qk
j

qk+1
i

x


<

∣∣∣qi − q j

∣∣∣ 1(
q1−τ

i

) Mx1−τ

1 −
( q j

qi

)1−τ .

We now give the following theorem in order to verify F (x) being a multiple q-antiderivative of f (x).

Theorem 4.2. The definition of q-multiple Jackson integral given in (7) presents a q-antiderivatives of f (x).

Proof. It is sufficient to check that

Dqi,q j F (x) =
1(

qi − q j

)
x

(qi − q j)
∞∑
τ=0

qτj x

qτi
f

qτj
qτi

x

 − (qi − q j)
∞∑
τ=0

qτ+1
j x

qτ+1
i

f

qτ+1
j

qτ+1
i

x




= f (x).

This completes the proof of the Theorem.

Notice that the multiple q-differentiation is valid provided that x ∈ (0,A] and 0 < q j

qi
< 1, then x q j

qi
∈ (0,A].

By Proposition 3.2, if the hypothesis of Theorem 4.1 is satisfied, the q-multiple Jackson integral gives the
unique multiple q-antiderivative being continuous at x = 0, up to adding a constant. On the other hand, if
we know that F (x) is a multiple q-antiderivative of f (x) and F (x) is continuous at x = 0, F(x) must be given,
up to adding a constant. By q-multiple Jackson’s formula (7), since a partial sum of the q-multiple Jackson
integral is

(qi − q j)
N∑
τ=0

qτj x

qτ+1
i

f

 qτj
qτ+1

i

x

 = (qi − q j)
N∑
τ=0

qτj x

qτ+1
i

Dqi,q j F(x) | qτj

qτ+1
i

x

= F (x) − F

qN+1
j

qN+1
i

x

 ,
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approaching to F (x)− F (0) as N −→ ∞, by the continuity of F(x) at the case x = 0. We now give an example
to see in which the q-multiple Jackson formula fails. Let f (x) = 1/x. We have

∫
1
x

d qj
qi

x =
(qi − q j)

log( q j

qi
)

log(x)

since

Dqi,q j log x =
log(qix) − log(q jx)

(qi − q j)x
=

log( q j

qi
)

(qi − q j)
1
x

.

However, the q-multiple Jackson formula gives

∫
1
x

d qj
qi

x =
(qi − q j)

qi

∞∑
k=0

1 = ∞.

Finally, the formula fails because f (x)xτ is not bounded for any 0 ≤ τ < 1. Note that log x is not
continuous at the case x = 0.

5. Multiple q-Trigonometric Functions

The multiple q-analogues of the sine, cosine, tangent and cotangent functions can be defined in the same
manner with their well known Euler expressions of the exponential functions.

Definition 5.1. Let i =
√
−1. Then two pairs of multiple q-trigonometric functions are defined by

sinqi,q j x :=
eqiqj (ix)−eqiqj (−ix)

2i SINqi,q j x :=
Eqiqj (ix)−Eqiqj (−ix)

2i

cosqi,q j x :=
eqiqj (ix)+eqiqj (−ix)

2 COSqi,q j x :=
Eqiqj (ix)+Eqiqj (−ix)

2

tanqi,q j x :=
sinqi ,qj x

cosqi ,qj x TANqi,q j x :=
SINqi ,qj x

COSqi ,qj x

cotqi,q j x :=
cosqi ,qj x

sinqi ,qj x COTqi,q j x :=
COSqi ,qj x

SINqi ,qj x
.

(13)

Note that one can represent N ×N matrix of the multiple q-trigonometric functions in view of Eq. (1).

Definition 5.2. Two pairs of multiple q-hyperbolic functions are defined by

sinhqi,q j x =
eqiqj (x)−eqiqj (−x)

2 SINHqi,q j x =
Eqiqj (x)−Eqiqj (−x)

2

coshqi,q j x =
eqiqj (x)+eqiqj (−x)

2 COSHqi,q j x =
Eqiqj (x)+Eqiqj (−x)

2

tanhqi,q j x =
sinhqi ,qj x

coshqi ,qj x TANHqi,q j x =
SINHqi ,qj x

COSHqi ,qj x

cothqi,q j x =
coshqi ,qj x

sinhqi ,qj x COTHqi,q j x =
COSHqi ,qj x

SINHqi ,qj x
.

(14)

By Definition 5.2, we readily see that

eqiq j (x) = coshqi,q j x + sinhqi,q j x Eqiq j (x) = COSHqi,q j x + SINHqi,q j x
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Note that one can represent N ×N matrix of the multiple q-hyperbolic functions in view of Eq. (1).

We now list intriguing identities for trigonometric and hyperbolic functions under the theory of multiple
q-theory as follows.

sinqi,q j x =
∑
∞

n=0
(−1)n

[2n+1]qi ,qj
! x

2n+1 sinhqi,q j x =
∑
∞

n=0
x2n+1

[2n+1]qi ,qj
!

SINqi,q j x =
∑
∞

n=0
(−1)n

[2n+1]qi ,qj
!

(
qiq j

) (2n+1)2n
2 x2n+1 SINHqi,q j x =

∞∑
n=0

(qiq j)
(2n+1)2n

2 x2n+1

[2n+1]qi ,qj
!

cosqi,q j x =
∑
∞

n=0
(−1)n

[2n]qi ,qj
! x

2n coshqi,q j x =
∑
∞

n=0
x2n

[2n]qi ,qj
!

COSqi,q j x =
∑
∞

n=0
(−1)n

[2n]qi ,qj
!

(
qiq j

) 2n(2n−1)
2 x2n COSHqi,q j x =

∞∑
n=0

(qiq j)
2n(2n−1)

2 x2n

[2n]qi ,qj
!

secqi,q j x := 1
cosqi ,qj x cscqi,q j x := 1

sinqi ,qj x

SECqi,q j x := 1
COSqi ,qj x

CSCqi,q j x := 1
SINqi ,qj x

sechqi,q j x := 1
coshqi ,qj x cschqi,q j x := 1

sinhqi ,qj x

SECHqi,q j x := 1
COSHqi ,qj x

CSCHqi,q j x := 1
SINHqi ,qj x

eqiq j (x + y)qi,q j = coshqi,q j

(
x + y

)
qi,q j

+ sinhqi,q j

(
x + y

)
qi,q j

Eqiq j (x + y)qi,q j = COSHqi,q j (x + y)qi,q j + SINHqi,q j (x + y)qi,q j

sinhqi,q j

(
x + y

)
qi,q j

= sinhqi,q j xCOSHqi,q j y + coshqi,q j xSINHqi,q j y
coshqi,q j

(
x + y

)
qi,q j

= coshqi,q j xCOSHqi,q j y + sinhqi,q j xSINHqi,q j y
SINHqi,q j

(
x + y

)
qi,q j

= sinhqi,q j xCOSHqi,q j y + coshqi,q j xSINHqi,q j y
COSHqi,q j

(
x + y

)
qi,q j

= coshqi,q j xCOSHqi,q j y + sinhqi,q j xSINHqi,q j y
sinqi,q j

(
x + iy

)
qi,q j

= sinqi,q j xCOSHqi,q j y + i cosqi,q j xSINHqi,q j y
cosqi,q j

(
x + iy

)
qi,q j

= cosqi,q j xCOSHqi,q j y + i sinqi,q j xSINHqi,q j y

sinqi,q j (−x) = − sinqi,q j x SINqi,q j (−x) = −SINqi,q j x
cosqi,q j (−x) = cosqi,q j x COSqi,q j (−x) = COSqi,q j x

tanqi,q j (−x) = − tanqi,q j x TANqi,q j (−x) = −TANqi,q j x
cotqi,q j (−x) = − cotqi,q j x COTqi,q j (−x) = −COTqi,q j x
secqi,q j (−x) = secqi,q j x SECqi,q j (−x) = SECqi,q j x

cscqi,q j (−x) = − cscqi,q j x CSCqi,q j (−x) = −CSCqi,q j x
sinhqi,q j (−x) = − sinhqi,q j x SINHqi,q j (−x) = −SINHqi,q j x
coshqi,q j (−x) = coshqi,q j x COSHqi,q j (−x) = COSHqi,q j x

tanhqi,q j (−x) = − tanhqi,q j x TANHqi,q j (−x) = −TANHqi,q j x
cothqi,q j (−x) = − cothqi,q j x COTHqi,q j (−x) = −COTHqi,q j x

sechqi,q j (−x) = sechqi,q j x SECHqi,q j (−x) = SECHqi,q j x
cschqi,q j (−x) = −cschqi,q j x CSCHqi,q j (−x) = −CSCHqi,q j x
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Dqi,q j sinqi,q j x = cosqi,q j x
∫

sinqi,q j

(
x
qi

)
d qj

qi

x = − cosqi,q j x + C

Dqi,q j SINqi,q j x = COSqi,q j

(
qiq jx

) ∫
SINqi,q j

(
x
qi

)
d qj

qi

x = −qiq jCOSqi,q j

(
x

qiq j

)
+ C

Dqi,q j cosqi,q j x = − sinqi,q j x
∫

cosqi,q j

(
x
qi

)
d qj

qi

x = sinqi,q j x + C

Dqi,q j COSqi,q j x = −SINqi,q j

(
qiq jx

) ∫
COSqi,q j

(
x
qi

)
d qj

qi

x = qiq jSINqi,q j

(
x

qiq j

)
+ C

Dqi,q j sinhqi,q j x = coshqi,q j

∫
sinhqi,q j

(
x
qi

)
d qj

qi

x = coshqi,q j +C

Dqi,q j SINHqi,q j x = COSHqi,q j

(
qiq jx

) ∫
SINHqi,q j

(
x
qi

)
d qj

qi

x = qiq jCOSHqi,q j

(
x

qiq j

)
+ C

Dqi,q j coshqi,q j = sinhqi,q j x
∫

coshqi,q j

(
x
qi

)
d qj

qi

x = sinhqi,q j x + C

Dqi,q j COSHqi,q j x = SINHqi,q j

(
qiq jx

) ∫
COSHqi,q j

(
x
qi

)
d qj

qi

x = qiq jSINHqi,q j

(
x

qiq j

)
+ C
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