Classes of circulant graphs play an important role in modeling interconnection networks in parallel and distributed computing. They also find applications in modeling quantum spin networks sup- porting the perfect state transfer. It has been noticed that unitary Cayley graphs as a class of circulant graphs possess many good properties such as small diameter, mirror symmetry, recursive structure, regularity, etc. and therefore can serve as a model for efficient interconnection networks. In this paper we go a step further and analyze some other characteristics of unitary Cayley graphs important for the modeling of a good interconnection network. We show that all unitary Cayley graphs are hamiltonian. More precisely, every unitary Cayley graph is hamiltonian-laceable (up to one exception for X6) if it is bipartite, and hamiltonian- connected if it is not. We prove this by presenting an explicit construction of hamiltonian paths on Xnm using the hamiltonian paths on Xn and Xm for gcd(n,m) = 1. Moreover, we also prove that every unitary Cayley graph is bipancyclic and every nonbipartite unitary Cayley graph is pancyclic.