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SEMI-FREDHOLM OPERATORS
AND PERTURBATION FUNCTIONS

SneZzana Zivkovié—Zlatanovié

Abstract. In this paper we give several remarks on [3] and a different proof
of the inequalities in [8]. Also we introduce the concept of a lower pertur-
bation function, and prove that some usual measures of noncompactness of
operators and also some measures of non-strict-cosingularity of operators are
lower perturbation functions. For each lower perturbation function §, we de-
fine functions Vs and K, and give the connection with lower semi-Fredholm
operators.

1. Introduction and preliminaries

In this paper X, Y and Z are complex Banach spaces, B(X,Y) (re-
spectively K(X,Y)) the set of all bounded (respectively compact) line-
ar operators from X into Y. We shall write B(X) (K (X)) instead of
B(X,X) (K(X,X)).

An operator T'€ B(X,Y) isin 4 (X,Y) (®_(X,Y)) if the range R(T)
is closed and the dimension a(T") of the null space N(T') of T is finite ( the
codimension S(7T') of R(T') in Y is finite). Operatorsin ¢4 (X,Y)Ud_(X,Y)
are called semi-Fredholm operators. For such operators the index, ¢(7'), is
defined by (1) = (1) — B(T). We set ¢(X,Y) =, (X, Y)NP_(X,Y).
The operators in ®(X,Y) are called Fredholm. We shall write & (X) (resp.
¢_(X), ¢(X)) instead of &4 (X, X) (resp. P_(X, X), ¢(X, X)).

Recall that the essential spectral radius of T € B(X), r.(T), is defined
by

re(T) = max{|A|: T — A ¢ ®(X)}.

Let Bx denote the closed unit ball of X. Let T'€ B(X,Y) and
m(T) = inf{|Te]l : [lal] = 1}
be the minimum modulus of T, and let
n(T) =sup{e >0 : ¢By C TBx}
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be the surjection modulus of T. Recall that m(T*) = n(T), where T €
B(Y*, X*) is the adjoint operator.

If M is a subspace of X, then Jys will denote the embedding map of M
into X, and if V is a subspace of Y, then Qv will denote the canonical map
of Y onto the quotient space Y/V.

An operator T' € B(X,Y) is strictly singular (T € S(X,Y)) if, for every
infinite dimensional (closed) subspace M of X, the restriction of T' to M,
T|nr, is not a homeomorphism, i.e. m(7|pr) = 0. An operator 7' € B(X,Y)
is strictly cosingular (T € CS(X,Y)) if, for every infinite codimensional
closed subspace V' of Y the composition Qv7T is not surjective.

For A € B(X,Y), set

IAllc = inf{||A+ K] : K € K(X,Y)}.

If © is a non-empty bounded subset of X, then the Kuratowski measure of
noncompactness of € is denoted by (), and

a(Q)=inf{e>0: QC UL, D;,D; C X, diamD; < ¢}.

For A € B(X,Y) the Kuratovski measure of noncompactness of A is denoted
by ||A||lo and defined by

|A]|o = inf{k >0 : a(AQ) < ka(), Q C X is bounded}.
It is easy to see that ||A||, = sup{a(AQ) : Q C X, a(Q) = 1}.
If Q is a non-empty bounded subset of X, then the Hausdorff measure of
noncompactness of €2, is denoted by ¢(€2), and
¢(Q) =inf{e > 0 : Q has a finite e-net in X'}.

For A € B(X,Y) the Hausdorff measure of noncompactness of A is denoted
by ||A]|, and defined by

Al =inf{k >0 : ¢y (AQ) < kgx (), Q C X is bounded}.

Recall that ||A||, = ¢v(ABx).
For A € B(X,Y), set (see [6])

Al = inf{||A|z|| : L subspace of X, codimL < oo},
and
Dar(4) = inf [lAIv]l T(4) = Cx(4),
Au(A) = sup Ty(4), A(4) = Ay (A),
NCM
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where M, N denote infinite dimensional subspaces of X (see [9]). Schechter
[9] proved that A is a submultiplicative seminorm and

(1.1) A(A)=0<= A€ S(X,Y).
For A € B(X,Y), set (see [12])
Kv(A) = inf [[QwAll, K(A) = K(4),

Vv(A) = sup Ky (4), V(4)=V0y(4),

where V, W denote closed infinite codimensional subspaces of Y.

Recall that [12],

KA) >0 Acd_(X,Y),

(1.2) V(A) =0 A e CS(X,Y).

Zemanek [13] considered the following functions

uw(A) = sup{m(Alw) : W is closed subspace of Xwith dim W = oo},
v(A) =sup{n(QvA) : V is closed subspace of Ywith codim V' = co}.

From the definition of the strictly singular and strictly cosigular operators
it is obvious that

u(A) = 0 <= A € S(X,Y),
v(A) = 0= A € CS(X,Y).

2. Results

Recall that F. Galaz-Fontes [3] introduced and investigated a perturbation
function.

Definition 2.1. A perturbation function is a function 7, assigning to each
pair of complex Banach spaces X, Y, and 7' € B(X,Y) a nonnegative
number v(7'), with the following properties:

(2.1.1) y(AT) = |\4(T), X € C,
(2.1.2) (T + K) =4(T), K € K(X,Y),
(2.1.3) Y(T) < |7,

(2.1.4) m(T) < 4(T),

(2.1.5) Y(T'|m) < (1),
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where M denotes an infinite dimensional subspace of X.

He proved that the quantities || - ||, || - |lay || - llgs || * |lus A and u are
perturbation functions.

Let us note that the following quantity is a measure of non-strict-singu-
larity and we shall show that it is a perturbation function.

Example 2.2. For 7' € B(X,Y), set
IT)ls = if{|IT + 5] : 5 € S(X, V).

(2.1.1)-(2.1.3) follow easily from the definition.
Since A is a seminorm which annihilates precisely on the strictly singular
operators [9] and such that A(T) < ||T||, T € B(X,Y), it follows that

A(T)=A(T+S) <||T+ S|, for each S € S(X,Y).
Therefore
A(T) < ||| s-

Since m(7T') < u(T) < A(T), we get m(T) < ||T||s. (2.1.5) follows from the
fact that a restriction of a strictly singular operator to an infinite dimensional
subspace of X is a strictly singular operators also.

Recall that for a given perturbation function v, and T' € B(X,Y), F.
Galaz-Fontes [3] defined

Uyar(T) = nf{3(Tly) : V € M}, T (T) =T x(T);
A ar(T) = sup{T v (T) -V C MY, Ay (T) = A, x(T),

where M, V denote closed infinite dimensional subspaces of X.

In the following v is a perturbation function. F. Galaz-Fontes proved that
if T'e S(X,Y), then A (1) = 0 [3, Proposition 9]. Actually, we shall prove
that the equivalence holds.

Proposition 2.3. Let T € B(X,Y). Then

(2.3.1) T eS(X,Y) < A, (T)=0.

Proof. First we show:
(2.3.2) w(T) < AL(T) < A(T).

From (2.1.3) and the definitions of A and A, it follows that A (T) < A(T).
Let M be a closed infinite dimensional subspace of X. We have

Y(Tv) > m(T|v) = m(T|m),
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for each closed infinite dimensional subspace V of M. It implies
Coar(T) = inf 4 (Tlv) > m(Tlar).

Hence
AL(T) = S]l\l/[p Uy (T) > S}\l/[p m(T|ar) = u(T).

(2.3.1) follows directly from (2.3.2), (1.1) and (1.3). O

Let us remark that if v is a submultiplicative seminorm then it can be
proved (analogously as in [9]) that A, is a submultiplicative seminorm and

T(T+5S) <T(T)+A,(S), T,SeB(X,Y).

If v = - ||g we shall write I'; (A,) instead of I', (A,). Analogously, we
introduce I'y, (Ay), I'y (AL), I'e (Ac), I'y (Ay) and I'a (Aa). By [3,
Lemma 8] it follows that I'n = ' and Ax = A.

Lemma 2.4. If there exists a constant ¢ > 0 such that v(T') > ¢A(T), for
eachT € B(X,Y), then

(2.4.1) I (T) <T(T) < C_IFW(T)v
(2.4.2) A(T) <A(T) < e'A(T), T € B(X,Y).

Proof. (2.4.1). From (2.1.3) and the definitions of I' and I', it follows that
I'y(T) < T(T). Further from the hypothesis and [3, Lemma 8] we get

Ly(1) > DA (T) = (7).
(2.4.2) can be proved analogously to (2.4.1). O
Recall that

T, > A(T) [9, Theorem 2.10],
Iy > 27T, > 27 A(T) [6, Theorem 3.1],
Tl > 27Tl > 471 A(T),
1Tlle 2 Tl = AT),
IT||s > A(T), T € B(X,Y).

By Lemma 2.4 we get

Pu(T)=T(T), AL(T)=A(T),

Dy(T) < T(T) < 205(T),  A,(T) < A(T) < 2A,(T),
(25)  Ta(T) < T(T) SATL(T), Au(T) < A(T) < 4A,(T),

To(T) =T(T), Ac(T)=A(T),

[s(T) =T(T), As(T)=A(T)
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The inequalities in (2.5) were proved in [8] and [5, Proposition 3.9]. However,
our proof is different from the proofs in [8] and [5].

Remark 2.6. Clearly, A, <+, and by (2.3.2), for v = u, we get
A, = u.

Recall that [3, Lemma 11]
BT, <T,

where B(T') = sup{m(T'|y) : V closed subspace of X, codimV < oco}. M.
Gonzalez and A. Martinén proved that the quantities B and I'y are not
equivalent and also that the quantities I';, and I are not equivalent [5, The-
orem 2.7 and Corollary 3.5].

In the terminology of [10], by [3, Theorem 6] it results that «/I', is a
perturbation function for &4 (X,Y). Since I', > B it follows that the per-
turbation function u/I" is better than the perturbation function u/B. Thus,
Theorem 2.14 in [9] is a consequence of the fact that u/I', is a perturbation
function for &4 (X,Y).

The above fact can be established from the inequality [7, Proposicion
25.8.4]

Ly(T+S5) <u(T)+1(S), T,5 € B(X,Y).

Indeed, let u(S) < I'y(T). Then
Du(T) = D (T 4 54 (<8)) < (T + 5) + u(S) < (T + 8) + T (T),
and
FT+8)>0=T+S5ed, (X,Y).

Now we introduce and investigate a new function connected with the lower
semi-Fredholm operators.

Definition 2.7. A lower perturbation function is a function §, which assigns
to each pair of complex Banach spaces X, Y, and T' € B(X,Y) a nonnegative
number §(7"), with the following properties:

(2.7.1) S(AT) = [Alo(T),

( ) T+ K)=46(T), K€ K(X,Y),
(2.7.3) () < ||IT,

(2.7.4) n(T) < 4(T),

(2.7.5) UcCV=4dQuT)>dQvT),

where U, V denote closed infinite codimensional subspaces of Y.

We shall give several examples.
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Example 2.8. The quantity || - ||, is a lower perturbation function.
We shall prove only (2.7.4) and (2.7.5). Recall that ||T)|, = ||T%||, [1,
Teorema 2.5.2]. Now from [3, Example 3] it follows:

1T = [T 2 m(T7) = n(T).

Let U and V denote closed infinite codimensional subspaces of Y and U C V.
Let be ¢ : Y/U — Y/V a map defined by ¢(y + U) = y+ V. Then, by [6,

Lemma 3.2] we have

1@vT]lw = leQuTllu < 2llullQuTllw < NElIQuTw < NQUT |-

Example 2.9. The quantity || - ||; is a lower perturbation function.
We shall prove only (2.7.4) and (2.7.5). Recall that
TNy = 1771

(see [4, Theorem 1 (ii), Proposition 6 (ii)] or [1, Corollary 2.5.4]). Since
T[] = m(T™) = n(T), we get

1Ty > n(T).
Analogously as in Example 2.8, it can be proved that || - ||, has the property
(2.7.5).

Example 2.10. The quantity || - ||c is a lower perturbation function.
Indeed, since [Tl > |7, we get |[T]jc > n(T). Since B(Y, 2)K (X, V)
C K(X, Z),it follows that || BA||c < ||B|[||4]|c, A € B(X,Y), B € B(Y, Z).

In an analogous way as in Example 2.8, we obtain (2.7.5).

Example 2.11. The quantity V is a lower perturbation function.

Since V is a seminorm on B(X,Y) which annihilates precisely on the
set C'S(X,Y) and K(X,Y) C CS(X,Y) we obtain properties (2.7.1) and
(2.7.2). (2.7.3) is obvious.

To prove the property (2.7.4), suppose that V' is a closed subspace of Y
with codimV > 1. Then V? is a subspace of Y*, dimV?° = codimV > 1 and
|1QvT| = ||T*Jvel||. Thus

{||Qv T :V closed subspace of ¥, codimV > 1}

C{||T"Jm|| : M subspace of Y™, dimM > 1}.
Hence
V(T) > K(T) =inf{||QvT|| : V closed subspace of Y, codimV = oo}
>inf{||QvT] :V closed subspace of Y, codimV > 1}
>inf{||T"Jal|| : M subspace of Y™, dimM > 1}
=inf{||T"Jar|| : M subspace of Y*, dimM = 1}
=inf{[T7fl|: f e Y7, Ifll = 1} = m(T7) = n(T).
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Let us remark that
n(T) < K(T) < V(T) < ||T}[,.
Since V(BA) < V(B)V(A), A € B(X,Y), B € B(Y,Z), in an analogous
way as in Example 2.8, we obtain the property (2.7.5).
Example 2.12. For T' € B(X,Y), set

|T|les =inf{||T+C|: C € CS(X,Y)}.

The quantity || - ||cs is a lower perturbation function.

Really, as in the previous example, we obtain that || - |[cs has properties
(2.7.1)-(2.7.3). It is easy to see that V(7T') < ||T'||cs and since n(T") < V(T'),
we get n(1T) < ||T|¢s. Since B(Y, Z)CS(X,Y) C CS(X, Z), it follows that
|1BA|lcs < ||Bl|||A|lcs, A € B(X,Y), B € B(Y,Z). Now, in an analogous
way as in Example 2.8, we obtain the property (2.7.5).

Problem: The quantity v has properties (2.7.1)-(2.7.4), but we do not know
whether it has property (2.7.5).

From Definition 2.7 we have
Lemma 2.13. If ¢ is a lower perturbation function, then:
(2.13.1) SK)=0, K e K(X,Y),
(2.13.2) MQv) =1,

V' closed infinite codimensional subspace of Y.

Proof. (2.13.2) follows from the following inequalities:
L=m(Jye) =n(Qv) <0(Qv) < lQv]=1. O

In the following & is a lower perturbation function.
Lemma 2.14. Let P € B(X). If6(P) < 1, then [ + P € ®(X) and
i(I+ P) = 0.
Proof. Assume that [ + P ¢ ®_(X). By [6, Lemma 5.4] there exists K €
K(X) such that codimR(I + P — K) = co. Set U = R(I+ P — K). From
Qul +P —K) =0 we get Qu = Qu(K — P). Hence, by (2.13.2), (2.7.2)
and (2.7.5), it follows that

1= 6(Qu) = §(Qu(K — P)) = 5(QuP) < 3(P).

This contradicts the hypothesis. Thus, I + P € &_(X).

Let 0 < A < 1. Then 6(AP) < 1 and therefore I+ AP € ®_(X). Since the
index is locally constant it follows that i(/ + P) = ¢({) = 0. Consequently,
[+Ped(X). O

The following proposition can be proved (see [3, Theorem 5]).



Semi-Fredholm operators and perturbation functions 85

Proposition 2.15. r.(T) = lim (§(T"))=, T € B(X).

n—00

Definition 2.16. For T € B(X,Y), set

Ksv(T) =inf{6(QwT) : WDV}, Ks(T)=K;0(T),
V(;’x/(T) = sup{K(;’W(T) WD V}, Vg(T) = V57{0}(T),

where V, W denote closed infinite codimensional subspaces of Y.

Theorem 2.17. Let S, T € B(X,Y). If Vs(T) < Ks(T'), thenT, T+ S €
®_(X,Y) and i(T + S) = i(T).

Proof. Suppose that T+ 5 ¢ ®_(X,Y). Then, by [6, Lemma 5.4], there is
K € K(X,Y) such that codimR(T + 5 — K) = o0. Set U = R(T'+ S — K).
Let V' be a closed infinite codimensional subspace of ¥ such that V' D U.
Then Qv(T'+ 5 — K) =0, and QvT = Qv (K — 5). Therefore

K5(T) < Kso(T) = inf{6(QvT) : V 5 U} = inf{8(Qy (K — §)) : V > U}
= inf{5(QvS):V > U} = Ks(S) < Vs(S).

This contradicts the hypothesis.

Let 0 < A < 1. Then V5(AS) < Ks5(T). It follows that T+ AS €
¢_(X,)Y). Thus T, T+ S € &_(X,Y) and, since the index is locally
constant, we get ¢(1T) =4(1T'+5). O

Theorem 2.18. Let T € B(X,Y). ThenT € ®_(X,Y) < K;s(T) > 0.

Proof. Let Ks(T) > 0. If S =0 then Vs(5) =0 < K;s(7), and by Theorem
217 weget T € _(X,Y).

Let T'€ ®_(X,Y). Then codimR(T) < oo, and we can express Y as a
direct sum Y = R(T) @&V where V is a subspace of Y with dimV < co. This
implies that Qv 1 is surjective, i.e. n(Qv7T) > 0. Let W be a closed infinite
codimensional subspace of Y. Clearly, codim(V + W) = co. Now, by (2.7.4)
and (2.7.5), we have:

n(QvT) < n(QviwT) < 8(QviwT) < 6(QwT).
Consequently,

Ks(T) = inf{6(QwT) : W closed subspace of Y, codimW = oo}
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Proposition 2.19. T' € B(X,Y) is strictly cosingular if and only if
Vs(T)=0.

Proof. First we shall prove the following inequality
(2.19.1) v(T) < Vs(T) < V(T).

The right side of the above inequality follows from (2.7.3) and the definitions
of V and V. To prove the left side, let V' be a closed infinite codimensional
subspace of Y. We have

S(QwT) > n(QwT) 2 n(QvT),

for each closed infinite codimensional subspace W, such that W > V. It
implies
I(&x/(T) = ml/anV(S(QwT) > n(QvT)

Hence
Vs(T) = 31‘1/p Ksv(T) > 31‘1/p n(QvT) = v(T).

Now the assertion of Proposition follows from (2.19.1), (1.2) and (1.4). O

Let us remark that if § is a submultiplicative seminorm then it can be
proved that Vs is a submultiplicative seminorm and

Ks(T +S) < Ks(T)+ Vs(S), T, SeBX,Y).

Also in this case we can show that Vy is a lower perturbation function with
Vs(T) < 8(T) (the property (2.7.4) follows from the inequality n(7) <
v(T) < Vs(T') and the property (2.7.5) can be proved analogously as in
Example 2.8). Since

M(T) < Ks(T) < K(T),

where M(T) = sup{n(QvT) : dimV < oo} [13], from [13, Theorem 8.1] it
follows: )
S (T) = Tim (K5(T")F,
where s_(T) =inf{|A| : A\[ =T ¢ &_(X)}.
The next lemma implies that V(V;) = Vj.

Lemma 2.20. K5y (1) = inf{Vsw (') : W D V}, where V, W denote
closed infinite codimensional subspaces of Y .

Proof. Since
Vsw(T) > Ksw(T) > K5 v(T),

for each W with W D V| we get

inf{Vsw(T): W DV} > Ksv(T).
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In the following M, N are closed infinite codimensional subspace of Y. Let
M > W. From (2.7.5) it follows that

Ksu(T) = nggw SQNT) < 6(QmT) < 6(QwT).

Consequently

Vsw(T) = ]\jg%/ Ksm(T) < 6(QwT).

This implies
I/‘1/113fv Vsw(T) < I/Ilfnij(S(QWT) =K;v(T). O

If 6 =1 - ||; we shall write K, (V,) instead of K5 (V). Analogously, we
introduce K, (V,), K¢ (Ve), Kv (Vv) 1 Kes (Ves). From Lemma 2.20
it follows that Ky = K and Vg = V.

In an analogous way as Lemma 2.4 the next lemma can be proved.

Lemma 2.21. If there exists a constant ¢ > 0 such that §(T') > ¢V(T), for
eachT € B(X,Y), then

—_

Ks(T) < K(T) < =Ks(T),

ol

Vs(T) <V(T) < =Vs(T), T € B(X,Y).

)

Recall that
1T, > V(T),

1Tl > SITll, > 59(),

1Tl 2 [[T]ly 2 V(T),

T||cs > V(T), Te€B(X,Y).
Now, by Lemma 2.21 we obtain
Ky(T) = K(T), V,(T)=V(T),
Ku(T) < K(T) < 2K,(T), Vu(T)
Ko(T)=K(T), Vc(T)=V(T),
I(cs(T) = I((T), Vcs(T) = V(T)

(2.22)

The equalities in (2.22) were proved in [11, Summary and discussion, Remark
2]. However, our proof is different from this one.

Acknowledgment. | am grateful to Professor Vladimir Rakocevi¢ for
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