SEMI-FREDHOLM OPERATORS AND PERTURBATION FUNCTIONS

Snežana Živković–Zlatanović

Abstract. In this paper we give several remarks on [3] and a different proof of the inequalities in [8]. Also we introduce the concept of a lower perturbation function, and prove that some usual measures of noncompactness of operators and also some measures of non-strict-cosingularity of operators are lower perturbation functions. For each lower perturbation function δ , we define functions ∇_{δ} and K_{δ} , and give the connection with lower semi-Fredholm operators.

1. Introduction and preliminaries

In this paper X, Y and Z are complex Banach spaces, B(X,Y) (respectively K(X,Y)) the set of all bounded (respectively compact) linear operators from X into Y. We shall write B(X) (K(X)) instead of B(X,X) (K(X,X)).

An operator $T \in B(X, Y)$ is in $\Phi_+(X, Y)$ ($\Phi_-(X, Y)$) if the range R(T) is closed and the dimension $\alpha(T)$ of the null space N(T) of T is finite (the codimension $\beta(T)$ of R(T) in Y is finite). Operators in $\Phi_+(X, Y) \cup \Phi_-(X, Y)$ are called semi-Fredholm operators. For such operators the index, i(T), is defined by $i(T) = \alpha(T) - \beta(T)$. We set $\Phi(X, Y) = \Phi_+(X, Y) \cap \Phi_-(X, Y)$. The operators in $\Phi(X, Y)$ are called Fredholm. We shall write $\Phi_+(X)$ (resp. $\Phi_-(X)$, $\Phi(X)$) instead of $\Phi_+(X, X)$ (resp. $\Phi_-(X, X), \Phi(X, X)$).

Recall that the essential spectral radius of $T \in B(X)$, $r_e(T)$, is defined by

$$r_e(T) = \max\{|\lambda| : T - \lambda I \notin \Phi(X)\}.$$

Let B_X denote the closed unit ball of X. Let $T \in B(X, Y)$ and

$$m(T) = \inf\{\|Tx\| : \|x\| = 1\}$$

be the minimum modulus of T, and let

$$n(T) = \sup\{\epsilon \ge 0 : \epsilon B_Y \subset TB_X\}$$

Received May 7, 1997

¹⁹⁹¹ Mathematics Subject Classification: 47A10, 47A53, 47A55. Supported by Grant 04M03 of RFNS through Math. Inst. SANU

⁷⁷

be the surjection modulus of T. Recall that $m(T^*) = n(T)$, where $T^* \in B(Y^*, X^*)$ is the adjoint operator.

If M is a subspace of X, then J_M will denote the embedding map of M into X, and if V is a subspace of Y, then Q_V will denote the canonical map of Y onto the quotient space Y/V.

An operator $T \in B(X, Y)$ is strictly singular $(T \in S(X, Y))$ if, for every infinite dimensional (closed) subspace M of X, the restriction of T to M, $T|_M$, is not a homeomorphism, i.e. $m(T|_M) = 0$. An operator $T \in B(X, Y)$ is strictly cosingular $(T \in CS(X, Y))$ if, for every infinite codimensional closed subspace V of Y the composition $Q_V T$ is not surjective.

For $A \in B(X, Y)$, set

$$||A||_C = \inf\{||A + K|| : K \in K(X, Y)\}.$$

If Ω is a non-empty bounded subset of X, then the Kuratowski measure of noncompactness of Ω is denoted by $\alpha(\Omega)$, and

$$\alpha(\Omega) = \inf\{\epsilon > 0 : \Omega \subset \bigcup_{i=1}^{n} D_i, D_i \subset X, \operatorname{diam} D_i \leq \epsilon\}.$$

For $A \in B(X, Y)$ the Kuratovski measure of noncompactness of A is denoted by $||A||_{\alpha}$ and defined by

$$||A||_{\alpha} = \inf\{k \ge 0 : \alpha(A\Omega) \le k\alpha(\Omega), \Omega \subset X \text{ is bounded}\}.$$

It is easy to see that $||A||_{\alpha} = \sup\{\alpha(A\Omega) : \Omega \subset X, \alpha(\Omega) = 1\}.$

If Ω is a non-empty bounded subset of X, then the Hausdorff measure of noncompactness of Ω , is denoted by $q(\Omega)$, and

$$q(\Omega) = \inf\{\epsilon > 0 : \Omega \text{ has a finite } \epsilon \text{-net in } X\}.$$

For $A \in B(X, Y)$ the Hausdorff measure of noncompactness of A is denoted by $||A||_q$ and defined by

$$||A||_q = \inf\{k \ge 0 : q_Y(A\Omega) \le kq_X(\Omega), \Omega \subset X \text{ is bounded}\}.$$

Recall that $||A||_q = q_Y(AB_X)$.

For $A \in B(X, Y)$, set (see [6])

$$||A||_{\mu} = \inf\{||A|_{L}|| : L \text{ subspace of } X, \text{ codim} L < \infty\},\$$

and

$$\Gamma_M(A) = \inf_{N \subset M} \|A|_N\|, \quad \Gamma(A) = \Gamma_X(A),$$

$$\Delta_M(A) = \sup_{N \subset M} \Gamma_N(A), \quad \Delta(A) = \Delta_X(A),$$

78

where M, N denote infinite dimensional subspaces of X (see [9]). Schechter [9] proved that Δ is a submultiplicative seminorm and

(1.1)
$$\Delta(A) = 0 \Longleftrightarrow A \in S(X, Y).$$

For $A \in B(X, Y)$, set (see [12])

$$K_{V}(A) = \inf_{W \supset V} \|Q_{W}A\|, \quad K(A) = K_{\{0\}}(A),$$

$$\nabla_{V}(A) = \sup_{W \supset V} K_{W}(A), \quad \nabla(A) = \nabla_{\{0\}}(A),$$

where V, W denote closed infinite codimensional subspaces of Y. Recall that [12],

(1.2)
$$K(A) > 0 \iff A \in \Phi_{-}(X, Y),$$
$$\nabla(A) = 0 \iff A \in CS(X, Y).$$

Zemánek [13] considered the following functions

$$u(A) = \sup\{m(A|_W) : W \text{ is closed subspace of } X \text{ with } \dim W = \infty\},$$

$$v(A) = \sup\{n(Q_V A) : V \text{ is closed subspace of } Y \text{ with } \operatorname{codim} V = \infty\}.$$

From the definition of the strictly singular and strictly cosigular operators it is obvious that $% \mathcal{A}(\mathcal{A})$

(1.3)
$$u(A) = 0 \iff A \in S(X, Y),$$

(1.4)
$$v(A) = 0 \iff A \in CS(X, Y).$$

2. Results

Recall that F. Galaz-Fontes [3] introduced and investigated a perturbation function.

Definition 2.1. A perturbation function is a function γ , assigning to each pair of complex Banach spaces X, Y, and $T \in B(X,Y)$ a nonnegative number $\gamma(T)$, with the following properties:

(2.1.1)
$$\gamma(\lambda T) = |\lambda|\gamma(T), \ \lambda \in \mathbb{C},$$

(2.1.2)
$$\gamma(T+K) = \gamma(T), \ K \in K(X,Y),$$

$$(2.1.3) \qquad \qquad \gamma(T) \le \|T\|,$$

$$(2.1.4) mtextbf{m}(T) \le \gamma(T)$$

(2.1.5) $\gamma(T|_M) \le \gamma(T),$

where M denotes an infinite dimensional subspace of X.

He proved that the quantities $\|\cdot\|_C$, $\|\cdot\|_\alpha$, $\|\cdot\|_q$, $\|\cdot\|_\mu$, Δ and u are perturbation functions.

Let us note that the following quantity is a measure of non-strict-singularity and we shall show that it is a perturbation function.

Example 2.2. For $T \in B(X, Y)$, set

$$||T||_{S} = \inf \{ ||T + S|| : S \in S(X, Y) \}.$$

(2.1.1)-(2.1.3) follow easily from the definition.

Since Δ is a seminorm which annihilates precisely on the strictly singular operators [9] and such that $\Delta(T) \leq ||T||$, $T \in B(X, Y)$, it follows that

$$\Delta(T) = \Delta(T+S) \le ||T+S||, \text{ for each } S \in S(X,Y).$$

Therefore

$$\Delta(T) \le \|T\|_S.$$

Since $m(T) \leq u(T) \leq \Delta(T)$, we get $m(T) \leq ||T||_{S}$. (2.1.5) follows from the fact that a restriction of a strictly singular operator to an infinite dimensional subspace of X is a strictly singular operators also.

Recall that for a given perturbation function γ , and $T \in B(X, Y)$, F. Galaz-Fontes [3] defined

$$\Gamma_{\gamma,M}(T) = \inf \{ \gamma(T|_V) : V \subset M \}, \quad \Gamma_{\gamma}(T) = \Gamma_{\gamma,X}(T); \\ \Delta_{\gamma,M}(T) = \sup \{ \Gamma_{\gamma,V}(T) : V \subset M \}, \quad \Delta_{\gamma}(T) = \Delta_{\gamma,X}(T),$$

where M, V denote closed infinite dimensional subspaces of X.

In the following γ is a perturbation function. F. Galaz-Fontes proved that if $T \in S(X, Y)$, then $\Delta_{\gamma}(T) = 0$ [3, Proposition 9]. Actually, we shall prove that the equivalence holds.

Proposition 2.3. Let $T \in B(X, Y)$. Then

(2.3.1)
$$T \in S(X,Y) \iff \Delta_{\gamma}(T) = 0.$$

Proof. First we show:

(2.3.2)
$$u(T) \le \Delta_{\gamma}(T) \le \Delta(T).$$

From (2.1.3) and the definitions of Δ and Δ_{γ} it follows that $\Delta_{\gamma}(T) \leq \Delta(T)$. Let M be a closed infinite dimensional subspace of X. We have

$$\gamma(T|_V) \ge m(T|_V) \ge m(T|_M),$$

for each closed infinite dimensional subspace V of M. It implies

$$\Gamma_{\gamma,M}(T) = \inf_{V \subset M} \gamma(T|_V) \ge m(T|_M).$$

Hence

$$\Delta_{\gamma}(T) = \sup_{M} \Gamma_{\gamma,M}(T) \ge \sup_{M} m(T|_{M}) = u(T).$$

(2.3.1) follows directly from (2.3.2), (1.1) and (1.3). \Box

Let us remark that if γ is a submultiplicative seminorm then it can be proved (analogously as in [9]) that Δ_{γ} is a submultiplicative seminorm and

$$\Gamma_{\gamma}(T+S) \leq \Gamma_{\gamma}(T) + \Delta_{\gamma}(S), \quad T, \ S \in B(X,Y).$$

If $\gamma = \| \cdot \|_q$ we shall write $\Gamma_q(\Delta_q)$ instead of $\Gamma_\gamma(\Delta_\gamma)$. Analogously, we introduce $\Gamma_\alpha(\Delta_\alpha)$, $\Gamma_\mu(\Delta_\mu)$, $\Gamma_C(\Delta_C)$, $\Gamma_u(\Delta_u)$ and $\Gamma_\Delta(\Delta_\Delta)$. By [3, Lemma 8] it follows that $\Gamma_\Delta = \Gamma$ and $\Delta_\Delta = \Delta$.

Lemma 2.4. If there exists a constant c > 0 such that $\gamma(T) \ge c\Delta(T)$, for each $T \in B(X, Y)$, then

(2.4.1)
$$\Gamma_{\gamma}(T) \leq \Gamma(T) \leq c^{-1} \Gamma_{\gamma}(T),$$

(2.4.2) $\Delta_{\gamma}(T) \leq \Delta(T) \leq c^{-1} \Delta_{\gamma}(T), \ T \in B(X, Y).$

Proof. (2.4.1). From (2.1.3) and the definitions of Γ and Γ_{γ} it follows that $\Gamma_{\gamma}(T) \leq \Gamma(T)$. Further from the hypothesis and [3, Lemma 8] we get

$$\Gamma_{\gamma}(T) \ge c\Gamma_{\Delta}(T) = c\Gamma(T)$$

(2.4.2) can be proved analogously to (2.4.1).

Recall that

$$\begin{split} \|T\|_{\mu} &\geq \Delta(T) \; [9, \; \text{Theorem 2.10}], \\ \|T\|_{q} &\geq 2^{-1} \|T\|_{\mu} \geq 2^{-1} \Delta(T) \; [6, \; \text{Theorem 3.1}], \\ \|T\|_{\alpha} &\geq 2^{-1} \|T\|_{q} \geq 4^{-1} \Delta(T), \\ \|T\|_{C} &\geq \|T\|_{\mu} \geq \Delta(T), \\ \|T\|_{S} &\geq \Delta(T), \; T \in B(X, Y). \end{split}$$

By Lemma 2.4 we get

(2.5)

$$\begin{aligned}
\Gamma_{\mu}(T) &= \Gamma(T), \quad \Delta_{\mu}(T) = \Delta(T), \\
\Gamma_{q}(T) &\leq \Gamma(T) \leq 2\Gamma_{q}(T), \quad \Delta_{q}(T) \leq \Delta(T) \leq 2\Delta_{q}(T), \\
\Gamma_{\alpha}(T) &\leq \Gamma(T) \leq 4\Gamma_{\alpha}(T), \quad \Delta_{\alpha}(T) \leq \Delta(T) \leq 4\Delta_{\alpha}(T), \\
\Gamma_{C}(T) &= \Gamma(T), \quad \Delta_{C}(T) = \Delta(T), \\
\Gamma_{S}(T) &= \Gamma(T), \quad \Delta_{S}(T) = \Delta(T).
\end{aligned}$$

The inequalities in (2.5) were proved in [8] and [5, Proposition 3.9]. However, our proof is different from the proofs in [8] and [5].

Remark 2.6. Clearly, $\Delta_{\gamma} \leq \gamma$, and by (2.3.2), for $\gamma = u$, we get

$$\Delta_u = u.$$

Recall that [3, Lemma 11]

$$B \leq \Gamma_u \leq \Gamma,$$

where $B(T) = \sup\{m(T|_V) : V \text{ closed subspace of } X, \operatorname{codim} V < \infty\}$. M. González and A. Martinón proved that the quantities B and Γ_u are not equivalent and also that the quantities Γ_u and Γ are not equivalent [5, Theorem 2.7 and Corollary 3.5].

In the terminology of [10], by [3, Theorem 6] it results that u/Γ_u is a perturbation function for $\Phi_+(X,Y)$. Since $\Gamma_u \geq B$ it follows that the perturbation function u/Γ_u is better than the perturbation function u/B. Thus, Theorem 2.14 in [9] is a consequence of the fact that u/Γ_u is a perturbation function for $\Phi_+(X,Y)$.

The above fact can be established from the inequality [7, Proposicion 25.8.4]

$$\Gamma_u(T+S) \le u(T) + \Gamma(S), \ T, S \in B(X, Y).$$

Indeed, let $u(S) < \Gamma_u(T)$. Then

$$\Gamma_u(T) = \Gamma_u(T+S+(-S)) \le \Gamma(T+S) + u(S) < \Gamma(T+S) + \Gamma_u(T),$$

and

$$\Gamma(T+S) > 0 \Longrightarrow T+S \in \Phi_+(X,Y).$$

Now we introduce and investigate a new function connected with the lower semi-Fredholm operators.

Definition 2.7. A lower perturbation function is a function δ , which assigns to each pair of complex Banach spaces X, Y, and $T \in B(X, Y)$ a nonnegative number $\delta(T)$, with the following properties:

- (2.7.1) $\delta(\lambda T) = |\lambda|\delta(T),$
- (2.7.2) $\delta(T+K) = \delta(T), \ K \in K(X,Y),$
- $(2.7.3)\qquad \qquad \delta(T) \le \|T\|,$
- $(2.7.4) n(T) \le \delta(T),$

$$(2.7.5) U \subset V \Longrightarrow \delta(Q_U T) \ge \delta(Q_V T),$$

where U, V denote closed infinite codimensional subspaces of Y.

We shall give several examples.

Example 2.8. The quantity $\|\cdot\|_{\mu}$ is a lower perturbation function.

We shall prove only (2.7.4) and (2.7.5). Recall that $||T||_{\mu} = ||T^*||_q$ [1, Teorema 2.5.2]. Now from [3, Example 3] it follows:

$$||T||_{\mu} = ||T^*||_q \ge m(T^*) = n(T).$$

Let U and V denote closed infinite codimensional subspaces of Y and $U \subset V$. Let be $\phi : Y/U \to Y/V$ a map defined by $\phi(y+U) = y+V$. Then, by [6, Lemma 3.2] we have

$$||Q_V T||_{\mu} = ||\phi Q_U T||_{\mu} \le ||\phi||_{\mu} ||Q_U T||_{\mu} \le ||\phi|| ||Q_U T||_{\mu} \le ||Q_U T||_{\mu}.$$

Example 2.9. The quantity $\|\cdot\|_q$ is a lower perturbation function.

We shall prove only (2.7.4) and (2.7.5). Recall that

$$||T||_q \ge ||T^*||_\mu$$

(see [4, Theorem 1 (ii), Proposition 6 (ii)] or [1, Corollary 2.5.4]). Since $||T^*||_{\mu} \ge m(T^*) = n(T)$, we get

$$||T||_q \ge n(T).$$

Analogously as in Example 2.8, it can be proved that $\|\cdot\|_q$ has the property (2.7.5).

Example 2.10. The quantity $\|\cdot\|_C$ is a lower perturbation function.

Indeed, since $||T||_C \ge ||T||_q$, we get $||T||_C \ge n(T)$. Since $B(Y, Z)K(X, Y) \subset K(X, Z)$, it follows that $||BA||_C \le ||B|| ||A||_C$, $A \in B(X, Y)$, $B \in B(Y, Z)$. In an analogous way as in Example 2.8, we obtain (2.7.5).

Example 2.11. The quantity ∇ is a lower perturbation function.

Since ∇ is a seminorm on B(X,Y) which annihilates precisely on the set CS(X,Y) and $K(X,Y) \subset CS(X,Y)$ we obtain properties (2.7.1) and (2.7.2). (2.7.3) is obvious.

To prove the property (2.7.4), suppose that V is a closed subspace of Y with $\operatorname{codim} V \ge 1$. Then V^o is a subspace of Y^* , $\operatorname{dim} V^o = \operatorname{codim} V \ge 1$ and $\|Q_V T\| = \|T^* J_{V^o}\|$. Thus

$$\{ \|Q_V T\| : V \text{ closed subspace of } Y, \text{ codim} V \ge 1 \} \\ \subset \{ \|T^* J_M\| : M \text{ subspace of } Y^*, \dim M \ge 1 \}.$$

Hence

$$\nabla(T) \geq K(T) = \inf\{\|Q_V T\| : V \text{ closed subspace of } Y, \text{ codim}V = \infty\}$$

$$\geq \inf\{\|Q_V T\| : V \text{ closed subspace of } Y, \text{ codim}V \geq 1\}$$

$$\geq \inf\{\|T^* J_M\| : M \text{ subspace of } Y^*, \dim M \geq 1\}$$

$$= \inf\{\|T^* J_M\| : M \text{ subspace of } Y^*, \dim M = 1\}$$

$$= \inf\{\|T^* f\| : f \in Y^*, \|f\| = 1\} = m(T^*) = n(T).$$

Let us remark that

$$n(T) \le K(T) \le \nabla(T) \le ||T||_q$$

Since $\nabla(BA) \leq \nabla(B)\nabla(A)$, $A \in B(X,Y)$, $B \in B(Y,Z)$, in an analogous way as in Example 2.8, we obtain the property (2.7.5).

Example 2.12. For $T \in B(X, Y)$, set

$$||T||_{CS} = \inf\{||T+C|| : C \in CS(X,Y)\}.$$

The quantity $\|\cdot\|_{CS}$ is a lower perturbation function.

Really, as in the previous example, we obtain that $\|\cdot\|_{CS}$ has properties (2.7.1)-(2.7.3). It is easy to see that $\nabla(T) \leq \|T\|_{CS}$ and since $n(T) \leq \nabla(T)$, we get $n(T) \leq \|T\|_{CS}$. Since $B(Y,Z)CS(X,Y) \subset CS(X,Z)$, it follows that $\|BA\|_{CS} \leq \|B\| \|A\|_{CS}$, $A \in B(X,Y)$, $B \in B(Y,Z)$. Now, in an analogous way as in Example 2.8, we obtain the property (2.7.5).

Problem: The quantity v has properties (2.7.1)-(2.7.4), but we do not know whether it has property (2.7.5).

From Definition 2.7 we have

Lemma 2.13. If δ is a lower perturbation function, then:

(2.13.1)
$$\delta(K) = 0, \ K \in K(X, Y),$$

 $(2.13.2) \qquad \qquad \delta(Q_V) = 1,$

V closed infinite codimensional subspace of Y.

Proof. (2.13.2) follows from the following inequalities:

$$1 = m(J_{V^{\circ}}) = n(Q_V) \le \delta(Q_V) \le ||Q_V|| = 1. \quad \Box$$

In the following δ is a lower perturbation function.

Lemma 2.14. Let $P \in B(X)$. If $\delta(P) < 1$, then $I + P \in \Phi(X)$ and i(I + P) = 0.

Proof. Assume that $I + P \notin \Phi_{-}(X)$. By [6, Lemma 5.4] there exists $K \in K(X)$ such that $\operatorname{codim} \overline{R(I+P-K)} = \infty$. Set $U = \overline{R(I+P-K)}$. From $Q_U(I+P-K) = 0$ we get $Q_U = Q_U(K-P)$. Hence, by (2.13.2), (2.7.2) and (2.7.5), it follows that

$$1 = \delta(Q_U) = \delta(Q_U(K - P)) = \delta(Q_U P) \le \delta(P).$$

This contradicts the hypothesis. Thus, $I + P \in \Phi_{-}(X)$.

Let $0 \leq \lambda \leq 1$. Then $\delta(\lambda P) < 1$ and therefore $I + \lambda P \in \Phi_{-}(X)$. Since the index is locally constant it follows that i(I + P) = i(I) = 0. Consequently, $I + P \in \Phi(X)$. \Box

The following proposition can be proved (see [3, Theorem 5]).

Proposition 2.15. $r_e(T) = \lim_{n \to \infty} (\delta(T^n))^{\frac{1}{n}}, \quad T \in B(X).$

Definition 2.16. For $T \in B(X, Y)$, set

$$K_{\delta,V}(T) = \inf \left\{ \delta(Q_W T) : W \supset V \right\}, \quad K_{\delta}(T) = K_{\delta,\{0\}}(T),$$

$$\nabla_{\delta,V}(T) = \sup \left\{ K_{\delta,W}(T) : W \supset V \right\}, \quad \nabla_{\delta}(T) = \nabla_{\delta,\{0\}}(T),$$

where V, W denote closed infinite codimensional subspaces of Y.

Theorem 2.17. Let $S, T \in B(X, Y)$. If $\nabla_{\delta}(T) < K_{\delta}(T)$, then $T, T + S \in \Phi_{-}(X, Y)$ and i(T + S) = i(T).

Proof. Suppose that $T + S \notin \Phi_{-}(X, Y)$. Then, by [6, Lemma 5.4], there is $K \in K(X, Y)$ such that $\operatorname{codim} \overline{R(T + S - K)} = \infty$. Set $U = \overline{R(T + S - K)}$. Let V be a closed infinite codimensional subspace of Y such that $V \supset U$. Then $Q_V(T + S - K) = 0$, and $Q_V T = Q_V(K - S)$. Therefore

$$K_{\delta}(T) \leq K_{\delta,U}(T) = \inf\{\delta(Q_V T) : V \supset U\} = \inf\{\delta(Q_V (K - S)) : V \supset U\}$$
$$= \inf\{\delta(Q_V S) : V \supset U\} = K_{\delta,U}(S) \leq \nabla_{\delta}(S).$$

This contradicts the hypothesis.

Let $0 \leq \lambda \leq 1$. Then $\nabla_{\delta}(\lambda S) < K_{\delta}(T)$. It follows that $T + \lambda S \in \Phi_{-}(X, Y)$. Thus $T, T + S \in \Phi_{-}(X, Y)$ and, since the index is locally constant, we get i(T) = i(T + S). \Box

Theorem 2.18. Let $T \in B(X, Y)$. Then $T \in \Phi_{-}(X, Y) \iff K_{\delta}(T) > 0$.

Proof. Let $K_{\delta}(T) > 0$. If S = 0 then $\nabla_{\delta}(S) = 0 < K_{\delta}(T)$, and by Theorem 2.17 we get $T \in \Phi_{-}(X, Y)$.

Let $T \in \Phi_{-}(X, Y)$. Then $\operatorname{codim} R(T) < \infty$, and we can express Y as a direct sum $Y = R(T) \oplus V$ where V is a subspace of Y with $\dim V < \infty$. This implies that $Q_V T$ is surjective, i.e. $n(Q_V T) > 0$. Let W be a closed infinite codimensional subspace of Y. Clearly, $\operatorname{codim}(V+W) = \infty$. Now, by (2.7.4) and (2.7.5), we have:

$$n(Q_V T) \le n(Q_{V+W} T) \le \delta(Q_{V+W} T) \le \delta(Q_W T).$$

Consequently,

$$K_{\delta}(T) = \inf \{ \delta(Q_W T) : W \text{ closed subspace of } Y, \text{ codim} W = \infty \}$$
$$\geq n(Q_V T) > 0. \quad \Box$$

Proposition 2.19. $T \in B(X,Y)$ is strictly cosingular if and only if $\nabla_{\delta}(T) = 0$.

Proof. First we shall prove the following inequality

(2.19.1)
$$v(T) \le \nabla_{\delta}(T) \le \nabla(T).$$

The right side of the above inequality follows from (2.7.3) and the definitions of ∇ and ∇_{δ} . To prove the left side, let V be a closed infinite codimensional subspace of Y. We have

$$\delta(Q_W T) \ge n(Q_W T) \ge n(Q_V T),$$

for each closed infinite codimensional subspace W, such that $W \supset V$. It implies

$$K_{\delta,V}(T) = \inf_{W \supset V} \delta(Q_W T) \ge n(Q_V T).$$

Hence

$$\nabla_{\delta}(T) = \sup_{V} K_{\delta,V}(T) \ge \sup_{V} n(Q_V T) = v(T).$$

Now the assertion of Proposition follows from (2.19.1), (1.2) and (1.4).

Let us remark that if δ is a submultiplicative seminorm then it can be proved that ∇_{δ} is a submultiplicative seminorm and

$$K_{\delta}(T+S) \leq K_{\delta}(T) + \nabla_{\delta}(S), \quad T, \ S \in B(X,Y).$$

Also in this case we can show that ∇_{δ} is a lower perturbation function with $\nabla_{\delta}(T) \leq \delta(T)$ (the property (2.7.4) follows from the inequality $n(T) \leq v(T) \leq \nabla_{\delta}(T)$ and the property (2.7.5) can be proved analogously as in Example 2.8). Since

$$M(T) \le K_{\delta}(T) \le K(T),$$

where $M(T) = \sup\{n(Q_V T) : \dim V < \infty\}$ [13], from [13, Theorem 8.1] it follows:

$$s_{-}(T) = \lim_{n \to \infty} (K_{\delta}(T^n))^{\frac{1}{n}}$$

where $s_{-}(T) = \inf \{ |\lambda| : \lambda I - T \notin \Phi_{-}(X) \}$. The next lemma implies that $\nabla(\nabla_{\delta}) = \nabla_{\delta}$.

Lemma 2.20. $K_{\delta,V}(T) = \inf \{ \nabla_{\delta,W}(T) : W \supset V \}$, where V, W denote closed infinite codimensional subspaces of Y.

Proof. Since

$$\nabla_{\delta,W}(T) \ge K_{\delta,W}(T) \ge K_{\delta,V}(T),$$

for each W with $W \supset V$, we get

$$\inf \{ \nabla_{\delta, W}(T) : W \supset V \} \ge K_{\delta, V}(T).$$

In the following M, N are closed infinite codimensional subspace of Y. Let $M \supset W$. From (2.7.5) it follows that

$$K_{\delta,M}(T) = \inf_{N \supset M} \delta(Q_N T) \le \delta(Q_M T) \le \delta(Q_W T).$$

Consequently

$$\nabla_{\delta,W}(T) = \sup_{M \supset W} K_{\delta,M}(T) \le \delta(Q_W T).$$

This implies

$$\inf_{W \supset V} \nabla_{\delta, W}(T) \le \inf_{W \supset V} \delta(Q_W T) = K_{\delta, V}(T). \quad \Box$$

If $\delta = \| \cdot \|_q$ we shall write K_q (∇_q) instead of K_δ (∇_δ) . Analogously, we introduce K_μ (∇_μ) , K_C (∇_C) , K_∇ (∇_∇) i K_{CS} (∇_{CS}) . From Lemma 2.20 it follows that $K_\nabla = K$ and $\nabla_\nabla = \nabla$.

In an analogous way as Lemma 2.4 the next lemma can be proved.

Lemma 2.21. If there exists a constant c > 0 such that $\delta(T) \ge c\nabla(T)$, for each $T \in B(X, Y)$, then

$$K_{\delta}(T) \leq K(T) \leq \frac{1}{c} K_{\delta}(T),$$

$$\nabla_{\delta}(T) \leq \nabla(T) \leq \frac{1}{c} \nabla_{\delta}(T), \ T \in B(X, Y).$$

Recall that

$$\|T\|_{q} \ge \nabla(T), \|T\|_{\mu} \ge \frac{1}{2} \|T\|_{q} \ge \frac{1}{2} \nabla(T), \|T\|_{C} \ge \|T\|_{q} \ge \nabla(T), \|T\|_{CS} \ge \nabla(T), \quad T \in B(X, Y).$$

Now, by Lemma 2.21 we obtain

(2.22)
$$K_q(T) = K(T), \quad \nabla_q(T) = \nabla(T),$$
$$K_\mu(T) \le K(T) \le 2K_\mu(T), \quad \nabla_\mu(T) \le \nabla(T) \le 2\nabla_\mu(T),$$
$$K_C(T) = K(T), \quad \nabla_C(T) = \nabla(T),$$
$$K_{CS}(T) = K(T), \quad \nabla_{CS}(T) = \nabla(T).$$

The equalities in (2.22) were proved in [11, Summary and discussion, Remark 2]. However, our proof is different from this one.

Acknowledgment. I am grateful to Professor Vladimir Rakočević for helpful comments and suggestions.

S. Živković-Zlatanović

References

- Р. Р. Ахмеров, М. И. Каменский, А. С. Потапов и др., Меры некомпактности и уплотняющие операторы, Наука, Новосибирск, 1986.
- [2] A. S. Fainstein, On measures of noncompactness of linear operators and analogous of the minimum modulus for semi-Fredholm operators (Russian), Spektral'naja Teorija Operatorov i Prilož., Baku 6 (1985), 182-195..
- [3] F. Galaz-Fontes, Measures of noncompactness and upper semi-Fredholm pertirbation theorems, Proc. Amer. Math. Soc. 118 (1993), 891-897.
- [4] M. González and A. Martinón, Operational quantities derived from the norm and measures of non-compactness, Proc. R. Ir. Acad. 91A (1991), 63-70.
- [5] M. González and A. Martinón, Operational quantities characterizing semi-Fredholm operators, Studia Math. 114 (1995), 13-27.
- [6] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26.
- [7] A. Martinón, Cantidades operacionales en teoria de Fredholm, Doctoral thesis, University of La Laguna, 1989.
- [8] V. Rakočević, Measures of non-stric-singularity of operators, Mat. Vesnik 35 (1983), 79-82.
- M. Schechter, Quantities related to stricly singular operators, Indiana Univ. Math. J. 21 (11) (1972), 1061-1071.
- [10] M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Studia Math. 90 (1988).
- H.-O. Tylli, On semifredholm operators, Calkin algebras and some related quantities, Dissertation, Helsinki, 1986.
- [12] L. Weist, Über strikt singuläre und strikt cosinguläre Operatoren in Banachräumen, Dissertation, Bonn, 1974.
- [13] J. Zemánek, Geometric characteristics of semi-Fredholm operators and asymptotic behaviour, Studia Math. 80 (1984), 219-234.

University of Niš, Faculty of Philosophy, Department of Mathematics, Ćirila and Metodija 2, 18000 Niš, Yugoslavija, Serbia