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Geodesic and holomorphically-projective mapping of
conformally-kéhlerian spaces

Zelko Radulovie

Abstract. This paper is devoted to study of geodesic and holomor-
phycally - projective mapping of conformally-K&hlerian spaces, which
are a generalization of the conformal space. A condition admitting
geodesic mapping of conformally-Kahlerian spaces, has been found.
Conformally - Kahlerian spaces not admitting nontrivial geodesic-
projective mapping has been discussed.

In the theory of almost complex manifolds the geodesic and holomorphi-
cally- projective mapping has been studying by many authors. These matters
were discussed in D.Beklemishev’s survey [1], as well as in K.Jano’s book [2].

W.Y Westlake [3], K.Yano and T.Nagano [4,5] have shown that between
Kahlerian spaces one cannot establish nontrivial geodesic mapping preserv-
ing structure. Those finding were further developed by A.V.Karmasina and
L.N.Kurbatova [6], and it has been shown that K-spaces do not admit non-
trivial and structure-preserving geodesic mapping onto almost Hermitian
spaces.

In works by J.Mikes [7-10] results of his study of the geodesic mapping of
Kihlerian spaces not preserving the structure is given.

Since such spaces are a natural generalization of conformally spaces it is
natural to call them a conformally-Kahlerian. The interest in investigation
of these spaces recently has grown due to the possibility of using them as a
model of Kaluca-Klein theory [11]. Investigations into conformally-Ké&hlerian
spaces are carried out, for example, in [6, 12-14].
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§1. The main properties of conformally-Kihlerian spaces
geodesic mapping

1. The conformally-Kéhlerian spaces

Let's preliminary establish basic definitions [1,11].

Definition 1. A Riemannian space H, is called almost Hermitian if both
metric tensor g;;(z) and almost Hermitian structure F}*(z) are determined
in it, and F*(z) satisfies the conditions

F;LF{O: :*(5?, F(c:gj)a:(], (1)
8" being the Kronecer symbols, (4,7) denoting symmetrization without di-
vision.

Definition 2. An almost Hermtian space with covariantly constant struc-
ture is called Kahlerian space.

Definition 3. Riemannian space that can be conformally mapped onto
Kihlerian space is called conformally-Kéhlerian space K, .

Evidently, a conformally-Kahlerian space K, is almost Hermitian. Confor-
maldhlrian spaces K, are characterized by the existence of almost Hermitian
structure F*(z), satisfying (1) and the following conditions [11,6]:

Fly = (n— 27 & Fiy — 95 F o + FPFGFU" + FuFg F7Y)  (2)
where Fy; = g, Ff; F¥ = g?*F}.

We would point out, that conformally-Kéhlerian space, determining by (1)
and (2), is one of the particular classes established by A.Gray [11] among
almost Hermitian spaces.

To facility the investigation and discussion of the almost-Hermitian spaces,
in general, and conformally-Kahlerian spaces, in particular, the following
procedure of indexes conjugation has been introduced:

L. =T.F; T =T Fi (3)
This procedure is possessing the following properties:

T = -T; T = T T U® =T U=
Evidently, that 6* = §f = F!* and both tensor, metric tensor (g;;) and
conjugated (g¥) imply that
95+ =0 gr=gy; ¢I+g7=0; g7 =g" (4)

Then (2) may be rewritten in the more compact form:
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Fz",lj = 6;1451' - gij@’bh o ‘5?@ - 9?3"?53 (5)

where ¢; = (n —2)7 F7; ¢" = g"*¢,. Omitting index h, we obtain
Frig = it — 9i;0n — gnibs + gi;95- (6)
Now, let covariantly differentiate (6) at z* and alternate at indexes j and

k. Changing the notations and taking into consideration Ricci identity, we
get

Rriji + Ruiji = 9iyPni — 9ik®hj — Inibip + nedbi;—

Q-I'quhk + g?kqghj 3+ th&uc — gﬁk&ij: (7)

where ¢}, = ¢ ; — didyi by = (da),; — didhy.
After contracting (7) with FJt Fi, we omitted prime at indexes, added by
respective components with (7), and received

Gi5Pnk — GixPrj — gn; Pix + Gre Py +

9% — 9uPr; — 95 P + 97 P55 =0 (8)
Where q)h,k. = ‘fybhk - ¢Hk'
Let us contract (8) with g%;

(n—1)®p — Brr + Pgpi + Pors.

where ® = ©,39%%; ® = ®;39%¢ . Contracting the latter with ¢"*, we see,
that @ = 0. Se,

(n — 1)@p — gz + Pgrr = 0. (9)
From (9) we conclude that

(n — 1)@z — ®pi + Pggi = 0.
Thus

D = G
when « is a certain invariant. According to the definition of tensor ®,; we
have

i + Ori = CGhhs
from where it follows that
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Pri = B + Ghr (10)
Then (7) takes the form

Rpiie + Ruijr = 9ijPnk — 9ixPrj — GniPir + Gnedij—

GijPri + Gibr; + Gri b — IRk D (11)
From (11) it follows that

Rizjr + Brijr = GiiPrk — GiePri — GniGi + Gned;+

Qij¢ﬁk = Qikﬁbﬁj = 95j¢ik + gr ¢ij- (12)
It is easily checked that ¢;; can be expressed by means of Riemannian
tensor components and structure and metric of Conformally - Kahlerian
space K.
Taking into consideration the Riemannian tensor properties (12) can be
rewritten as the following:

Rk + Bpijk = gne®5i — 9ri P + 95 Pkn — GikP3nt+

IrEPii — GnjPri + GizPrn — GiEPin- (13)
2. Geodesic mapping of Riemanian spaces.

Definition 4. Diffeomorphism f of Riemannian space V,, into V,, is called
a geodesic mapping if all geodesic lines in V,, are mapped as geodesic lines
in V,.

V,, and V,, admits a geodesic correspondence, if and only if the following
condition is satisfied in the "common” mapping coordinate system [15]:

3 () = T (2) + 6i4p; + dabs, (14)
where f‘?j and I‘f‘J are corresponding Cristoffel symbols of the second type
for V,, and V,, 9; is a certain vector field, which is necessarily a gradient
type, that is 1; = 9yh; 8; = §/9x".

When v; # 0 the geodesic mapping is said nontrivial.
The relations (14) are equivalent to the following:

Gije = 2055 + Vi + Vi G- (15)
In [15], it is proved, that V,, admits geodesic mapping if in V,, there exists
a solution of the following equation
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Qijk = Mijk + AjGin (16)
on an unknown symmetrical regular tensor a;; and a vector ;.
If A # 0 then a geodesic mapping is nontrivial.
It is well known, that the condition of integrabilty of these equations has
the form

aa(iRaj)kt = )\t(igj)k - /\k(igj)h (17)

where A;; = A ;.
§2. Geodesic mapping of conformally-Kéhlerian spaces

1. Geodesic structure preserving mapping.

Let H, and H, are almost Hermitian spaces with structures F* and Fh
respectively, and let a certain diffeomorphism (mapping) be established be-
tween them.

If, with respect to a "common” coordinate system, the condition

Fi(z) = F}(z), (18)

is satisfied, then it is said, that the structure is preserved by the mapping.

As we mentioned above, the geodesic mapping preserving the structure of
certain almost Hermitian spaces has been investigated in [3-6].

In the paper by A.V.Karmasina and I.N.Kurbatova [6] geodesic mapping
of conformally-Kéahlerian space onto almost Hermitian space structure pre-
serving were studied. Their investigations were completed by the following
theorem.

Theorem 1. A conformally-Kdihlerian space K, (n > 2) does not ad-
mat nontrivial structure-preserving geodesic mapping onto almost Hermitian
spaces.

Proof. Let us suppose the opposite. Let conformally-Kahlerian space
K., (gij, F') admit a nontrivial geodesic structire-preserving mapping (18)
onto almost Hermitian space H, (g, F1*).

The condition

Goi 5 + Gog F =0,

existing in H, spaces, takes the following form, taking into account (18)

gaiF;I + gajFia =0. (19)
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This condition can be covariantly differentiated at z*. Taking into account
(6) and (11), after the reduction we get

XiGik + XiGik — XG5k — X50i—

Oigjr — ©s9i + Oigzk + Ozg3, = 0, (20)
Where Xe = (/)7; -+ 'l,b[, 62' = gl,-;aqsa.
Let’s make the relation (20) symmetrical by all indexes:

XiGik + X359k + XuGij—

Oig5x — O,gr: — Orgi; = 0. (21)
And now, let us consider the case, when vectors y; and ©, are noncolinear.
Then there exist a vector €' such that 0, = 0 and ¢*y, = 1.
If we contract (21) with e’e’e”, we shall see that

§ﬂﬁe“6ﬁ =il (22}
After contraction of (21) with e/¢*, by (22) we get

‘@{ﬁErX = O!@i, (23)
where o is an invariant.
Finally, we contract (8) with ¢, and conclude from (23) that

95 = 0k, (24)
where £; is a certain vector. So we obtained a contradiction to Rg||g;|| =

n > 2. Consequently, vectors x; and ©; are collinear;: y; = a®;. Then (21)
takes the form

Oi(gur — i) + O, (96 — afr;) + Ok(gi; — agi;) = 0.

One can see, that the latter relation implies either @; = 0 or g,; —ag,; = 0.

The first case ©; = 0 <= ¢" = 0 means that conformally - Kéhlerian
space is Kahlerian space, but for the Kihlerian spaces the theorem 1 is
proved.

The second case, where g;; — ag;; = 0 and K, and H, are in a confor-
mal correspondence, is in contradiction with nontriviality of the geodesic
correspondence,

Thus the theorem 1 has been proved.
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2. General properties of geodesic mapping of
conformally-Kiahlerian spaces.

Let us study the general properties of geodesic mapping of conformally-
Kihlerian spaces.

Let conformally-Kéhlerian space K, admit a nontrivially geodesic map-
ping onto certain Riemannian spaces V,,. Then in K,, there exist a solution
of the equation (16) and satisfying the condition of integrability (17).

Let contract (17) with FJ?, F, and after omitting primes, we get:

Ga(r )38 = Men07 — A5(nGirk- (25)
Subtracting (17) from (25), taking into consideration (13), and after the
grouping, we obtain
Grn @i — @inPri + Gren Py — gin Pt
araPii — @inPri T Gin Py — 95aPrit

Qi @in — ainPen + 9ri®Pin — 95 Pn+

A Bin — 05iPen + 950 — 95, (26)
where

Qi = Aij — bjaay’- (27)

If an arbitrary vector €" satisfies the condition
a"iaea == &Qiaﬁa’ == ﬁg?a'faa (28)
then a;; = agy;, which is contrary to the nontriviality of the geodesic map-

ping. So, there exist a vector €' such that (28) is not true for it. Moreover,
for the ¢

9 G G 4 (29)
is a linearly independent system of vectors, where

— a — fag
G = o™ Q; = €.

Let us contract (26) with e”:
a5 — 0Pk + 9Py — 93Pt

ARy — a3Pri + G5 Py — g5 Prit
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G O3 — Bii Pk + 91iP5e — 05 Phi+

05 Pix — 05iPrs + G7iPjx — 97:P1 = 0 (30)
where

¢j* = ¢ja€a; ¢'j* — (I’jaea-
Let’s also contract (30) with €

akqu* = G‘jqbl?,* + gkq}}* - Qj®ﬁ*+

apPie — 65Pk + 95 Pje — 95Pp. =0 (31)
Now, from (29) and (31) it follows that

@i« = aa; + Pa; +vg; + 0g;; (32)
®;, = a; + Ba; +7g; + dg;, (33)
where a, ..., 6 are certain invariants.

Substituting (32) and (31) into (33) we see that & =+ and 5 = §. There-
fore, we can rewrite (33) as

@, = va; + da; + 7g; + dg5; (34)
Transforming (30) with components from (32) and (34) we get:

axM;; — a; My; + 9o Mj; — g; M+

apM;; — a; My, + QEMji - ngh =0,

where

M;; = ¢y — aaj — Bagi — v9i — 6934

My = Qi — g5 — g5 — vaji — daji; (36)
it follows from (35)
Mji = G,in 4 GjBi =+ ng'i + QED“

Mj; = a;C; + a3 D; + g; B; + g3 14, (37)
where A;, ..., F; are certain vectors.
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Based on (36} and (37) we have:
¢ji = aay + Baz; + g5 + 0g5i + a;A; + a3Bi + g;Ci + g:D5

‘i’j;‘ = ’792‘;,' + Sg;,z + YQji + 5(1.3;,; + ajC’I- + G."T,-D,’ + ng,' + g‘}.F1 (38)
Set

S;i = ajA; + a;B; + 9;C; + g; Di;

S’ji = a,-Ci + a;Di + ngi + QEFE (39)
Substituting (38) for (26) we can rewrite (26) as the following:

arnS3i — aja Sk + gkhgji = thS'Ei+
apnSii — @5nSki + GrnSji — gjhgh"‘
ariSin — @iSkn + griS5n — gjigﬁn+
aziSip — aaSki + 95iSin — 9}i§k11 =0. (40)
A detailed analysis of the (40) for n > 8 leads us to a conclusion that
the vectors 4;, B;, E;, F; are complanarly with vectors C; and D;. Therefore
(38) can be transformed into
(,l')ji = ¥Gyj + )60;}2 =+ YGji + (59_.‘,;,- + CjC,' + d’jDi;
®;; = 7gi; + 69 + Va5 + baz + &;C; + d; D;. (41)
where ¢;,d;, G;,d; are certain vectors.

Thus, (26) takes the form of (40), where

Sj.i = CjCi + dei; gji = EjCi —+ de,;.

This formula may be rewritten as

|

CiiApyjx + DiiBryj = 0,

(42)

where

Anjr = Qra€; — QjaCE + QEaC5 — GGaCkT

9knC; — G5nCk + 9EnC; — G5nCk;
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Brjr = agnd; — ajndy + azpd; — azadi+

Ikndi — 9inds + grnd; — ginds.

Now, we assume that C; and D; are noncolinear vectors.

Then there exist %* such that n*C, = 1 and n*D, = 0. Contracting (42)
with n"n* we see, that n*A,;, = 0. After contracting (42) with n*, on the
base of the previously considerations, we get Apy = DpDj where Dy is a
certain tensor.

The latter can be rewritten as

QppCj — QipCE T ARpCy — G3nCrt

9knC; — GinCr + GEnC — Gn€k = DpDjy. (43)

If ¢; and &; are noncolinear, then there exists a vector ©° such that ©%¢, =
0 and ©%c; = 1. Contracting (43) with &7, we get

5
Jkh =+ agdip + ba.’ch = Z 50’”70"7 (44)

a=1
Eqrton — here and further are certain vectors.
Alternating (44) we obtained

10
Grn — Z gu"“ Mgk,
o=1

which leads us to a contradiction when n > 10. -
Now, let us consider the case of colinearity of C; and C;. For example, let
¢; = —pc; . Then (43) can be rewritten as

Agpe; = Agpeg + Agrey — Azper = DDy, (45)

where Az'j = Qi5 — PGij-
From (45) and noncolinearity of ¢; and g it follows that

aij = pgij + 1665 + Eaicg + Dikas, (46)
which implies

Rgllai; — pgi;|| < 3. (47)

It remained to consider the case of collinearity of C; and D;. Here, if
c; # 0 (47) will be obtained.
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As a result, we get for n > 10 the following situation: either (47) is true
or

$ji = aay; + Paz; + g5 + 6954 (48a)

Xij — Ba0f = B = Y950 + 0g5: + baz; + aji. (480)
For o? + 3% # 0 (48 a) implies that

aji = ady + B+ vgi + 0y,
where «,...,d are certain invariant.
After symetrisation of the last expression, we have:

aij = adig) + Bday +79i5 (49)
It follows then, that the mobility rate of K, relative to geodesical mapping
introduced in [11], is not greater than 3.
If a® + 32 = 0, then from (48 a) we have

¢i; = vgi; + 05 (50)
Excepting the tenzor ¢;; from (48 b) by means of (50) we obtained

Aij = kg5 +vgy + Bag + Cay;,
where p, v, B, C are certain invariants.
The following relation has been obtained by conjugation at index j

)\'i,j = ,U:gw = Ug.i_; | Baij s Cﬂ;ij, (51)
Alternating (51) we have obtained

vgi; + Clag — az) = 0.
Differentiating covariantly the latter, and considering (2) and (16), it is

easily seen that either the conditions (47) are satisfied, or v = C' = 0. Thus,
formula (51) takes the form

Ai,j = MGij + Ba,;j, (52)
In [16] the Riemannian space V, is called V,(B)-space, if it admits a
geodesic mapping satisfying (16) and (52). The basic properties of these
spaces were considered in [16] too. In particular, V,-spaces, admitting non-
circular vector fields are the V,(B)-spaces.
The results of the present investigation are summed up in the following
theorem.
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Theorem 2.If a Conformally-Kdhlerian space K, (n > 10) admits a
geodesic mapping onto a Riemannian space, then either space K, is a V,(B)-
space, or the a;; solution of the equations (16) satisfies one of the following
conditions:

Rgllai; — pgs;|| < 3,

or
aij = aduy + By + 195

3. Conformally-Kihlerian spaces, admitting concircular fields.

A vector field &; is called [17] concircular, if the following relations are
true:

&i.j = PYij (52)
where p is a certain invariant. According to A.P.Shirokov, such a field is
called a convergence field when the case p = const is fulfilled.

Riemanian spaces V,,, where exist concircular vector fields with p # 0,
admit nontrivial geodesic mapping [15].

It is known, that V,, where exists nonisotropic vector £;, may be referred
to the coordinate system, with

ds® = e(dz")? + f(x,)d, (53)
where e = 1, f(# 0) is a function of the corresponding argument, d3®, is a
metrics of a certain Riemanian space V,,_;.

Geodesically, V,, -space corresponds to this one. The metric form of V,,
can be written as quoted in [18]:

d5® = ea(1+ Bf)7*(da')* + af (1 + Bf)71d&, (54)

where @ and 3 are some constants such that

a # 0; 1+8f #0. (55)
In [9] it is shown, that Kahlerian spaces, with a concircular nonconstant
vector field, may be put to coordinate system (53), where f = const and d5?
is a metrics of a certain Sasaki space.
V,, space is called Sasaki space, if there exists a nontrivial structure of F}*,
satisfying the following relations:
FFf=-8+x"xs Xi=F x*+x=4%l,

1!
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th;, =—x"gi; + 5;-LX~;; Xii X5:i=0,
where x* is a certain Kiling vector, ¢; = g;,£°.

Theorem 3. Metrics

ds®> = e(dz')? + f(z')d5?, (56)

determines conformally-Kdhlerian spaces, where ds?, is a metrics of o certain
Sasaki space. Proof. Taking a coordinate system

such that

ds” = g(y)e(dy')* +g(y") - (v')*d5* (47, ..., v").
Then

ds” = g(y")(e(dy")” + (v')?d5?).
This means, that initial space is conformed to K&hlerian space, which com-
pletes the proof.

Taking into account the form of the metrics (54), which, as a matter of
fact, geodesically corresponds to the metrics (53), we have constructed a
family of geodesically corresponding conformally-Kahlerian spaces.

Theorem 4. Let d3* be a metrics of Sasaki spaces. Then conformally
- Kahlerian spaces with the metrics (56) admit geodesical mapping onto
conformally-Kdhlerian spaces with the metrics (54).

An additional analysis leads us to a conclusion, that whether f = cos az!
or f =chaz!, & # 0, then conformally-Kahlerian space with the metrics (56)
admit nontrivial projective transformations.

§3. Holomophocally-projective mappings
of conformally-Kéhlerian spaces

onto an almost Hermitian spaces

Different aspects of holomorphically-projective mapping are reflected in
[1,2]. Assuming that we have a conformally-Kahlerian spaces K, (g;;, F")
and an almost Hermitian space H,(gi;, F}*).

In these spaces we shell consider an analogue of analytically planar curves
of Kahlerian spaces in the following way:
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A curve L : z" = z"(t) in K, will be called an analytically planar one,
if its tangential vector A" = dz"/dt # 0 under a parallel motion is always
complanar to the tangential A" and conjugation A*F vectors. Similarly we
introduce this notation in H,.

A diffeomorphism f : K, — H, will be called a H P-mapping, if with re-
spect to f, all analytically planar curves in the conformally-Kéhlerian space
is transformed into analytically planar curves in H,,.

Taking into account the modified results reported in [19], one can show
easily that in a H P-mapping ”common” coordinate system x

Fz'h(a:) = Fih(m)
and ~
].—":IJ = FE -+ Jh(i’l,bj) + Fh(iej), (57)
where 1); and ©; are certain vectors, Pfj; f‘?j are the connectivities of 4, and
K,.
The equations (57) are equivalent to the condition
Gijk = 290Gy + r‘rb(igj)k@[iﬁj)ky (58)
where 151'3 = giaFﬁ-
Let’s differentiate covariantly the relation
gquja + gquia = 01
which holds in H,,:
Giak Iy + Gjap i + Gia by + Gia B = 0.
By (2) and (58) we received

¥iG5e + U390 + ©igi + O30+
Vi + i + ©;Gak + O:g;+
Gie®; — Gia®Gji + Gin 7 + Gia B g5+
Gik®i — Gia®*gix + Gir s + Gia iz = 0. (59)
Let us symmetrize the obtained expression at all indexes. As the result

we get

96i€ + G =0, (60)
where
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£o = —Ghatt™; £ = Yr + O + ¢y

Analyzing (60) similarly to (8), we came to the conclusion that either
& =& =00f gij = @g;;. The first case leads to the condition ¢; = 0, that
is a conformally-Kahlerian space K, is a Kahlerian space.

The second case, where K,, and H,, are consisting in a conformally cor-
respondence with g;; = ag;;, leads us to the conclusion that the mapping is
homotetical.

So, we have proved the following theorem.

Theorem 5. Conformally-Kdhlerian spaces K, (n > 2), different from
Kahlerian spaces, do not admit nontrivial HP- mapping onto almost Her-
mitian spaces H,.
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