MEAN GROWTH AND L^p INTEGRABILITY OF THE DERIVATIVES OF A POLYHARMONIC FUNCTION IN THE UNIT DISC

Miroslav Pavlović

Abstract. Let $f = f_0 + (1 - |x|^2) f_1 + \cdots (f_j \text{ harmonic})$ be a polyharmonic function of finite degree in the unit disc $B \subset \mathbb{R}^2$. Let $X^{\alpha} = L^p(B, (1 - |x|)^{p\alpha-1}dx), 0 0$. It is proved that $\partial f / \partial x_l \in X^{\alpha}$ iff $|\operatorname{grad} f| \in X^{\alpha}$ iff $\partial f_j / \partial x_l \in X^{\alpha+j}$ for every j. There holds the analogous fact for higher order derivatives.

1. Introduction

In [4] we have considered necessary and sufficient conditions for a polyharmonic function on the unit ball $B \subset \mathbb{R}^n$ to be in the class $L^{p,q,\alpha}$ $(0 < p, q \le \infty, \alpha > 0)$ consisting of those Borel functions f for which

(1)
$$\left\{ \int_B M_p^q(f,|x|) (1-|x|^2)^{q\alpha-1} dx \right\}^{1/q} < \infty.$$

Here $M_p(f, \cdot)$ denote the integral means of f,

$$M_{p}(f,r) = \left\{ \int_{B} |f(ry)|^{p} d\sigma(y) \right\}^{1/p} \qquad (0 \le r < 1),$$

where $d\sigma$ is the normalized surface measure on $S = \partial B$.

In this paper we are concerned with the two-dimensional case. Thus B will denote the unit disc in the two-dimensional Euclidean space. Unless specified otherwise, α denotes a positive real number and p, q satisfy the condition $0 < p, q \leq \infty$.

Received March 10, 1997

¹⁹⁹¹ Mathematics Subject Classification: 31A05, 30D55.

 $Key\ words\ and\ phrases.$ Polyharmonic functions, integral means, conjugate functions, Hardy-Littlewood theorem.

Supported by the Serbian Scientific Foundation, grant N⁰ 04M01.

⁵⁵

M. Pavlović

A function $f \in C^{\infty}(B)$ is said to be polyharmonic of degree k (k a positive integer) if $\Delta^k f = 0$ in B, where Δ^k denotes the Laplace operator interated k times,

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2}, \qquad x = (x_1, x_2) \in \mathbb{R}^2.$$

The class of all (real-valued) functions polyharmonic of degree k in B is denoted by $H_k(B)$; in particular $H(B) := H_1(B)$ is the class of harmonic functions and $H_2(B)$ is the class of biharmonic functions on B.

A consequence of the Almansi theorem (see [1], Ch. I) is that f is in $H_k(B)$ if and only if there exist functions f_0 to f_{k-1} such that f_j are harmonic and

(2)
$$f = f_0 + (1 - |x|^2) f_1 + \dots + (1 - |x|^2)^{k-1} f_{k-1}.$$

Moreover f_j are uniquely determined by f. (In [3], Hayman and Korenblum found explicit formulaes for f_j .)

One of the results in [4] states the following.

Theorem A. Let f be given by (2) where $f_j \in H(B)$. Then f belongs to $L^{p,q,\alpha}$ if and only if $f_j \in L^{p,q,\alpha+j}$ for every $j, 0 \le j \le k-1$.

In this paper we prove the analogous result for the partial derivatives of f. More precisely we have

Theorem 1. Let D be a partial derivative of first order. Then, with the above hypotheses, Df belongs to $L^{p,q,\alpha}$ if and only if Df_j belongs to $L^{p,q,\alpha+j}$ for every j.

This theorem does not hold in the three-dimensional case. Indeed let $f_1(x_1, x_2)$ be a harmonic function in the unit disc and let

$$f(x_1, x_2, x_3) = (1 - x_1^2 - x_2^2 - x_3^2) f_1(x_1, x_2).$$

Then $\partial f_1/\partial x_3 = 0 \in L^{p,q,\alpha}$, f is biharmonic and

$$\partial f/\partial x_3 = -2x_3 f_1(x_1, x_2).$$

It is clear that one can choose f_1 so that $\partial f/\partial x_3$ is not in $L^{p,q,\alpha}$.

Theorem 1 is closely related to the well known theorem of Hardy and Littlewood on harmonic conjugates (see [2] for information and references); we state it as follows. **Theorem B.** Let $D_i = \partial/\partial x_i$ (i = 1, 2). Let u be a function harmonic in B. Then D_1u is in $L^{p,q,\alpha}$ if and only if so is D_2u .

As a consequence of Theorem B and Theorem 1 we see that Theorem B extends to polyharmonic functions. A further consequence is the validity of Theorem 1 for higher order derivatives. See Section 3.

Theorem A is proved in [4] by means of the following lemma (Lemmas 1 and 2 in [4]). Here, for a fixed $s \ge 0$,

(3)
$$\begin{aligned} Rf &= x_1 D_1 f + x_2 D_2 f, \\ R_s f &= sf + Rf \end{aligned}$$

and

$$|\operatorname{grad} f| = ((D_1 f)^2 + (D_2 f)^2)^{1/2}.$$

Lemma A. Let $\beta > 0$. For a function f polyharmonic in B the following conditions are equivalent:

- (i) f is in $L^{p,q,\beta}$;
- (ii) R_s is in $L^{p,q,\beta+1}$;
- (iii) $|\operatorname{grad} f|$ is in $L^{p,q,\beta+1}$.

Observe that Theorem B follows immediately from Lemma A and the identity $|\operatorname{grad}(D_1 u)| = |\operatorname{grad}(D_2 u)|, u \in H(B)$.

In the harmonic case Lemma A is due to Hardy and Littlewood and Flett (see [2]).

2. Proof of Theorem 1

In order to make the proof clearer we consider the case k = 3. Let

$$f = f_0 + (1 - |x|^2) f_1 + (1 - |x|^2)^2 f_2,$$

where f_0, f_1 and f_2 are harmonic functions. We have

(4)
$$D_1 f = D_1 f_0 - 2x_1 f_1 + (1 - |x|^2) (D_1 f_1 - 4x_1 f_2) + (1 - |x|^2)^2 D_1 f_2.$$

The functions x_1f_1 and x_1f_2 are biharmonic and therefore we can write

(5)
$$x_1 f_1 = u_0 + (1 - |x|^2) u_1$$

and

(6)
$$x_1 f_2 = v_0 + (1 - |x|^2) v_1,$$

where v_0, v_1, u_0, u_1 are harmonic. By differentiation we see that

$$2D_1f_1 = \Delta(x_1f_1) = -4u_1 - 4Ru_1,$$

and similarly for f_2 . Hence

(7)
$$D_1 f_1 = -2R_1 u_1 \text{ and } D_1 f_2 = -2R_1 v_1.$$

So we can rewrite (4) as

(8)
$$D_1 f = D_1 f_0 - 2u_0 + (1 - |x|^2)(-2R_2 u_1 - 4v_0) + (1 - |x|^2)^2(-2R_3 v_1),$$

see (3). Now we pass to the proof. We put

$$X^{\alpha} = L^{p,q,\alpha}.$$

"If" part. Let $D_1 f_j \in X^{\alpha+j}$ (j = 0, 1, 2). Then $|\operatorname{grad} f_j| \in X^{\alpha+j}$, by Theorem B, and therefore, by Lemma A,

(a)
$$f_1 \in X^{\alpha}$$
 and $f_2 \in X^{\alpha+1}$.

Also, the hypothesis together with (7) and Lemma A implies

(b)
$$-2R_3v_1 \in X^{\alpha+2}$$
 and $v_1 \in X^{\alpha+1}$.

From (a), (b) and (6) we find that

(c)
$$-4v_0 \in X^{\alpha+1}.$$

In a similar way we show that $-2R_2u_1 \in X^{\alpha+1}$ and $-2u_0 \in X^{\alpha}$. Combining this with (b), (c) and (7) we conclude that D_1f belongs to X^{α} .

"Only if" part. Let $D_1 f \in X^{\alpha}$. Since the "components" of the expansion (8) are harmonic, we can apply Theorem A to obtain that

(d)
$$R_3 v_1 \in X^{\alpha+2}, R_2 u_1 + v_0 \in x^{\alpha+1}$$
 and $D_1 f_0 - 2u_0 \in X^{\alpha}$.

Hence by Lemma A and (7) we get $D_1 f_2 \in X^{\alpha+2}$ and hence, by Theorem B and Lemma A, we get that $f_2 \in X^{\alpha+1}$. Since also $v_1 \in X^{\alpha+1}$, by Lemma A and (d), it follows from (6) that $v_0 \in X^{\alpha+1}$. Now the second relation in (d) shows that $R_2 u_1$ belongs to $X^{\alpha+1}$. This and (7) imply $D_1 f_1 \in X^{\alpha+1}$. Repeating the same arguments we finally see that $D_1 f_0 \in X^{\alpha}$, which completes the proof of Theorem 1. \Box

3. Conjugate functions and higher derivatives

A pair of real-valued functions u, v is called a pair of harmonic conjugates if the function $u(z) + \sqrt{-1}v(z)$, $z = x_1 + \sqrt{-1}x_2$, is holomorphic or antiholomorphic in z. Clearly harmonic conjugates are harmonic functions. It is easily verified that if f is harmonic, then D_1f , D_2f is a pair of harmonic conjugates. The same holds for the pair Rf, Tf, where

$$Tf = x_2 D_1 f - x_1 D_2 f.$$

Therefore the following theorem generalizes the Hardy-Littlewood theorem.

Theorem 2. Let $f \in H_k(B)$ for some k and let u, v be any two of the following four functions: D_1f , D_2f , Rf, Tf. Then $u \in L^{p,q,\alpha}$ if and only if $v \in L^{p,q,\alpha}$.

Proof. If $u = D_1 f$ and $v = D_2 f$, then the result follows from Theorem 1 and Theorem B. Then, because of the inequalities $|Rf| \leq |\operatorname{grad} f|$ and $|Tf| \leq |\operatorname{grad} f|$, the proof reduces to proving two implications:

(i) $Rf \in X^{\alpha} \Rightarrow D_1 f \in X^{\alpha} \qquad (X^{\alpha} = L^{p,q,\alpha})$

and

(ii)
$$Tf \in X^{\alpha} \Rightarrow D_1 f \in X^{\alpha}.$$

Let $Rf \in X^{\alpha}$. Then $D_1Rf \in X^{\alpha+1}$, by Lemma A. Since $D_1Rf = R_1D_1f$, another application of Lemma A shows that $D_1f \in X^{\alpha}$. This proves (i).

Let $Tf \in X^{\alpha}$. The (tangential) derivative T has the following property: If φ is a radial function, then $T(\varphi f) = \varphi Tf$. From this and (2) it follows that

$$Tf = \sum_{j=0}^{k-1} (1 - |x|^2) Tf_j.$$

Since Tf_j and Rf_j are harmonic conjugates we can apply Theorem A and the Hardy-Littlewood theorem to conclude that $Rf_j \in X^{\alpha+j}$. Hence $|x| | \operatorname{grad} f_j | \in X^{\alpha+j}$ because of the formula

$$(Rf)^{2} + (Tf)^{2} = |x|^{2} |\operatorname{grad} f|^{2}.$$

Hence $|\operatorname{grad} f_j| \in X^{\alpha+j}$ and hence $D_1 f \in X^{\alpha}$, by Theorem 1. This completes the proof. \Box

To state the next result let, for an integer $m \ge 0$,

$$\nabla_m(f) = \left(\sum_D (Df)^2\right)^{1/2},$$

where D passes through the set of all partial derivatives of order m. In particular $\nabla_1(f) = |\operatorname{grad} f|$ and $\nabla_0 = |f|$.

Thorem 3. Let f be polyharmonic in B and let Df be one of the m-th order partial derivatives of f. Then, if $Df \in L^{p,q,\alpha}$ then $\nabla_s(f) \in L^{p,q,\alpha}$ for all $s \leq m$.

Proof. Assume that the case of the order m-1 has been discussed and let, for instance, $D_1^m f \in X^{\alpha}$ $(D_1^m = D_1 D_1 \dots)$. Then $D_2 D_1^{m-1} f \in X^{\alpha}$, by Theorem 2, and hence $|\operatorname{grad}(D_1^{m-1} f)| \in X^{\alpha} \subset X^{\alpha+1}$. This implies $D_1^{m-1} f \in X^{\alpha}$ (Lemma A). Now the result for s < m follows from the induction hypothesis. (The case m = 0 is trivial.) If s = m, then successive application of Theorem 2 shows that $\nabla_s(f) \in X^{\alpha}$; for instance, $D_2^2 D_1^{m-2} f \in X^{\alpha}$ because $D_1 D_2 D_1^{m-2} f \in X^{\alpha}$, etc. \Box

Finaly we return to Theorem 1 by proving that it remains true higher order derivatives.

Theorem 4. Let $f \in H_k(B)$ and let D be a partial derivative of any order. Then $Df \in L^{p,q,\alpha}$ if and only if $Df_j \in L^{p,q,\alpha+j}$ for all j.

Proof. Let $Df X^{\alpha} = L^{p,q,\alpha}$, where D is of order m. Then it is easily deduced from Theorem 3 that $T^m f \in X^{\alpha}$, where T^m is the tangential derivative interated m times. Since $T^m f = \sum (1 - |x|^2)^j T^m f_j$ we have that $T^m f_j \in X^{\alpha+j}$. Hence, by successive application of Theorem 2 together with the identity RT = TR, we obtain that $R^m f_j \in X^{\alpha+j}$. Now Lemma A gives that $D_1^m R^m f_j \in X^{\alpha+j+m}$. From this and the easily verified formula $D_1^m R^m = R_m^m D_1^m$ it follows that $R_m^m D_1^m f_j \in X^{\alpha+j+m}$. Hence $D_1^m f_j \in X^{\alpha+j}$ and hence $\nabla_m(f_j) \in X^{\alpha+j}$, by Theorem 3. This proves "only if" part. The proof of "if" part is similar. \Box

Corollary. If f is polyharmonic in B, then $\nabla_m(f) \in L^{p,q,\alpha}$ if and only if $\nabla_m(f_i) \in L^{p,q,\alpha+j}$ for every j.

In contrast to Theorem 1 to 4 this fact holds in any dimension.

References

- N. Aronszajn, T.M. Greese and L.J. Lipkin, *Polyharmonic functions*, Clarendon Press, Oxford, 1983.
- [2] T.M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-168.
- W.K. Hayman and B. Korenblum, Representation and uniqueness theorems for polyharmonic functions, J. Analyse 60 (1993), 113-133.
- [4] M. Pavlović, Decompositions of L^p and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. (to appear).

MATEMATIČKI FAKULTET, STUDENTSKI TRG 16, 11000 BEOGRAD, SERBIA, YUGOSLAVIA