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MEAN GROWTH AND .7 INTEGRABILITY OF
THE DERIVATIVES OF A POLYHARMONIC
FUNCTION IN THE UNIT DISC

Miroslav Pavlovié

Abstract. Let f = fo+(1—|z|?)f1+--- (f; harmonic) be a polyharmonic
function of finite degree in the unit disc B C R?. Let X% = LP(B,(1 —
|z[)P~1dx), 0 < p < oo, o > 0. It is proved that 8f/dx; € X iff | grad f| €
X«iff of;/0x; € Xoti for every j. There holds the analogous fact for higher
order derivatives.

1. Introduction

In [4] we have considered necessary and sufficient conditions for a poly-
harmonic function on the unit ball B C R™ to be in the class LP%< (0 < p,
q < oo, @ > 0) consisting of those Borel functions f for which

1) { [ gergaa- |x|2>qa-1dw}1/q <.

Here M, (f,-) denote the integral means of f,

My (f,r) = {/B If(f‘y)lpda(y)}l/p 0<r<1),

where do is the normalized surface measure on S = 9B.

In this paper we are concerned with the two-dimensional case. Thus B
will denote the unit disc in the two-dimensional Euclidean space. Unless
specified otherwise, a denotes a positive real number and p, ¢ satisfy the
condition 0 < p,q < oo.
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A function f € C'°°(B) is said to be polyharmonic of degree k (k a positive
integer) if A¥f =0in B, where A* denotes the Laplace operator interated
k times,

0 O*f

A 47
f +8$%7

= 8x1 T = ($1,$2) € R2.

The class of all (real-valued) functions polyharmonic of degree &k in B is
denoted by Hy(B); in particular H(B) := H;(B) is the class of harmonic
functions and Hy(B) is the class of biharmonic functions on B.

A consequence of the Almansi theorem (see [1], Ch. 1) is that fisin Hy(B)
if and only if there exist functions fy to fy_; such that f; are harmonic and

(2) F=fo+ U =leP) it 4 (1= |2 fror

Moreover f; are uniquely determined by f. (In [3], Hayman and Korenblum
found explicit formulaes for f;.)
One of the results in [4] states the following.

Theorem A. Let f be given by (2) where f; € H(B). Then f belongs to
LP%2 if and only if f; € LP9°T7 for every j, 0 < j <k — 1.

In this paper we prove the analogous result for the partial derivatives of
f. More precisely we have

Theorem 1. Let D be a partial derivative of first order. Then, with the
above hypotheses, D f belongs to LP*©* if and only if D f; belongs to L2 +i
for every j.

This theorem does not hold in the three-dimensional case. Indeed let
fi(z1,22) be a harmonic function in the unit disc and let

flz1,20,23) = (1 — x% — x% — x%)fl(xl,@).

Then df;/dxs =0 € LP:4? f is biharmonic and

Of/0x3 = —2x3 fi(x1, 22).

It is clear that one can choose f; so that df/0x3 is not in LP9°.

Theorem 1 is closely related to the well known theorem of Hardy and
Littlewood on harmonic conjugates (see [2] for information and references);
we state it as follows.
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Theorem B. Let D; = 0/0z; (¢ = 1,2). Let u be a function harmonic in
B. Then Dyu is in LP9% 4f and only if so is Dyu.

As a consequence of Theorem B and Theorem 1 we see that Theorem B
extends to polyharmonic functions. A further consequence is the validity of
Theorem 1 for higher order derivatives. See Section 3.

Theorem A is proved in [4] by means of the following lemma (Lemmas 1
and 2 in [4]). Here, for a fixed s > 0,

Rf=x1D1f+ 22D, f,

3) Rof = sf + RS

and 1
| grad f| = ((D1f)* + (D2f)*) "

Lemma A. Let 3 > 0. For a function [ polyharmonic in B the following

conditions are equivalent:

(i) f is in LP9F;
(ii) Rs is in LP9PTL
(iii) | grad f| is in LP@PHL,

Observe that Theorem B follows immediately from Lemma A and the
identity | grad(Dyu)| = | grad(Dyu)|, v € H(B).
In the harmonic case Lemma A is due to Hardy and Littlewood and Flett

(see [2]).
2. Proof of Theorem 1

In order to make the proof clearer we consider the case k = 3. Let
f=Jfo+ Q=12 fi 4+ (1= ]z[*)?fa,
where fo, fi and f; are harmonic functions. We have

Dyf = Difo—2u1fi + (1= [2]*) (D1 fi — 421 f2)

“ (1= a2 Duse.

The functions x1 f; and x¢ fo are biharmonic and therefore we can write

(5) 1 fi =uo+ (1 — |$|2)U1

(6) 21 fo =vo + (1= |z])vr,
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where vy, v1, ug, w1 are harmonic. By differentiation we see that
2D fi = A(z1 /1) = —4us — 4Rwy,
and similarly for f5. Hence
(7) Difi = —2Rjuy and Dy fy = —2R;v;.
So we can rewrite (4) as
®) Dy f = Difo — 2up + (1 — |z)*)(—2Ryuy — 4vy)
+ (1 - |2]*)*(—2Rsv1),

see (3). Now we pass to the proof. We put

Xa — Lp7q7a‘

"IP part. Let Dif; € X (j = 0,1,2). Then [grad fj| € X+, by
Theorem B, and therefore, by Lemma A,

() freX® and  fye XOTL

Also, the hypothesis together with (7) and Lemma A implies
(b) —2R3vy € Xt2 and v € Xoth
From (a), (b) and (6) we find that

(c) —dvy € Xt

In a similar way we show that —2Rou; € X! and —2uy € X“. Combining
this with (b), (c) and (7) we conclude that D; f belongs to X .

”Only if” part. Let Dy f € X?. Since the "components” of the expansion
(8) are harmonic, we can apply Theorem A to obtain that

(d) Rsvy € )(O[—IQ7 Rouy + v € $a+1 and D1f0 — 2ug € X“.

Hence by Lemma A and (7) we get Dy f, € X°2 and hence, by Theorem B
and Lemma A, we get that fo € X*T!. Since also v; € X“*!, by Lemma A
and (d), it follows from (6) that vg € X**!. Now the second relation in (d)
shows that Ryu; belongs to X*+!. This and (7) imply Dy f; € X°*L. Re-
peating the same arguments we finally see that Dy fo € X, which completes
the proof of Theorem 1. O



Mean growth and LP integrability of the derivatives of a ... 59

3. Conjugate functions and higher derivatives

A pair of real-valued functions u, v is called a pair of harmonic conjugates
if the function u(z) + v/—1v(2), 2 = 1 + /=19, is holomorphic or anti-
holomorphic in z. Clearly harmonic conjugates are harmonic functions. It
is easily verified that if f is harmonic, then Dq f, D5 f is a pair of harmonic
conjugates. The same holds for the pair Rf, T f, where

Tf=aDf—x1Dyf.
Therefore the following theorem generalizes the Hardy-Littlewood theorem.
Theorem 2. Let f € Hi(B) for some k and let u,v be any two of the

Jollowing four functions: Dy f, Dof, Rf, Tf. Then v € LP9% {f and only
va 6 Lp7q7a.

Proof. If w = D{f and v = D, f, then the result follows from Theorem
1 and Theorem B. Then, because of the inequalities |Rf| < |grad f| and
|T f| < |grad f]|, the proof reduces to proving two implications:

(i) Rfe X® = DifeX” (X = [P0
and
(if) TfeX* = DifeX"

Let Rf € X“. Then DiRf € X°t! by Lemma A. Since DiRf = R D, f,
another application of Lemma A shows that Dy f € X®. This proves (i).

Let Tf € X“. The (tangential) derivative T" has the following property:
If ¢ is a radial function, then T'(¢f) = ¢T'f. From this and (2) it follows

that
E—1

Tf=Y (1- [T
7=0
Since T'f; and R f; are harmonic conjugates we can apply Theorem A and the
Hardy-Littlewood theorem to conclude that Rf; € X**J. Hence |z||grad f;]
€ X°*tJ because of the formula

(RF)? +(T))* = |a]’| grad f|*.

Hence |grad f;] € X°*7 and hence Dif € X®, by Theorem 1. This com-
pletes the proof. [

To state the next result let, for an integer m > 0,
1/2
v = (S 0n)
D
where D passes through the set of all partial derivatives of order m. In

particular V;(f) = |grad f| and Vo = |f].
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Thorem 3. Let f be polyharmonic in B and let Df be one of the m-th
order partial derivatives of f. Then, if Df € LP©% then V(f) € LP9* for
all s < m.

Proof. Assume that the case of the order m — 1 has been discussed and let,
for instance, D" f € X® (DJ* = DDy ...). Then DyD7"" 1 f € X, by The-
orem 2, and hence | grad(D{" "' f| € X® C X2+, This implies D" ™' f € X~
(Lemma A). Now the result for s < m follows from the induction hypoth-
esis. (The case m = 0 is trivial.) If s = m, then successive application of
Theorem 2 shows that V,(f) € X°; for instance, DD~ *f € X* because
D1Dy D2 f € X ete. O

Finaly we return to Theorem 1 by proving that it remains true higher
order derivatives.

Theorem 4. Let f € Hy(B) and let D be a partial derivative of any order.
Then Df € LP%“ if and only if D f; € LP%°+7 for all j.

Proof. Let Df X® = LP%% where D is of order m. Then it is easily deduced
from Theorem 3 that T™f € X, where T™ is the tangential derivative
interated m times. Since T™f = > (1 — |2|?)/T™f; we have that T™ f; €
X°%i, Hence, by successive application of Theorem 2 together with the
identity RT = TR, we obtain that R™ f; € X°%7. Now Lemma A gives that
DPR™f; € Xoti+t™  From this and the easily verified formula D*R™ =
R™ D7 it follows that R D7 f; € X*ti+™ Hence D f; € X°*J and hence
Vu(fj) € Xt by Theorem 3. This proves "only if” part. The proof of
?if” part is similar. O

Corollary. If f is polyharmonic in B, then V,,,(f) € L?®® if and only if
Vo (fj) € LP0Fi for every j.

In contrast to Theorem 1 to 4 this fact holds in any dimension.
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