LOCALLY FINITE HYPERSPACE TOPOLOGY OF ISOCOMPACT SPACES

Momir Stanojević

Abstract. The purpose of this paper is to investigate some properties of the hyperspace $(\exp X, \tau_{lf})$, with the locally finite topology, when the space (X, τ) is a normal space and every closed countably compact subset of X is compact (isc-space). Some properties of isc-spaces and iscc-spaces are given. If (X, τ) is a normal isc-space, then the space $\mathcal{Z}(X) = \{F \subset X : F \text{ is compact}\}$ is a closed subspace of $(\exp X, \tau_{lf})$. Applications to paracompactness are given.

1. Introduction

A topological space X with a topology τ will be denoted by (X,τ) . The "base" space (X,τ) is assumed to be Hausdorff. The closure of a set $A \subset (X,\tau)$ is denoted by $[A]_X$ or [A] and the cardinality of A by [A].

We use the following notation ([3],[4],[8]):

$$\begin{split} & \exp X = 2^X = \{F \subset X : F \text{ is closed and not empty}\}, \\ & \mathcal{Z}(X) = \{F \subset X : F \text{ is compact}\} \subset \exp X, \\ & \exp(X_0, X) = \langle X_0 \rangle = \{F \in \exp X : F \subset X_0\}, \\ & \mathcal{C}ouc(X) = \{F \in \exp X : F \text{ is countably compact}\}, \\ & \mathcal{J}_n(X) = \{F \in \exp X : |F| \leq n\}, \\ & \mathcal{J}(X) = \{F \in \exp X : F \text{ is finite}\}. \end{split}$$

Let $\mathcal{U} = \{U_s : s \in S\}$ be a collection of subsets of X. Then

$$\langle \mathcal{U} \rangle = \langle U_s : s \in S \rangle = \{ F \in \exp X : F \subset \bigcup U_s \land F \cap U_s \neq \emptyset, \forall s \in S \}.$$

Received June 25, 1996; Revised February 26, 1997 1991 Mathematics Subject Classification: 54B20, 54B50. Supported by the Serbian Scientific Foundation, grant N⁰ 04M01. The finite topology τ_f (or 2^τ) is the one generated by an open collection of the form

$$\langle U_1,\ldots,U_n\rangle$$

with $U_1, \ldots U_n$ open subsets of X.

The locally finite topology τ_{lf} is the one generated by the sets of the form

$$\langle \mathcal{U} \rangle = \langle U_s : s \in S \rangle,$$

where $\mathcal{U} = \{U_s : s \in S\}$ is a locally finite collection of open subsets of X.

The countably locally finite topology τ_{clf} is the one generated by the sets of the form

$$\langle \mathcal{U} \rangle = \langle U_s : s \in S \rangle, |S| \leq \aleph_0,$$

where $\mathcal{U} = \{U_s : s \in S\}$ is a locally finite collection of open subsets of X.

If (X,d) is a metric space and H_d is the Hausdorff metric on $\exp X$, then τ_{H_d} is the topology on $\exp X$ generated by the metric H_d .

A space X is said to be *feebly compact* provided each locally finite family of open subsets of X is finite. Clearly, every countably compact space is feebly compact, and any feebly compact space is pseudocompact. Conversely, a completely regular, pseudocompac space is feebly compact and for normal spaces, the three concepts coincide ([3], [9]).

The collection $\mathcal{J}(X)$ of a space X is always dense in $(\exp X, \tau_f)$. However, if X contains an infinite, locally finite collection of open sets, $\mathcal{J}(X)$ is not dense in $(\exp X, \tau_{lf})$. This leads us to the following result ([9]).

Theorem 1.1. A space (X,τ) is feebly compact iff $\tau_f = \tau_{lf}$. A normal space (X,τ) is countably compact iff $\tau_f = \tau_{lf}$. \square

Definition 1.2. A space X is called an *isocompact space* (= isc-space) if every closed countably compact subset of X is compact.

A space X is called a iscc-space if every countably compact subset of X is compact.

If X is a normal isc-space (normal iscc-space), then X is called a T_4 isc-space (T_4 iscc-space).

Note. The class of *isc*-spaces contains: compact spaces, metrizable spaces, Lindelöf spaces, σ -compact spaces, paracompact spaces, Q-spaces (= real-compact spaces), Dieudonné complete spaces.

Theorem 1.3. If $f: X \longrightarrow Y$ is a continuous one-to-one mapping and Y is an iscc-space, then X is also an iscc-space.

Proof. Let F be a countably compact set of X. Then f(F) is a countably compact set of Y and thus f(F) is compact. The mapping $f|_F: F \longrightarrow f(F)$ is one-to-one and continuous. To see that $f|_F$ is a homeomorphism, we will show that $f|_F$ is a closed mapping. Let $F_1 \subset F$ and $[F_1]_F = F_1$. Then F_1 is countably compact and $f(F_1)$ is also countably compact. It follows that $f(F_1)$ is compact. Thus, $f|_F$ is a homeomorphism and F is a compact subset of X, which completes the proof. \square

Example. Let $Y = [0, \omega_1]$ and $X = [0, \omega_1) \cup \{p\}$ (p isolated point) and $f: X \longrightarrow Y$ defined by $f(\alpha) = \alpha$ for all $\alpha \in [0, \omega_1)$ and $f(p) = \omega_1$. The mapping f is a continuous one-to-one mapping, Y is an isc-space and X is not an isc-space.

Corollary 1.4. If (X, τ) is an iscc-space and $\tau \subset \tau'$, then (X, τ') is also an iscc-space.

Proof. Since $\tau \subset \tau'$, then the identity mapping $Id:(X,\tau') \longrightarrow (X,\tau)$ is a continuous one-to-one mapping. \square

Theorem 1.5. A normal isc-space (X,τ) is an iscc-space if and only if every compact subspace of X is an iscc-space.

Proof. Let X_0 be a countably compact subspace of X. Since X is a normal space then $[X_0]_X$ is countably compact and since X is an isc-space it follows that $[X_0]_X$ is compact. The space $[X_0]_X$ is an iscc-space and we have that X_0 is a compact subspace of X. Therefore X is an iscc-space. \square

2. Results

Theorem 2.1. Let (X,τ) be a normal space. The following are equivalent:

- (1) X is an isc-space $(\mathcal{Z}(X) = \mathcal{C}ouc(X))$.
- (2) $\mathcal{Z}(X)$ is a closed subspace of $(\exp X, \tau_{lf})$.

Proof. (1) \Longrightarrow (2). Let $Couc(X) = \mathcal{Z}(X)$ and $F_0 \in \exp X \setminus \mathcal{Z}(X)$. Then there exists a locally finite collection $\mathcal{U} = \{U_s : s \in S\}, |S| \geq \aleph_0, U_s \in \tau$, such that $F_0 \in \langle \mathcal{U} \rangle$.

Let $F \in \langle \mathcal{U} \rangle$. For all $s \in S$, let $x_s \in F \cap U_s$. The set $A = \{x_s : s \in S\}$ is a discrete, closed and infinite subset of X. $A \notin \mathcal{Z}(X) \Longrightarrow F \notin \mathcal{Z}(X)$, and we have

$$[\mathcal{Z}(X)]_{\tau_{t,t}} = \mathcal{Z}(X).$$

 $\neg(1) \Longrightarrow \neg(2)$. Let $F \in \mathcal{C}ouc(X) \land F \notin \mathcal{Z}(X)$. Then each locally finite open covering of F is finite. Let

$$\mathcal{U} = \{U_1, U_2, \dots, U_n\}$$
 and $F \in \langle \mathcal{U} \rangle$.

Let $x_i \in U_i$, i = 1, 2, ..., n. Then $\{x_1, x_2, ..., x_n\} \in \langle \mathcal{U} \rangle$ and

$$\{x_1, x_2, \dots, x_n\} \in \mathcal{Z}(X) \Longrightarrow F \in [\mathcal{Z}(X)]_{\tau_{l_f}} \Longrightarrow [\mathcal{Z}(X)]_{\tau_{l_f}} \neq \mathcal{Z}(X). \quad \Box$$

By Theorem 2.1 we have

Corollary 2.2. a) If (X, τ) is a locally compact T_4 is c – space, then $\mathcal{Z}(X)$ is an open and closed subspace of $(\exp X, \tau_{lf})$.

b) If (X, τ) is a metrizable locally compact space, then $(\exp X, \tau_{lf})$ is a connected space iff X is a compact connected space (continuum). \square

Theorem 2.3. Let (X, τ) be a $T_4isc-space$. Then $\mathcal{Z}(X)$ is an isc-space.

Proof. Let \mathcal{B} be a closed countably compact subspace of $\mathcal{Z}(X)$ ($\mathcal{B} \in \mathcal{C}ouc(\mathcal{Z}(X))$) and let

$$B = \cup \{K : K \in \mathcal{B}\}.$$

We will show that B is a countably compact subset of X. Let $\mathcal{U} = \{U_n : n \in N\}$ be a countable cover of B and let

$$\mathcal{U}^* = \{ \gamma : \gamma \subset \mathcal{U}, \gamma \text{ is finite} \}$$

For every $K \in \mathcal{B}$ let $\mathcal{U}'(K) = \{U \in \mathcal{U} : U \cap K \neq \emptyset\}$ be a covering of K. Then there exists a finite subcovering $\mathcal{U}(K)$ of $\mathcal{U}'(K)$,

$$\mathcal{U}(K) \in \mathcal{U}^* \wedge \mathcal{U}(K) = \{ U \in \mathcal{U} : U \cap K \neq \emptyset \}.$$

The collection $\{\langle \mathcal{U}(K) \rangle : K \in \mathcal{B}\}$ is a countable covering of \mathcal{B} . Since \mathcal{B} is a countably compact set of $\mathcal{Z}(X)$ then there exists a finite subcovering of \mathcal{B}

$$\{\langle \mathcal{U}(K_1) \rangle, \langle \mathcal{U}(K_2) \rangle, \dots, \langle \mathcal{U}(K_n) \rangle \}.$$

The collection

$$\{\mathcal{U}(K_1),\mathcal{U}(K_2),\ldots,\mathcal{U}(K_n)\}$$

is a finite subcovering of B and B is a countably compact subset of X. The set $[B]_X = [B]$ is also countably compact $((X, \tau)$ is normal). Therefore [B] is a compact subset of X. The set $\langle [B] \rangle = \exp([B], X)$ is a compact subspace of $\mathcal{Z}(X)$ and $\mathcal{B} \subset \langle [B] \rangle$, it follows that \mathcal{B} is a compact subspace of $\mathcal{Z}(X)$. \square

Theorem 2.4. a) If (X, τ) is a metrizable space, then $(\exp(X, \tau_{lf}))$ is an iscc-space.

b) If (X, τ) is a Lindelöf space, then $(\exp(X, \tau_{lf}))$ is an isc-space.

Proof. a) If (X, τ) is a metrizable space, then $\tau_{lf} = \tau_{sup}$, where $\tau_{sup} = sup \{\tau_{H_d} : d \text{ metrizes } X\}$ (see [2],Theorem 2).

Every space of the class

$$\{(\exp X, \tau_{H_d}) : d \text{ metrizes } X\}$$

is an iscc – space and $\tau_{H_d} \subset \tau_{lf}$. By Corollary 1.4. it follows that $(\exp(X, \tau_{lf}))$ is a cc-space.

b) If (X, τ) is a Lindelöf space, then $(\exp X, \tau_{lf})$ is a real - compact space (see [11], Theorem 3.5), and it follows that $(\exp X, \tau_{lf})$ is an isc-space. If (X, τ) is a Lindelöf space, then $\tau_{lf} = \tau_{clf}$. \square

Question. If X is a T_4isc – space, it is true that $(\exp(X, \tau_{lf}))$ is an isc-space?

Theorem 2.5. If $(\exp X, \tau_{lf})$ is a normal space, then X is a T_4isc- space.

Proof. Let $F \notin \mathcal{Z}(X) \land F \in Couc(X)$. Then $(\exp(F,X), \tau_{lf}) = (\exp(F,X), \tau_f)$. The space $(\exp(F,X), \tau_f)$ is a closed noncompact subspace of $(\exp X, \tau_{lf})$ and by results of Keesling ([5], [6]) and Velichko ([12]) the subspace $(\exp(F,X), \tau_f)$ is not normal. \square

Example. Let K be the Sorgenfrey line. Since the space K is a Lindelöf space, then $\mathcal{Z}(X) = \mathcal{C}ouc(X)$. The product $K \times K$ is a nonnormal space ([3]) and $\mathcal{J}_2(K)$ is also a nonnormal subspace of $(\exp K, \tau_{lf})$. Therefore $(\exp K, \tau_{lf})$ is a nonnormal isc-space.

The set of limit points of a space X is denoted by X'. In [9], it has been proved the following theorem.

Theorem 2.6. ([9]) Let (X, τ) be normal. If $(\exp X, \tau_{lf})$ is first countable, then X' is countably compact. \square

By this theorem we have the following.

Corollary 2.7. Let (X, τ) be a $T_4isc-space$. If $(\exp X, \tau_{lf})$ is first countable, X' must be compact. \square

Since a paracompact T_2 -space is a T_4isc - space, we have the following:

Corollary 2.8. ([9]) Let (X, τ) be a paracompact T_2 - space. If $(\exp X, \tau_{lf})$ is first countable, X' must be compact. \square

Corollary 2.9. Let (X, τ) be a dense-in-itself T_4 is c – space. Then the following conditions are equivalent:

- (a) $(\exp X, \tau_{lf})$ is first countable,
- (b) $(\exp X, \tau_{lf})$ is compact and first countable,
- (c) (X, τ) is compact and first countable. \square

References

- A.V. Arkhangel'skii, V.I. Ponomarev, Osnovy obshchei topologii v zadachah i uprazhneniyah, Nauka, Moskva, 1974.
- [2] G.A. Beer, C.J. Himmelberg, K. Prikry, F. van Vleck, The locally finite topology on 2^X, Proc. Amer. Math. Soc. 101 (1987), 163-172.
- [3] R. Engelking, Obshchaya Topologiya, Mir, Moskva, 1988.
- [4] V.V. Fedorchuk, V.V. Filipov, Obschaya Topologiya; Osnovniye konstrukcii, MGU, Moskva, 1986.
- [5] J. Keesling, On the equivalence of normality and compactness in hyperspaces, Pacific J. Math. 33 (1970), 657-667.
- [6] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760-766.
- [7] M. Marjanović, Topologies on collections of closed subsets, Publ. Inst. Math. (Beograd) 20 (1966), 125-130.
- [8] E. Michael, Topologies of spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- [9] S.A. Naimpaly, P.L. Sharma, Finite uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103 (1987), 96-101.
- [10] V.V. Popov, O nekotoryh svojstvah eksponenty v topologii Vietorisa, Top. Struktury i ih Otobrazh. LGU (Riga) (1987), 641-646.
- M. Stanojević, Some properties of locally finite hyperspace topology, Zbornik Rad. Fil. Fak. (Niš), Ser. Mat. 6:2 (1992), 269-273.
- [12] N.V. Velichko, O prostranstve zamknutyh mnozhestv, Sib. Mat. J. 16 (1975), 627–629.

DEPARTMENT OF MATHEMATICS, FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF NIŠ, 18000 NIŠ, YUGOSLAVIA