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A FAMILY OF SIMULTANEOUS METHODS FOR
FINDING ZEROS OF ANALYTIC FUNCTIONS

Slobodan Trickovié and SneZana Ilié

Abstract. In this paper a new one parameter family of simultaneous meth-
ods for finding zeros of a class of analytic function is derived. This family
is obtained by applying Hansen-Patrick’s third order method for solving the
single equation f(z) = 0 to a suitable function. It is shown that all the
methods of this family have fourth order of convergence.

1. Introduction

Let f be a function of z and let « be a fixed parameter. About twenty
years ago Hansen and Patrick derived in [6] one parameter family of iteration
functions for finding simple zeros of f in the form

(e+1)f(z) _
af (2) £ P = (@4 DFE )

Here % is a new approximation and z is a former approximation to the de-
sired zero. This family includes several well-known methods as Ostrowski’s
method (o = 0), Euler’s method (o = 1), Laguerre’s method (o =1/(r—1))
and Halley’s method (aw = —1). Also, as a limiting case (o — o0), Newton’s
method is obtained. Except Newton’s method which is quadratically con-
vergent, all methods of the family (1) have cubic convergence to a simple
zero.

In this paper we consider a class of functions z — ®(z) analytic inside and
on the simple smooth contour I', without zeros on I' and with the known
number n of simple zeros &q,...,&, inside I'. This class of analytic functions
will be denoted with €. If G denotes the region bounded by I', then & € Q
can be represented in the form

O(2) = exp(¥(2)) H(Z —&) (7€G) (2)

Z=z—

(1)
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(see Smirnov [12]), where z — W(z) is an analytic function in G such that
X(z) := exp(¥(2)) # 0 for all z € G. The analytic function ¥ which appears
in (2) is given by

\II(Z) — L/F log[(w — C)_nq)(w)]dw7 (3)

27 w— z

where ¢ is an arbitrary point in G such that ®(c) # 0 (see [1]).
The number of zeros n of ® inside G is determined by the argument
principle

1 o' (w) 1
"7 o r ®(w) Y= o larg @(w)] -
A procedure of computational interest has been proposed in [4]; the contour
I’ of the region G is replaced by a polygon of vertices A4y,..., A, belonging
to I

Various methods for the simultaneous determination of zeros of analytic
functions belonging to ©Q have been presented in the papers [5], [7], [9] and
[10]. The evaluation of W(z) given by (3) at some point z = z; is performed
using numerical integration in the complex plane. As it was advised in [5],
the contour integral (3) should be computed with satisfactory effect using
trapezoidal quadrature rule. Computational aspect of the calculation of the
value ¥(z;) and the determination of the number of zeros n were studied in
details in the papers [5], [9], [10] so that we will not consider these subjects
here.

2. Simultaneous methods for analytic functions

Let P be a monic polynomial of degree n whose zeros coincide with the
zeros &1, ... ,&, of the analytic function ® € €2, that is

PE) =[[E-&): @) =exp(¥() P

Let z1,..., 2z, be n pairwise distinct approximations to these zeros. Let us
introduce
P(z;) exp(—V(z;))®(z)
WZ‘ = = (4)
[1Gi—=) [1Gi—=)
J#e J#e
and

W; W; W;
;= s P TR Tz = .
51, Z zi — 2j 52 Z (zi — 24)? Z & — zj
J# J# J#
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Using approximations zy, ..., z,, by the Lagrangean interpolation we can
represent the polynomial P for all z € C as

=[IG-2)+> W [](z- =) (5)

=1 k=1 j=1
J i#k

Let us define the function z — h;(z) by

Then, using (5),

hi(2) = Wi+ (2 — 2) (1+Z L. (6)

-z
JZt I

Any zero &; of P (and, consequently, of ®), is also a zero of the function
hi(z). Let I,, = {1,...,n} be the index set. Starting from h;(z) we find

hi(Zi):Wﬂ hl Zz —1—|—Z
T

=1+ Sl,i7

zz—z]

(7) R (z) = —22 =25, (i€l,).

Z — Z]
J#z

To construct a new family of iterative methods for finding all zeros of
® ¢ Qinside the region GG, we use the idea presented by Sakurai and Petkovié
n [11]. We apply Hansen-Patrick’s formula (1) to the function h;(z) (which
has the same zeros as ® inside ). Substituting f, f', f" that appear in (1)
by h(z;),h'(z), h"(z;) (given by (7)), after short arrangement we obtain a
new one parameter family for the simultaneous approximation of all simple
zeros of analytic function @ inside G :

(Oé—|— 1)WZ‘
04(1 + Sl,i) + \/(1 + 5172‘)2 + 2(0& + 1)WZ‘SQ7Z‘

2y = 2 —

(iel). (8

Remark. Formula (8) contains a + in front of the square root. Since the
correction A; = Z; — z; has to be as small in magnitude as possible, we choose
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the sign so that the denominator od A; is greater in magnitude. It can be
shown that for |W;| small enough (which assumes very close approximations
to the zeros) the sign “+” have to be chosen. Then the main part of the
iterative formula (8) is

fi= s (e l), (9)

which is a generalization of Borsch-Supan’s method of the third order [2].
Namely, if ® is a polynomial (¥(z) = 0), then (9) reduces to Bérsch-Supan’s
method for the simultaneous determination of all simple zeros of a polyno-
mial.

Example 1. The case @« = —1 requires a limiting operation in (8). After
short manipulations we get

Wi(l+4 Gi,)
(14+G1,)? + WGy

2y = 2 —

G el (10)

This formula can be derived directly by applying the classical Halley’s for-
mula to the function h;(z). Note that Ellis and Watson [3] derived the itera-
tive formula (10) in the case of algebraic polynomials using a quite different
approach.

Example 2. Letting @ — oo in (8), we obtain the generalized Borsch-
Supan’s third order iterative method (9). This method can be directly ob-
tained by applying Newton’s method to the function h;(z).

3. Convergence analysis

Let &, = 2, — & and g; = z; — & denote the errors in the current and
previous iteration, respectively. If two complex numbers # and ~ are of
the same order in magnitude we will write 3 = Ops(7). In our analysis of
convergence we will assume that the errors £1,...,¢, are of the same order
in magnitude, that is &; = Op(g;) for any pair ¢,j € I, = {1,...,n}.
Besides, let € € {¢1,...,£,} be the error with the maximal magnitude (that
is |e] > |es| (¢ =1,...,n)) but still ¢ = Op(g;) for any ¢ € 1.

Theorem. Let zy,...,z, be sufficiently good approximations to the zeros
&, ..., &, of the analytic function ® € Q in a given region G. Then the
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family of iterative methods (8) has the order of convergence four for any
fized and finite parameter a.
Proof. Let us introduce u; = W;Sy ;/(1 + S1;)?. According to (4) we have
_ zi—=& zi =&
W; = (2 — &) exp(—¥(z)) H =t = giexp(—V(z)) H —=

b
jri 0T ji TR

so that we estimate
Wi =0Om(ei) =Onmle), Sii=0m(e), S2:=0nme),

(11) TZ‘:OM(aS), ui:OM(€2).

Assuming that € is small enough, following Remark we take the sign “4”

2
in (8). Using the development /14 2z =1+ g — % + .- for |z| < 1, from
(8) we obtain

P (Oé—l—l)Wi
T a4 S+ (14 S VT + 2(a+ Dug
— . (Oé ‘|‘ 1)Wz

(14 S1)(a+ 14 (a+ Du; + Opr(u?))”

Hence, by the development in geometric series

A+2)t=1—-24+22-2 4 (2] <), (12)
we find

. Wi

2y = 2 — 3

(1451, (1 + u; + Oar(u?))
Wi W;Ss i 5

1 S 1- ! ).
(13) & 1+ 51, ( (1+51,) + OM(UZ))

Setting z := &; in (6) (with h;(§;) = 0) we obtain W; = £;(1 + 1) so that
(13) becomes

. Wi (1 (14 75)5,

Zi = 2 — ‘ 3 ) + Om(e”), (14)
L+ 5 (1‘|‘Sl,i)



46 S. Trickovi¢ and S. Ili¢

where, according to (12), we estimated W;Opr(u?) = Opy(2°). Taking z = &;
in (6) the following fixed point relation is obtained

W Wi

S=zi—-———5— =% —

ey
j#i ! I

(15)

Subtracting (15) from (14) and taking into account the estimates (11),
we find

wi W Wiei(14713) 52,
1+7, 1451, (14 51,)3

fi=5—& = +O0m(%).  (16)

Using (12) we obtain

1 1 1
140 - =140 =140
1+ 5, " M@’O+SMP - M@%1+E Ou(e)
so that
—)
W,
Wi Wi ; Z_Z] %)
1+7, 1+5S1: u+mu+&»
W.
= _ngl J —I_g?OM 52 ‘I‘OM 85
;;; (zi = 2) (& — 25) ) )
and
Wiei(14+7;)52,

b Wiei(1+ 7)) S0 (1+ On(e) = WiziSai + Onr(24).

(1+51,)°
The two last relations give

w. W Wiei(14+7;)52,
1+7;, 1451, (1+51,)3

_ e Wiz = &) A
=M ZZ (zi = 2;)*(& — 25) T Ou(e)

= WZeS?OM(aS) + OM(€4) = OM(€4).

According to this from (16) there follows ¢; = Opy(g*), which completes the
proof of theorem. [
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