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YC-ULTRAFILTERS, P-SETS AND HCC-PROPERTY
Dusan Milovanéevié

Abstract. In this paper we further investigate the results given in [10], [11],
[12]. In Section 2 we consider X C-filters (ultrafilters). Let X be a o-compact,
dense subspace of a locally compact space Y. The space Y is compact if and
only if every XC-ultrafilter on X converges to some point in Y. In Section
3 we consider P-sets, S C-filters (ultrafilters) and HCC property. A locally
compact space X is HCC if and only if every XC ultrafilter on X converges.
In section 3 we also consider HCC' extensions of locally compact spaces.

1. Introduction

The closure of a subset A of a space X is denoted by c/x(A). In this

paper we assume that all spaces are Hausdorff. For notions and definitions
not given here see [5], [6], [12].

Let X be a topological space. Then:

exp(X) denotes the space of all nonempty closed subsets of X with finite
topology. The finite topology on exp(X) is generated by open collection of
the form

(Ur,...,Un) ={F €eap(X): FC|JUinFNUi £@,i€{1,... ,n}},

i=1

where Uy, ..., U, are open subsets of X;
K(X) denotes the family of all nonempty compact subsets of X;
Y(X) denotes the family of all o-compact subsets of X;
Y (x) denotes the set of all o-compact neighbourhoods of z € X;
P x denotes the set of all P-points of X;
W x denotes the set of all weak P-points of X.

We use the standard definitions for filter base, filter and ultrafilter. An
open filter base, filter, ultrafilter is a filter base, filter, ultrafilter consisting
exclusively of open sets.
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Definition 1.1. A Hausdorff space X is called absolutely closed (or H -
closed) if X is closed in every Hausdorff space in which is embedded ([6]).

Theorem 1.2. Let X be a Hausdorff space, then the following are equiva-
lent:

(a) X is absolutely closed,
(b) Every open filter base on X has a cluster point,

(¢) Every open cover of X has a finite dense subsystem (whose union is
dense in X ),

(d) Every open ultrafilter on X converges ([6]). O

2. Y(C-filters

Definition 2.1. A XC-filter is a nonempty subfamily § C ¥(X) satisfying
the following conditions:

(a) @ ¢ 5.

(b) If Ay, Ay € F, then 41N A, €5.

(c) If A€ F and G is o-compact, A C G, then G € §.

A filter 4 in ¥(X) is a maximal filter or a XC'-ultrafilter in X(X), if for
every filter § in ¥(X') that contains 4 we have § = 4.

A filter base in ¥(X) is a nonempty family & C X(X) such that o ¢ &
and if Ay, Ay € &, then there exists an A3 € & such that A5 C Ay N As.

One readily sees that for any filter base & in ¥(X), the family
Fe = {A € (X)) : there exists a B € & such that B C A},
is a XC-filter in X(X).
Definition 2.2. Let X be a locally compact space.
(a) A point z € X is called a limit of a XC-filter § if ¥(2) C §; we then
say that the XC-filter § converges to & and write z € lim §.

(b) A point z is called a limit of a filter base & C (X)) if 2 € lim §; we
then say that the filter base & converges to @ and write € lim &.

Remark. Clearly, z € lim & if and only if every compact neighbourhood of
x contains a member of &.

Definition 2.3. Let X be a locally compact space. A point x is called a
cluster point of a XC-filter § (of a filter base &) if  belongs to the closure
of every member of § (of &).

Remark. Clearly, = is a cluster point of a ¥C-filter § (of a filter base &) if
and only if every compact neighborhood of z intersects all members of § (of
®). This implies, in particular, that every cluster point of a XC-ultrafilter
is a limit of this ultrafilter.
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Lemma 2.4. If i is a XC-ultrafilter in ¥(X), the following holds:

(a) If A € X(X), then ANU # @ for all U € 4 iff A € 4.

(b) If Ay, Az are o-compact subsets of X and Ay U Ay € U, then Ay € 4
or Ay € U,

Proof. (a) <: If A€ U, then ANU # @ for all U € 4.

=:If ANU # @ forall U € hand A ¢ 4, then YU {A} is a filter base in
Y(X), that contains 4. Since il is a XC-ultrafilter in ¥(X), it follows that
A e il

(b) : Suppose that Ay ¢ U, Ay ¢ Hand A1UA; € U. Let & be a subfamily
of ¥(X). The set A € 3¥(X) is a member of & iff AU A; € 4. Clearly, & is
a YC-filter that contains Y. Since Y is a LC-ultrafilter in (X)), it follows
that A; € Y or Ay € U. This completes the proof. [

Lemma 2.5. Let X be a o-compact (closed) subset of a topological space Y
and let § be a XC-filter in X(Y). The family §x =35NX ={FNX: F €F}
is a XC-filter in X(X) if and only if FNX # @, for every I € §.

Proof. (a) Empty set @ ¢ §x < FNX = @forall F€F. Furthermore,
every member of §x is a o-compact subset of X.

(b) Let sets A3 N X and Ay N X be contained in Fx. Then (4, N X)N
(AN X)=(A1NA)NX €Fx, (AN A €5F).

(¢) Also, if AN X € § and B is a o-compact subset in 3(X), A C B,
then AUB € ¥(Y) and AUB € F. We have B=(AUB)N X € §x.

So, we have shown that §x is a XC-filter on X. O

The following is an immediate consequence of Lemmas 2.5. and 2.4.

Lemma 2.6. Let X be a o-compact subset of a topological space Y and let
T be a XC-ultrafilter on Y. The familyFx =FNX ={FNX:Fe€F}isa
YC - ultrafilter in (X)) if and only if X € §. O

Lemma 2.7. Let X be a o-compact subspace of a locally compact space
Y. If every XC-ultrafilter on Y converges, then every XC-ultrafilter on X
converges to some point in cly (X).

Proof. Let 3 be a YC-ultrafilter on X. Since the subset X C Y is o-compact,
it is easy to see that X € . It is clear that family U is a XC-filter base on Y.
Let 4 be the XC-ultrafilter on Y generated by 4. Now suppose 4’ — p € Y.
By Definition 2.3, p € lim' < p € cly(U') for each U' € ', Since the
family U C U’, the point p € ¢ly(U) for each U € 4. Hence p € lim 4. This
completes the proof. [
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Proposition 2.8. Let X be a o-compact, dense subspace of a locally com-
pact space Y. The space Y is compact if and only if every 2C-ultrafilter on
X converges to some point in Y.

Proof. Let Y be a compact space. It is known that every ultrafilter on Y
converges; in particular, every XC-ultrafilter on ¥ converges. From Lemma
2.7, it follows that every YC-ultrafilter on X converges to some point in Y.

Conversely, suppose that every XC-ultrafilter on X converges. We shall
prove that every open ultrafilter on Y converges. Since Y is locally compact
and Hausdorff it is Tychonoff. By Theorem 1.2, Y is a compact space. If
U is an open ultrafilter on YV and 4 = U' N X = {U'NnX : U € U},
then, by Lemma 1.5, 4 is an open ultrafilter on X. Clearly the family
B = {cy(U)NX : U € U} is a filter base in (X)) (XC-filter base on
X). Let § be the XC-ultrafilter on X generated by 8. Now suppose that
= peY =cly(X). From Definition 2.3, it follows that p € im§ < p €
cly (cly(U') N X) for each U'" € Y. Therefore, for each U’ € i, we have that
pecly(U)Ney(X)=cly(U)NY. Since, p € cly (U'), for each U' € &', it
is clear that U’ converges to p. O

Corollary 2.9. Let il be a XC-ultrafilter on X. If some U € M is a compact
subset of X, then M is a convergent ultrafilter on X. [

3. P-sets, weak P-sets and HCC property

Definition 3.1. Let X be a topological space. A point p € X is said to
be a P-point if the intersection of countably many neighborhoods of p is a

neighborhood of p ([12]).

It can be shown that a point p € X is a P-point if and only if every F,-set
that is contained in X \ {p} has the closure contained in X \ {p}.

Definition 3.2. Let X be a topological space. A set A C X is said to
be a P-set if the intersection of countably many neighborhoods of A is a

neighborhood of A.

It is easy to see that every open set of X is a P-set.

The reader can easily prove the following lemma.

Lemma 3.3. Let X be a topological space. The set A C X is a P-set if and
only if every F,-set that is contained in X \ A has the closure contained in
X\ A. If X is a compact space, then the set A C X is a P-set if and only
if every o-compact set that is contained in X \ A has the compact closure
contained in X \ A. O
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Remark. The set Px (PLx denotes the set of all P-points of X)) is a P-set.
This is a direct consequence of Definition 3.1. and Lemma 3.3. The converse
is not necessarily true (see Example 3.4.)

Example 3.4. Let R be the set of real numbers with the ususal metric
topology. Every open interval (a,b) is a P-set, since for every F,-set A C
(—o0,a] U [b,40c) the closure ¢lg(A) C (—o00,a] U [b,+00). But Px = 7,
since R is second countable.

Lemma 3.5. Let X be a locally compact space. A compact set A C X is a
P-set if and only if every o-compact set that is contained in X \ A has the
closure contained in X \ A.

Proof. = : Obvious.

< @ Let M be an F,-set that is contained in X \ A. Since X is locally
compact, for every open set V' C X that contains A there exists an open set
U C X such that A C U C ¢lx(U) C V and ¢lx(U) is compact. The set
Mnelx (U) is a o-compact set that is contained in X'\ A. By assumption the
closure clx (MNelx (U)) C X\ A. Furthermore, the closure c/x (M) C X\ A.
According to Lemma 3.3, the set 4 is a P-set. U

Definition 3.6. A space X is HCC (hypercountably compact) if every o-
compact set in X has the compact closure in X ([11]).

Theorem 3.7. For every Hausdorff locally compact space X the following
conditions are equivalent:

(a) The space X is HCC'.

(b) For every compactification c¢X the remainder ¢X \ ¢(X) is a P-set in
cX.

(¢) There exists a compactification ¢X of the space X such that the re-
mainder ¢X \ ¢(X) is a P-set in cX.

(d) Every XC-filter base on X has a cluster point.

(e) Every XC-ultrafilter on X converges.

Proof. (a) = (b) Since X is locally compact, for every compactification ¢.X
the remainder ¢X \ ¢(X) is a closed (compact) set in c¢X. If X is an HCC
space, then every o-compact set in ¢(X) has the compact closure in ¢(X).
By Lemma 3.5., ¢X \ ¢(X) is a P-set.

(b) = (¢) Obvious.

(¢) = (a) Since X is locally compact and Hausdorff it is Tychonoff.
Therefore, there exists Stone-Cech compactification 3X. The remainder
X* =X\ X is a compact set in fX. Let X* = X \ X be the P-set in
BX. According to Lemma 3.5, every o-compact set M C X \ X* has the
closure clgx (M) C BX \ X* = X. Hence, X is HCC.
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(d) < (e) Obvious.

(a) = (d) Let U be a XC-ultrafilter on X and Uy be a member of 4l. Since
X is CC(countably compact), clx(Up) =Y is a compact subspace of X. Let
" be the trace of U on Y. By Lemma 2.5, ' is a XC-filter on Y. Since Y
is compact, there exists a point p € Y such that p is a cluster point of .
Clearly, the point p is a cluster point of 4. Hence every XC' - ultrafilter on
X converges.

(d) = (a) Suppose that every XC-ultrafilter on X converges and let A
be any o-compact subset of X. The family §4 ={B € X(X): AC B} isa
Y.C-filter base on X. Let 4l be the XC-ultrafilter on X generated by § 4 and
let 4’ be the trace of 4 on A. By Lemmas 2.6 and 2.7, {4’ is a XC-ultrafilter
on A and Y — p € clx(A). According to Proposition 2.8, the set c/x(A) is
a compact subspace of X. Hence, X is an HC'C space. U

Definition 3.8. A pair (Y,¢), is called an HCC (SCC') extension of a
space X, if Y is an HCC (SCC') space and ¢ : X — Y is a homeomorphic
embedding of X in Y such that cly(c(X)) =Y .*

Theorem 3.9. Let X be a Tychonoff space which is not an HCC' space and
let ¢X be a compactification of X with the following properties:

(a) The set P.x is not empty set.

(b) The set P.x C ¢X \ X. Then there exists an HCC' extension xX of
X such that xX is a subspace of ¢X.

Proof. Consider the subspace H (X) = ¢X\B.x of ¢X. Since cX is compact,
by Theorem 3.7, the remainder ¢X \ P.x is an HCC subspace of c¢X. Let
XX be the closure of ¢(X) in H(X) (¢(X) =~ X). The subspace

XX = clpx)(c(X)) = clex (¢(X)) N H(X) = cX N H(X).
Hence, xX = H(X). Furthermore, the mapping 7 : ¢(X) — H(X) defined
by i(y) =y, y € ¢(X),is a homeomorphic embedding of ¢(X ) in H(X). The
mapping ¢oc¢: X — H(X) is a homeomorphic embedding of X in H(X).
By Definition 3.8, pair (H(X),i0c¢) is an HCC extension of space X. O

Proposition 3.10. Let X be a topological space and let A be any closed
subset of X. The subset A is a P-set if and only if the point A € exp(X) is
a P-point.

Proof. Suppose that a closed subset A C X is a P-set and let {(U{,... Ut):
i € N} be any countable family neighbourhoods of A € exp(X). For every
i € N, the subset A C X is contained in U; = U{U} : k = 1,...,n}.
Since A is a P-set, there exists a neighborhood U of A such that for every

*A space X is SCC (strongly countably compact) if every countable subset in X has
compact closure in X (see [7]).
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i€ N, ACU C U,. Furthermore, for every ¢ € N, the neighborhood )U( of
A € exp(X) is contained in (Uf,...,U:). Hence A € exp(X) is a P-point.

Conversely, suppose that A € exp(X)isa P-point and let {U,, : n € N} be
any countable family of neighborhoods of A C X. The sets (U,),n € N, are
neighborhoods of A € exp(X). Since A € exp(X) is a P-point, there exists
a neighbourhood (Vi,...,V,) of A € exp(X) such that A € (V4,...,V,)) C
(Up),n € N. The set A C X is contained in V. =U{V;, : k=1,...,n} and
for every n € N we have V C U,. Hence the set A C X is a P-set. [

Theorem 3.11. Let X be a locally compact HCC' space. If X is normal,
then there exists an HCC' extension of exp(X) and the space exp(X) has
the SC'C property.

Proof. 1t is clear that every HCC spase is a SCC space. By result of
J.Keesling (see [7], Theorem 5), we have that exp(X) is SCC. Furthermore,
the subspace £(X) C exp(X) is a dense HC'C' subspace of exp(X) (see [11],
Theorem 2.2). By assumption the space exp(X) has a compactification and
the mapping F' : exp(X) — exp(BX) defined by F(A) = clgx(A), A €
exp(X), is a homeomorphic embedding (see [7]). By Theorem 3.7, the set
BX \ X is a closed P-set in X and applying Proposition 3.10, the point
BX\X € exp(X)isa P-point. It is clear that space exp(3X) is compact and
by Theorem 3.2 in [11], the subspace exp(SX)\{FX \ X } is an HCC space.
It is easy to see that the point {#X \ X} is not contained in F(exp(X)).
Hence F(exp(X)) C exp(BX)\{BX\X}. Since the property HCC' is hered-
itary with respect to closed sets, the subspace cl.,,(5x)\{sx\x1(F(exp(X)))
is an HCC' space and pair (cleqpsx)\sx\x}(F(exp(X))), F) is an HCC
extension exp(X). O

Definition 3.12. Let X be a topological space. A set A C X is a weak
P-setif AN cl(F)= @ for each countable set I’ contained in X \ A.

It is easy to see that every P-set is a weak P-set. Furthermore, if W8 x
denotes the set of all weak P-points* of X, then the set W x is a weak
P-set. The converse is not necessarily true (see Example 3.4).

The proofs of the following two theorems are similiar to the proofs of
Theorem 3.7 and Theorem 3.9 and will be omitted.

Theorem 3.13. For every Hausdorff locally compact space X the following
conditions are equivalent:

(a) The space X is SCC.

*A point p € X is a weak P-pointif p & clx (F) for each countable subset I C X \ {p}
(see [11]).
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(b) For every compactification c¢X the remainder cX \¢(X) is a weak P-set
in cX.

(¢) There exists a compactification ¢X of the space X such that the re-
mainder ¢X \ ¢(X) is a weak P-set in cX. O

Theorem 3.14. Let X be a Tychonoff space which is not an HCC' space
and let ¢X be a compactification of X with the following properties:

(a) The set WB.x is not empty set.

(b) The set Wh.x C X \ X.
Then there exists a SCC extension 0 X of X such that ¢ X is a subspace of
cX. UO
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