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LIMITATIONS FOR THE NON-SYMMETRIC PART
OF LATTICE CONVEX n-GONS
WITH MINIMUM L, DIAMETER

Dragan M. Acketa, Snezana Matié-Keki¢ and Jovisa D. Zunié*

Abstract. Lattice convex n-gon (n = 4k+b) with minimum Le
diameter MD(n) can be constructed as the Minkowski sum of a
centrally symmetric lattice convex 4k-gon and a non-symmetric
part, so called Basic b-tuple.

This paper investigates the conditions by which a family of Basic
b-tuples can and cannot be used to build optimum lattice convex
n-gons for large classes of n. Solutions for five special small values
of n are presented. It has been formerly shown that seventeen
suitably chosen families of Basic b-tuples with b < 11 can cover
all the remaining values.

1. Imtroduction

A lattice convez polygon (shortly lc.p.) is a polygon, all the vertices
of which are points on the integer grid and all the interior angles of which
arc strictly less than = radians. The L. diameter of a lattice convex
polygon is the minimum edge size of the enscribed lattice square with the
edges parallel to the coordinate axes.

Let A, and A, of an edge denote the absolute values of differences of
z- and y-coordinates of its endpoints. Edges od a lc.p. can be naturally
partitioned into four arcs that are separated from each other by the vertices
(edges) corresponding to the maximum or minimum, - Or y-coordinates
(the notion of arc has been made more precise in [2]).

Given an edge e of a Lc. polygon, the edge slope of e denotes the
fraction A,/A, if e belongs to the north-east or south-west arc and the
fraction A,/A, otherwise. The bd-length of e (shortly: bdi(e) or only
bdl) denotes the sum A, + A,; this is the edge length in the sense of the
L. (Manhattan, block distance) metrics.
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LS{A,,A,) will denote a lattice square with edge slopes A,/A,.

If the corresponding arcs of some two l.c. polygons P, and P, have no
common edge slopes, then there exists the Minkowski sum of P, and B,
which is the uniquely determined third l.c.p. P;. Each arc of FP; includes
all the edges of the corresponding arcs of P, and F;, sorted so that the
convexity condition is preserved.

This paper is related to the problem of determining a lattice convex
n—gon with the minimum 7L, diameter MD(n). This problem was pri-
marily formulated in [4]; our main results related to it can be found in the
papers [1], [2] and [3].

A sequence P(j), j =1,2,... of optimum l.c. v(j)—gons is defined in
the following manner: given a natural number j, each arc of P(j) contains
all the possible edge slopes A, /A, satisfying A, +A, < j, where A, and
A, are relatively prime natural numbers, with the additional possibility
that A,/A, =0/1. In subsequent text, given the number n of edges of the
l.c. polygon, which is to be determined, ¢ will denote the natural number
with the property v(t —1) < n < v(t).

Greedy lower bound (shortly: gdlb(n)) for M D(n) is defined as follows:

(n—v(t—-1))- -t

gdlb(n) =  diameter of P(t —1) + | 1 1.

The expression for gdlb(n) can be derived from the observation that the
sum of bd-lengths of edges of a L.c. n—gon P is equal to the perimeter
of the minimum enscribed rectangle with sides parallel to the coordinate
axes. Namely, due to the convexity of P, the sides of this rectangle are
exactly covered by the projections of the edges of P, it is assumed that the
projections are made onto the sides that are not “hidden” by P.

The word “greedy” in the name of the bound is due to the fact that a
greedy procedure for determining it is found. The weight function which is
being minimized is the total edge length in the sense of the L., metrics.
In accordance with this, the notions “greedy approach” and “greedy choice”
are used throughout the paper.

The edges of an optimum l.c.p. P with the property that their edge slopes
are not used in each one of the four arcs constitute the Basic b-tuple. The
remaining edges of P constitute the I[nitial polygon. The polygon F is
the Minkowski sum of the Initial polygon and the Basic b-tuple, while the
Initial polygon itself can be represented as the Minkowski sum of distinct
squares LS(A,,A,). The main problem with constructions for n mod 4
# 0 is to find a suitable Basic b-tuple, since this notion includes a deviation
from the greedy approach.
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It has been shown in [2] and [3] that MD(n) < 1+ gdlb(n). Explicit
constructions for l.c. m-gons reaching MD(n) have been provided, as well
as the proofs that
MD(n) > gdib(n) with six exceptional cases.

It is hoped that this paper elucidates and helps better understanding
of some details related to the construction described in [2]. In particular,
necessity for partitioning the constructions of optimum solutions into a con-
siderably large number of cases is explained and the roles of families of
Basic b-tuples are clarified.

2. Limitations for usage of Basic b-tuples

The limitations considered here are mainly related to the values of n
that are close to members of the sequence v(t).

2.1. Allowed and used tolerance. Basic b-tuples B allow some
deviations from the greedy choice of edges. Two functions, AT(n) and
UT(B), are related to the measure of this deviation.

The function AT(n) (allowed tolerance ) is equal to the rounding error

in the formula for gdlb(n) and is given by the expression AT(n) =

) <
4. fﬂ-4—] — n - t. This function is the measure of allowed deviation from

the greedy choice under the assumption that gdlb(n) is reached. Allowed
tolerance AT(n) is a number from the set {0,1,2,3} that has the following
geometrical sense: The minimum possible sum of bd-lengths of edges of a
l.c. n-gon is equal to 4 - gdlb(n) — AT(n). Thus the sum of bd-lengths of
edges may be greater for AT (n) than this theoretical minimum so that the
L.c. n-gon still has the minimum possible diameter gdlb(n).

The function UT(B) (used tolerance ) is the measure of deviation from
the greedy choice corresponding to a Basic b-tuple B . Namely, when
choosing the edges for B, it is optimal to use the edges with bdl = ¢:

Each edge e of B with bdi(e) =t+1 ,i = 1,2,... corresponds to a
deviation of size i from the greedy choice of edges. None of the n edges
chosen in a greedy manner would have a bd-length greater than £, so the
use of the edge e makes the minimum sum of bd-lengths by 4 greater.

On the other hand, a greedy choice of n edges also assumes that all
possible edges with bdl < t are included into B. Suppose that some
a(B,A,,A,) edges with edge slope A /A, satisfying A, + A, <t are
used in B . This means that some 4—a(B,A;, A,) edges with the same edge
slope cannot be used at all. It would be optimal to substitute these edges by
the same number of edges with bdl = ¢. Such a substitution of edges would
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make the minimum sum of bd-lengths by (4—a(B, A, Ay))-(E— (A +A,))
greater. Thus it holds:

UT(B) = 3 (dile)—t)+ Y (4—a(B, A A,))(t—(A4A,),
cEB A, /A, In B
bdi(e)>t AL +A, <t

where e is an edge of B, A,/A, is an edge slope used in B, while
a(B,A,,A,) from the set {1,2,3} denotes the number of arcs of B that
contain an edge with the edge slope A, /A,.

We cite the obvious statement [3] that the used tolerance must not be
greater than the allowed one:

Statement 1. If a Basic b-tuple B is used for the construction of a
lattice convex n-gon with diameter equal to gdlb(n), then the inequality
UT(B) < AT(n) is satisfied.

2.2. Notion of gaps. At first glance, it seems as if only three Basic
b-tuples B (say, for b = 1,2,3) may be sufficient for all the constructions
having n mod 4 # 0. However, no fixed B can be in accordance with the
requirements for general optimum solutions. Namely, greedy choice of edges
with small bd-lengths requires bd-lengths of edges of B to be close to i,
where n € (v(t — 1),v(t)). Therefore, fixed Basic b-tuples are replaced by
families of Basic b-tuples depending on .

A family {B,} of Basic b-tuplesis planned to cover (the constructions of
lc. n-gons reaching gdib(n) with) all n with the same non-zero value of n
mod 4. However, distinct families of Basic b-tuples are necessary depending
on  mod 4. This follows from the fact that the allowed tolerance depends
on (n-t) mod 4.

Omn the lower level, a member B, from the family is planned to cover the
corresponding values of n within a fixed interval (v(t — 1),v(¢)). These
values constitute the set

Plan(B;) = {v(t—1)+(bmod4)+4-7i | i=0,1,..,0(t) —1},

where (t) denotes the Euler function; note that v(¥) = v(t—1)+4-p(t).

Remarks. The largest value of Plan(B;) isequal to v(t)—4+(b mod 4).
Multiple applications of the same Basic b-tuple B, (for various n from
Plan(B;)) can be achieved by varying the number of edges of the underlying
Initial polygon.

A family {B,} of Basic b-tuples is said to leave some gaps if it cannot
be used for constructions of l.c. n-gons having diameter equal to gdib(n),
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with all planned values of n. Thus the gaps which are adjoined to a family
are just those of the planned values of n, with which the family “fails”.

Remark. If a gap is equal to a value of n which requires at least
1 + gdlb(n) edges, then the family {B;} covers n (does not leave a gap
at n) provided that it can be used for constructions of l.c. n-gons having
diameter equal to 1+ gdlb(n).

There exist three kinds of gaps: left , right and small. TLeft and right
gaps are related to the left-hand side and right-hand side of the interval
(v(t —1),0(2)).

Small gaps are some values of n € Plan(B,), where t is so small that
B, is not well-defined. Namely, when substituting some small values of ¢
into an edge slope (expressed as a function of t) of B,, it may occur that
either a negative edge slope is obtained or two edges with the same edge
slope appear within the same arc. Therefore, ad hoc constructions of Basic
b-tuples are necessary for these values of n.

Civen the Basic b-tuple By, let e;,es,es denote the number of its edges
having A, + A, smaller than, equal to and greater than ¢, respectively.
The corresponding three numbers of distinct edge slopes A,/A, used in
B; are denoted by sy, 83, 53.

2.3. Left gaps. Given the Basic b-tuple B, let P, denote the
Minkowski sum of all squares LS(A,,A,) satisfying that A, + A, <t

and that A,/A, is not an edge slope of B;. Since B; has s, edge slopes
with A, + A, < t, it follows that P}, has v(t — 1) — 4s; edges. Then
the Minkowski sum of P; , and B, is an optimum l.c. n-gon Omin Wwith
n = wv(t — 1) — 4s; +b. This is the smallest value of n that can be covered
by using B,. If it is greater than the smallest value v(t — 1) + (b mod 4)

from Plan(B;), then B, is said to leave left gaps. It can be also said that
the family {B;} leaves left gaps in such a case, since the values of b and
s, are the same for all its members.

We prove the following lemma. by equalizing the smallest planned value
of n and the smallest covered one:

Lemma 1. A family {B.} of Basic b-tuples does not leave left gaps iff
its members satisfy the equality b = 4-s; + (b mod 4).

Tf the left gaps exist, then they constitute the interval

Left = [v(t — 1) + (b mod 4), v(t — 1) + (b mod 4) +4, ..., vt — 1)+
b— s, —4] .
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One can briefly say that left gaps arise in situations when the number &
is too large. For example, if B, does not use edges with bdl < ¢, then a
left gap occurs whenever b > b mod 4.

2.4. Right gaps. We observe that there exist ©(t) — s, edge slopes
A,/A, that are not used in B, and which satisfy that A, + A, =¢.
Their corresponding squares LS(A,,A,) are the only Minkowski summands
which are allowed to be added to the n-gon O, (that has been introduced
in 2.3) and which are in accordance with the greedy minimization.

This implies that the largest value of n that can be covered by using B,
is equal to (v(t —1) —4s; +b) + 4(p(t) — s;). If it is smaller than the
largest value (¢ —1) + (b mod 4) + 4(ip(t) — 1) from Plan(B,), then the
b-tuple B, (also the family {B,}) is said to leave right gaps.

By equalizing the largest planned value of n and the largest covered one,
we have:

Lemma 2. A family {B;} of Basic b-tuples does not leave right gaps iff
its members satisfy the equality b = 4. (s; + s,) + (b mod 4) — 4.

If the right gaps exist, then they constitute the interval

Right = [v(t) — 4 (s1 4+ 52) + b+ 4,...,v(¢) — 8 + (b mod 4),v(t) — 4+ (b
mod 4)].

Right gaps arise in the situations when the number b is too small w.r.t.
the maximum possible number of edges of the Initial polygon. In other
words, the number of distinct edge slopes with bdl < ¢ used in Basic
b-tuples is too large w.r.t. the number &.

Consequence of Lemmae 1 and 2: Members of a family {B,} of Basic
b-tuples, which do not leave neither left nor right gaps, satisfy that s, = 1.
This is a very restrictive constraint, which often implies necessity to solve
the gap problem for the left and for the right gaps separately.

2.5. Upper bounds for number of edges of Basic b-tuples. There
are (t) distinct edge slopes having A, +A, =t . All these edge slopes and
at most three edges with each one of them may be used within the Basic
b-tuple B;. Namely, the inequality with allowed tolerance (Statement 1)
will not be violated, since none of these edges contributes to UT(B;). If
there are no additional constraints, an upper bound for the number of edges
of B, should contain the summand 3 - (t), which may be infinitely large.

However, if it is additionally required that B, does not leave at least one
kind of gaps (left or right), then there exists a fixed upper bound for the
number of its edges:
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Lemma 3. The upper bounds for the number of edges of those Basic b-

tuples, which do not leave either left gaps, or right gaps, or both kinds of

gaps, are given in Table 1:

max | Upper bound for | Upper bound for | Upper bound for
bmod 4 | AT(n) | NO LEFT gaps | NO RIGHT gaps NO GAPS
1 3 13 21 9
2 2 10 14 6
3 3 15 15 11

Table 1.

Proof. According to Lemmae 1 and 2, the maximization of the number of
edges of a b-tuple B, which does not leave left and right gaps, respectively,
requires the values of s; and s, + s,, respectively, to be as large as possible.

Statement 1 implies that UT(B;) < AT (n) . Maximization of s; implies
that the whole accessible tolerance should be used so that AT (n) edge slopes
having
A, + A, =t—1 and with three edges each should be used in B;. Thus
maximum possible values of s; and e; are equal to AT(n) and 3-AT(n),
respectively.

Using Lemma 1, the upper bound for the number of edges of a b-tuple
which does not leave left gaps is equal to 4- AT (n) + (b mod 4). The proof
for the left gaps is completed (the values 13, 10, 15 in Table 1 are found) by
substituting the maximum possible values of AT (n).

When the right gaps are considered, the inequality b < 3-(s; +s3) + €3
is used; it easily follows from the fact that B; can contain at most three
edges with the same edge slope. On the other hand, the maximum possible
number of edges of the Initial polygon is equal to v(t) —4 - (81 + 82).

Summing up the last two expressions, ensues that the maximum possible
number n of edges of a l.c. n-gon which is being constructed — is equal to
v(t) — (81 + s2) + e3. If there are no right gaps, then this value should be
equal to v(t) —4+ (b mod 4), which implies that s, + sy = e3 +4 — (b mod
4). Thus the maximization of s; + s requires the maximization of e;.

The inequality UT(B;) < AT(n) will be used once more to reach the
last goal; it implies that e; < AT'(n). The equality is satisfied iff B, uses
exactly AT(n) edges having A, + A, =+ 1. Thus the maximum possible
value of s, + 35 is equal to AT(n) +4 — (b mod 4).

This maximum value is substituted into the expression given in Lemma
2. This gives that the upper bound for the number of edges of a b-tuple
which does not leave right gaps is equal to

4-( AT'(n)+4—(b mod 4) )—4+(b mod 4) = 124+4-AT(n)—3-(b mod 4) .
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The proof for the right gaps is completed (the values 21, 14, 15 in Table 1
are found) by substituting the maximum possible values of AT(n).

Consequence of Lemmae 1 and 2 finally implies that B; leaving no
gaps has at most three edges having A, + A, = t. According to the
above discussion, maximum possible values of e; and e3 are equal to
3-AT(n) and AT(n), respectively. Since at most one of these maximizations
can be performed at the same time (both of them use the same tolerance
UT(B;) = AT(n)), it is preferable to maximize e;. Such a maximization
leads to the upper bound 3+ 3- AT(n) for the number b. Substituting the
maximum values of AT (n) in the last expression and taking into account
the required values for b mod 4, the last column (with values 9, 6, 11) of
Table 1 is derived. [O.

Remarks. Lemma 3 is the first step in proving that a finite number of
families of Basic b-tuples is sufficient for a general construction of optimum
l.c. n-gons (valid for all n).

Although the largest number in Table 1 is equal to 21, it turned out that
Basic b-tuples with & < 11 were sufficient to cover all the cases.

Basic b-tuples with large values of b (that by Lemma 3 necessarily
leave both left and right gaps) may be also of some interest, e.g., for the
constructions of optimum l.c. n-gons with the largest possible degree of
non-symmetry.

2.6. Complementary families of Basic b-tuples. A family of Basic
b-tuples which does not leave gaps is sufficient to cover the construction of
optimum l.c. n-gons with all planned values of n. The problem of gaps
is overcome in the following manner: If a family of Basic b-tuples leaves
only left (right) gaps, then another (auxiliary) family with the same set of
planned values of n is found, which leaves only right (left) gaps.

Let be given a pair of complementary families of Basic b;—tuples, which
leave left gaps and Basic b.—tuples, which leave right gaps. Then, generally
speaking, it might occur that the planned values in the following subinterval
are not covered:

[0(t—1)+ (b mod 4) + 4, v(t—1)+ (b mod 4) + 8, ... , v(t—1)+b —
8, v(t—1)+b —4].

Namely, it might occur that an optimum solution for n = v(t—1)+(b; mod
4) cannot be augmented by adding some LS(A,,A,) with A, +A, =1,
since there do not exist such “free” lattice squares (the edge slopes of which
are not used in the Basic b,—tuple). On the other hand, it is necessarily
true that all the planned values in the following subinterval can be covered
by diminishing Initial polygon corresponding to
n = v(t) — 4+ (b mod 4) :
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[w(t —1) + by, v(E—1)+b +4,...,v(t) — 12+ (b mod 4 ), v(t) — 8+ (b
mod 4 )] .

Fach Basic b-tuple (and consequently a family of Basic b-tuples), which
uses s distinct edge slopes, has its dual (4s — b)-tuple — it is defined
to use the same edge slopes, but in the complementary arcs. Thus the
Minkowski sum of two mutually dual tuples is equal to the Minkowski sum
of s LS(A,,Ay)’s, which correspond to the used edge slopes A,/A,.
However, the dual of a Basic b-tuple cannot generally be used as a Basic
(4s — b)-tuple for another optimum construction. The main reason lies in
the fact that the dualization rapidly increases the used tolerance whenever
the edge slopes with bd-lengths different from ¢ are used. In particular, if
more than one such edge slope is used, then dualization never succeeds.

As a consequence, one cannot translate the problem of left gaps to the
right ones or vice versa.

2.7. Small gaps. A collection of 17 families {B;(k)}, 1 <j <17 of
b-tuples was presented in [2] (the parameter %k is linearly related to t).
These families are sufficient to cover all natural numbers n > 3, which are
not divisible by 4, except for the values n = 3,7,9,13,15. It is exactly these
five values that are small gaps; they arise from deffects of Bi,(0), By4(0),
B:(0), By(0) and Bi(0), respectively.

These values of n can be covered by ad hoc constructed Basic b-tuples
Ty, Ty, Ty, 113 and Tis, that are shown in Figure 1.

2 2
1 1 1 1 1 1
1 1 12 g
T, IT';' 1N TG ) 3 Tis /),
1 1 11 1 i
T T 1 1~ 2 T 2 1 2 1

Figure 1. Basic b-tuples for small gaps
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