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EXISTENCE OF OSCILLATORY AND NONOSCILLATORY
SOLUTIONS FOR A NONLINEAR SYSTEM
OF DIFFERENTIAL EQUATIONS

Jelena Manojlovié

Abstract. We shall establish sufficient conditions for the existence of at
least one mnonoscillatory solution and for oscillation of all solution of the
following system of differential equations

ub = |ug_i|Msgnus_; + (=1) " bi(Hu; (i=1,2), AAs# L

Introduction

The following system of differential equations
(EF) v = cl(s)|v2|Alsgn vy, vh = 02(s)|v1|hsgn vy

is known in the literature as the system od the Emden—Fowler type. The os-
cillatory properties of its solutions have been studied, during the last twenty
years, by many authors ([1],[4]-[11]). A survey on such results and fairly ex-
tensive bibliography of the earlier work can be found in the book of Mirzov
D.D. [7].

The following change of variables

o ()

vi(s):( () )mui(t) (i=1,2)

c3—i(s)
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reduces the Emden—Fowler system to the following nonlinear system of dif-
ferential equations

uh = |ug | sgn uy + b(t)uy, uly = |uy |Msgnuy — b(t)us

where

We shall consider the nonlinear system of differential equations

uh = Jug|Msgn ug + by (t)uy,
(1) , Ao
uy = |ug|sgnug — by(t)us
where the functions b; (¢ = 1, 2) are nonnegative and summable on each finite
segment of the interval [0, +00) and

A2>0(7/:172)7 AlAQ#l

A solution (uy(t),uz(t)) of the system (1) which is defined on some positive
halfline [tg, +00), where {5 > 0 depends on the particular solution, is called
proper if

supq{|uy (7)| + |uz(7)] : t <7 < 400} >0 forall tE€ [ty,+00).

A proper solution (uq(t), uz(t)) of the system (1) is called oscillatory (weakly
oscillatory) if both components (at least one component) have sequence of
zeroes convergent to +oo. If we can find ¢, > tg such that both components
(at least one component) are different from zero on [t., +00), then the proper
solution (uy(t),uz(t)) is said to be nonoscillatory (weakly nonoscillatory).
Denote the set of functions which are summable on each finite segment

of the interval [0, 400) by L. ([0, 4+00)).

1. Nonoscillation theorems

Let the functions a; € L;,.([0,400))) satisfy the following conditions
(1.1) a;(t) > (-1)" (i=1,2) for ¢t>0
and let the functions b; in the halfspace

D ={(t,u1,uz) : t >0, —00 < uy,uy < +00}
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satisfy the conditions

al(t)|u2|A1 < by (t)ugsgn ug < Z\4c11(t)|u2|A17

(1.2)
a2(t)|u1|A2 < by (t)uzsgn uy < Ma2(t)|u1|A2
where M = const. > 1.

Under appropriate assumptions, using the previous inequalities, we shall
prove that the system (1) can be reduced to the Emden-Fowler system of
differential inequations. Then, following Mirzov’s methods ([1], [5]) for the
Emden—Fowler system we shall prove the nonoscillation theorems.

We shall need the following two lemmas.

Lemma 1.1. For every ty € [0,400) the trivial solution is the only solution
which satisfies the initial condition

(73] (to) = U2 (to) =0.

Proof. Because of the assumed relations (1.1) and (1.2) we have

(1.3) uh (tsgn g (8) > (L4 ar (8))Juz (8)|™ > 0,
(1.4) u (t)sgn i (8) < (1= ag(£))|ur (1))

Suppose the contrary. Then we can find an € > 0 such that

w1 (t) #0 for t € (to,to+¢).

We distinguish two cases.

Case 1. uy(t) > 0 for t € (to,to + ¢). From (1.4) we deduce that uy(t)
is the nonincreasing function. Hence, uy(t) < us(to) = 0 for ¢t > ty3. Now,
we conclude because of (1.3) that uy(t) is the nonincreasing function, which
implies that for all ¢ > ¢ is u1(¢) < uy(to) = 0. The obtained contradiction
proves that Case 1. is impossible.

Case 2. uy(t) < 0 for t € (to,to + ¢). From (1.4) we obtain that uy(t) >
uy(to) = 0 for t > to, which implies, according to (1.3), that wuq(¢) is the
nondecreasing function. Consequently, uy(t) > uq(tg) = 0 for t > ¢5. Thus,
Case 2. is also impossible and the lemma is proved.

Lemma 1.2. An arbitrary weakly nonoscillatory (weakly oscillatory) solu-
tion of the system (1) is nonoscillatory (oscillatory).

Proof. Suppose that the system (1) has a nontrivial weakly nonoscillatory
solution (uy(t),u2(t)). Then, we can find t. > o such that us(t) # 0 for all



138 J. Manojlovié

t > t.. If we assume the contrary, u;(f) has a sequence of zeroes convergent
to +o0. Using (1), (1.1) and (1.2), it follows from

u (0)sgn s (1) = [ () + By (£) s (£)sgn ua 0
> (14 a () |us () >0 for t>t,
that u; is monotone on [t., +00) and we can find t* > ¢, such that uy(t) =0

for ¢t > t*. As we have just got a contradiction, the lemma is proved i.e.
(up(t), uz(t)) is nonoscillatory.

In the following two theorems, corresponding to the cases A Ay < 1 and
A1 A9 > 1, sufficient conditions for the existence of at least one nonoscillatory
solution of the system (1) will be given. These theorems are extensions of
oscillation theorems (Theorem 11.3., Theorem 11.4. in [7]) for the Emden—
Fowler system.

Theorem 1.1. Let M Az < 1 and for some i € {1,2} the condition

Aa—i

/0+OO (M Mas_s ()| +1— 1) [/Ot (M*ai(s)| +2 — i) ds] dt < +o0,

be satisfied. Then, the system (1) has at least one nonoscillatory solution.

Proof. We shall take i = 1 since the case when ¢ = 2 can be considered in a
similar way. Let to > 0 be such that

A2

(1.5) [Oo ax (t) (/j (Max(s)| + 1) ds) dt = K < +00

We shall prove that the solution (uq(t), u2(t)) of the system (1) which satisfies
the initial conditions

uy(to) =0,  |ug(to)]' ™2 > KM.

is nonoscillatory. According to Lemma 1.2.; it is enough to prove that
lug (¢)| > 0 for all t > t.

Suppose the contrary that there exist sequences {t;,}1° (i = 1,2), t1, =
to such that to, > t1, >n(n=1,2,...),

(1.6) u(tin) =0 (1=1,2) and wuy(t) 0 for 1, <t <ta,.

According to Lemma 1.1., us(t;,) # 0, (1 = 1,2, n = 1,2,...). In the first
place, we shall prove that there exist the points 7, € (f1,,%2,) such that
u3(1,) = 0. Suppose that us(t) # 0 for every ¢t € (t1,,t2,). Then

uh (sgn g (tn) > (L4 ar())us ()" >0 for ¢ € (i, tan),
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which means that uq (¢) is monotone on (t1,,,t2,). Therefore, fort € (t1,,t2,)
we have

0=wui(tin) <ur(t) <ug(tjn) =0 for (¢,7=1,2)i#7].
The contradiction which we have just obtained proves the existence of 7, €
(t1n,t2n) such that uy(7,) = 0 and let 7, be the first such point.
In that case uq (t)ug(t) # 0 for ¢ € (t1,,, 7). We shall next prove that

(1.7) wr (Hug(t) >0 for t e (tin, 7).
If this is not true, using (1.1) and (1.2), we obtain

—|ur ()" > (L + a1 (8)|uz ()] >0 for t € (t1n,Tn),
which leads us to the contradiction, since we have then that |uq(t)| <
|ui(t1,)| = 0 for t > t1,,. Thus, the validity of (1.7) is proved.

By (1.1), (1.2) and (1.7) the following inequalities are valid for ¢ € [to, 4]

(1.8)  0<|u()
(1.9) 0> Jus()

(14 Mlax ()] ua (1)

"<
> (1= Mag ()| ()12 > ~Mag (1) Juy (1) 2.

Integrating (1.8) over [ty, ], we obtain

[ur ()] < us(to)] +/t (14 May (s)])|ua(s)| ™ ds

t
< |u2(t0)|A1/ (14+ Mlay(s)|)ds for t€ [to, 1]
to

Consequently, according to (1.5) and (1.9), we have

A2

(0)] 2 o) - Mluata) P [ wio)( | :<1 Mol dr) - ds

2 |UQ(t0)| — M|UQ(t0)|A1AQI( > 0 fOI’ t e [t077—1]7

which assures that |uz(71)| > 0. This contradicts the choice of the point 7y.
The proof is therefore completed.
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Theorem 1.2. Let \yAs > 1 and for some i € {1,2} the following condi-
tions

+ oo )
(1.10-i) / (M Mag_i(t)| +i—1) dt < +o0
0

and

(1.11—i)
A

/0+OO (M*~|a; ()] + 2 — i) [/;OO (M= az_i(s)|+i—1) ds| dt < +oo.

be satisfied. Then, there exists a nonoscillatory solution of the system (1).

Proof. In the first place, we suppose that conditions (1.10-1) and (1.11-1)
are satisfied. We choose £y > 0 such that

+ oo
(1.12) M/ ay(t) dt < 1
to

A1

(1.13) MAI/;W (14 Mlay (1)) ([Oo as(s) ds) dt < %

For arbitrary n € N we consider the solution (u,;(t), u,2(t)) of the system
(1) which satisfies the initial conditions

Unl (to + n) = 17 ung(to + n) =0.

We shall prove that this solution is defined on [tg,to + n] and satisfies the
inequalities

1
(1.14) 5 <um(t) <1 0<up(t) <1

on this segment. Since there exists an ¢ > 0 such that u,;(t) > 0 for all
t € (to+mn—e,to+n), using (1), (1.1) and (1.2), we get

Wy (1) = [t (O = ba(una (1) < (1= az ()l (] < 0,

for t € (to +n —e,to + n). Accordingly, for all t € (to +n — &,tp + n) is
Un2(t) > una(to +n) = 0. Then, from (1), (1.1) and (1.2), we obtain for
t € (t0—|—n—€7t0—|—n)

i (6) = Jua (O 4+ b1 (s (1) 2 (14 an (1) waa ()] 2 0.
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Therefore, for t € (to +n —c,to + n) is un1 (t) < upi(to +n) = 1. If the
assertion (1.14) is false there exists ¢, € [to,to+ n) such that the inequalities
(1.14) are valid on (t.,to+ n) and

(1.15) (1) = %
(1.16) s (1) = 1.

Then, by (1.2), for t € (t«,to + n) we have

(1.17) aly (1) < (14 Mlay () una (O]
(1.18) Wy (t) 2 (1= Ma(t)|un (0] > ~Mas (1),

Integrating (1.18) from ¢. to tg + n, according to (1.12), we get

to-l—n
w2 (t) < M/ az(s)ds < 1,
Ty

which is contradictory to ( 1.16 ). The relation (1.17) implies that

+oo A
ul (8) < (14 Mlay (t))M™M (/t az(7) dT) for t e (ts,to+n).

Integrating the previous inequality from ¢, to ¢ty +n we obtain the estimate

A1

L= (£) < M Zj°+n(1 + Mlay () ([Oo 0> (7) dr) dt,

which together with (1.13) leads us to the contradiction. Consequently, the
solution (w1 (f), un2(t)) is defined on [tg,to +n] and on this segment satisfies
the conditions (1.14).

The functions v,;(t) defined by the following

ni(t slost<t
(1.19) oni(t) = { Ui (t) 0 ot+n

unz(to—l_n) 7t2t0+n
according to (1.14), satisfy the inequalities

1
§<Un1(t)§17 Ogvng(t)<1 (n:l,Q,) for tzt(),
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and according to (1), (1.1) and (1.2) the inequalities

o1 (1) < (L4 Mlay ()] Jona (8) ™ < 1+ Mlar (1)),
1—(12(t>

vha(8) < (1= ax(t) o (D] < =5

The sequence {(v,1(t), vn2(t))}25 is equicontinuous and equibounded on
each finite segment of the interval [tg,+00). According to the Theorem
Ascoli-Arzela ([3], p.4) this sequence tends uniformly to (uy(t),us(t)) as

n — 400 on each finite segment of the interval [t,4+00), provided that

1
(1.20) 5 < w(t) <1, 0<wux(t) <1 for > 1.
We shall prove that (uq(t),u2(t)) is the solution of the system (1) on
[to, +00). For an arbitrary segment [to,T], we choose n € N sufficiently
large that (v,1(f), v,2(t)) is a solution of the system

v (1) = vp1 (to) + /t t [|vn2(8)|msgn vn2(s)+b1(s)vn1(s)] ds

vna (1) = vnz (fo) + /t t “vnl(S)Pngn o (8) bQ(s)vm(s)} ds

on [ty,1]. Using the Lebeg’s theorem, we conclude that (uq(t),uz(t)) is
the solution of the system (1) on [to,7]. The observed segment [to,T] is
arbitrary and for this reason (uq (), u2(t)) is the solution of the system (1)
on [tg, +00).

On the other hand, according to Lemma 1.2. and (1.20), this solution is
nonoscillatory.

Now, we suppose that conditions (1.10-2) and (1.11-2) are satisfied. We
choose ty > 0 such that

(1.21) /+Oo(1—|—M|a1(t)|)dt <1

(1.22) M/t:m 0 (1) (Z+m(1+M|a1(s)|)ds)A2 dt < %

For arbitrary n € N we consider the solution (u,;(t), u,2(t)) of the system
(1) which satisfies the initial conditions

Un1 (to + n) = 07 ung(to + n) =1.
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We shall prove that this solution is defined on [tg,to + n] and satisfies the
inequalities

1
(1.23) “L<un() <0, 5 <uwlt) <L

Since there exists an £ > 0 such that for t € (to +n —&,to + n), w2 (t) > 0,
according to (1), (1.1) and (1.2), we get

i (6) = Jua (O 4+ b1 (s (1) 2 (14 an (1) waa ()] 2 0.

Hence, for all t € (to+n —¢e,to+n) is w1 (t) < upi(to+n) = 0. Now, from
(1), (1.1) and (1.2), we obtain

—tly (1) = Junt ()] + ba (B2 (t) < (1= az(t))|un (1) <0,

which implies that for all ¢t € (to +n —e,t0 +n) 1S U2 (t) < up2(to+n) = 1.
Suppose that (1.23) is not true. Then there exists t* € [to, %o + n) such that
the inequalities (1.23) are valid on (¢t*,ty + n) and

(1.24) () = —1
(1.25) Una (1) = %

Then, by (1.2), for all ¢ € (¢*,%9 + n), we obtain the estimates

(1.26) Uy (1) < 1+ Mlay (t)],
(1.27) —ul, (1) > —May ()| ()]

Integrating (1.26) from ¢* to ¢t + n, we get

to-l—n
@)z = [ @ M) ds > -1
t

"

which contradicts (1.24). Since u,;(t) < 0 on (t*,%y + n), from the previous
inequality, we have

+oo A2
[, (8)]2 < (/t (14 Mlay(s)]) ds) for te (t",to+n),
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which in view of (1.27), implies that

+o0 Az
—ul (t) > —Masy(t) (/t (1+ Mlay(7)]) dT) for t e (t*ty + n).

Integrating the previous inequality from ¢* to {y + n, we have that

A2

1t upa(t7) > _M/tj”n 0 (1) (Z+m(1+M|a1(r)|)dr) dr.

Because of the condition (1.22), we have just got the contradiction. Thus,
the solution (wn1(f), un2(t)) is defined on [to,to + n] and on this segment
satisfies the conditions (1.23).

As in the first case, we can prove that the sequence {(v,1(t), vu2(t))}72]
defined by (1.19) tends uniformly to the nonoscillatory solution of the system

(1).
2. Oscillation theorems

In this section we shall suppose that the functions a; € L..([0,+00))
satisfy the following conditions

(2.1) a;(t) >0, ax(t)>1 for ¢t>0.

It will be assumed that the functions b; in the halfspace
D ={(t,u1,uz) : t >0, —00 < uy,uy < +00}
satisfy the following conditions

(2.2) by (t)uisgn ug > al(t)|u2|A17
' by (t)uzsgn uy > as (t)|u1|A2.

Following the approach of integration in the case for the Emden—Fowler
system ([4], [5]) we shall prove the oscillation theorems for the system (1).
The following lemma will be needed.

Lemma 2.1. Let for some i € {1,2} the condition

(2.3) /+Oo(ai(t) — i+ 1) dt = +oo,
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be fulfilled. Then, an arbitrary nonoscillatory solution (uq(t), u2(t)) of the
system (1) satisfies the condition

for all large values of t.

Proof. Suppose that the following condition

(2.4) /t-l—oo ay(t) dt = +o0,

is satisfied and that the system (1) has a nonoscillatory solution
(up(t),uz(t)) which exists on the ray [tp,+00) and satisfies the following
condition

U1 (t)UQ(t) <0 for t 2 0.

Then, by (1), (2.1) and (2.2), the following inequalities are valid

(2.5) —|uy (t)

"> (L+ ar(t)luz (1) > 0,
(2.6) —|ua (1)['

(1= az()]ur(B)** <0

forall t > ¢o. It follows from (2.6) that |us(t)| > |us(to)| for all t > to, which
implies, in view of (2.5), that —|uq(¢)]" > a1 (t)|uz(to)|*. Integrating the
previous inequality, we get

+ oo
| s ds < funteo) (o)l
to

which is contradictory to (2.4). By similar arguments we can prove the case
when ¢ = 2.

We distinguish two cases, when AjAs < 1 and AyAs > 1 and in both
cases we shall establish sufficient conditions for oscillation of all solutions
of the system (1), which are extensions of the conditions for oscillation of
all solutions of the Emden—Fowler system (Theorem 11.3., Theorem 11.4.,
Theorem 12.9. in [7]).

Theorem 2.1. Let \jAy < 1 and let for some i € {1,2} conditions (2.3)
and

Az

(2.7) /a-l—oo(ag_i(t)—l—i—Q)(/at(ai(s)—i—l—l)ds) dt = +oo.



146 J. Manojlovié

be fulfilled. Then, all nontrivial solutions of the system (1) are oscillatory.

Proof. Take ¢ = 1. Since an arbitrary weakly oscillatory solution of the
system (1) is oscillatory, it is enough to prove that the system (1) does
not have any nonoscillatory solution. Suppose that the system (1) has a
nonoscillatory solution (uq(¢), uz(t)) which satisfies the conditions (2.3) and
(2.7). According to Lemma 2.1. there exists ¢y such that for all ¢ > ¢y the
following inequalities

wy (H)uz(t) >0
(2.8) Jur (1) > a1 () [uz (8)| ™ > 0,
(2.9) Juz (1)]" < (1 = aa () [ua ()] < 0

are valid. Integrating (2.8) from ¢¢ to ¢ we get

fur (1)) > [ (fo) | + / a1 () s (5) ds
> |u2(t)|A1Z ax(s) ds.

Then, from (2.9) we obtain

A2

/t: | (5)||ua (5)| 72172 ds < /t:(l — as(s)) (/t: a1 (1) dr) ds.

Consequently,

1 5 A2 |u2(t0)|1—A1A2
/ (az(s) — 1) (/ ay (1) dT) ds < B W for t > to,
to to -

which contradicts the initial condition. The case when 7 = 2 can be consid-
ered in a similar way.

Theorem 2.2. Let A Ay > 1 and let for some ¢ € {1,2} the condition (2.3)
be fulfilled. If one of the following conditions

(2.10) /M(ag_i(t) +i—2)dt = +oo,

or

+ oo
/ as—;(t) +i—2)dt < 400,
0

(2.11) A

(
/+Oo(ai(t) —i+1) (Z+m(a3_i(r)+i_2) dr) l dt = oo,

0



Existence of oscillatory and nonoscillatory solutions for a ... 147

is satisfied, all nontrivial solutions of the system (1) are oscillatory.

Proof. Let i =1 and suppose that the system (1) possesses a weakly nonoscil-
latory solution (uy(t),uz(t)). According to Lemma 1.2. this solution is
nonoscillatory and applying Lemma 2.1. we obtain for ¢ > ¢; the following
inequalities

(73] (t)UQ (t) >0
(2.12) ur(B)]" > ax (D)2 ()™ 2 0,
(2.13) a0 < (1 = as(8)) s ()= < 0.
Since |ug(¢)] is the increasing function and 1 —ay(t) is the negative function,

for all ¢ > tg is (1 — ax())|ur(t)]*2 < (1 — as(t))|u1(to)]*2. Then, if we
integrate (2.13) we get

0 < [us(8)] < Jua(to)] + |us (to) | / (1 ax(s)) ds,

le.

t
/ (ax(s) — 1) ds < Jus(to)|us (ko) for ¢ > fo,
to

which contradicts the condition (2.10).
Integrating (2.13) from ¢ to 400 we get

+ oo
OIS / (a2(s) — D)lur ()= ds

+ oo
> |u1(t)|A2/t (as(s) — 1) ds.

The previous inequality together with (2.12) implies for t > ¢

A1

/t: lug (s)|'|ug ()| 7212 ds > /t: ai(s) (/;OO(aQ(T) —1) dT) ds,

which contradicts the condition (2.11). The obtained contradictions prove
that the system (1) does not have weakly nonoscillatory solution. According
to Lemma 1.2. this is sufficient to establish the desired conclusion.

le.
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