SIMPLE AND MULTIPLE ANTISYMMETRY SPACE GROUPS DERIVED FROM CUBICAL P-SYMMETRY GROUPS

Slavik V. Jablan

Abstract. By use of antisymmetric characteristic method, from cubical *P*-symmetry groups G_3^P $(P = 23, 26, \overline{43}, \overline{46})$ $(P, 2^l)$ -symmetry three-dimensional space groups $G_3^{l,P}$ are derived.

Cubical P-symmetry three-dimensional space groups G_3^P ($P = 23, 26, \overline{43}, \overline{46}$) are derived by Yu. S. Karpova (Yu. S. Chubarova) [1,2]. From space groups G_3 are derived 35 junior G_3^{23} , 53 G_3^{26} , 74 $G_3^{\overline{43}}$ and 150 $G_3^{\overline{46}}$. By the use of the generalized antisymmetric characteristic method (AC-method) introduced by the author [3], some of the results mentioned will be corrected, and derived all cubical $(P, 2^l)$ -symmetry three-dimensional space groups $G_3^{l,P}$ ($P = 23, 26, \overline{43}, \overline{46}$).

1. Some general remarks on (23)-, (26)-, $(\overline{43})$ - and $(\overline{46})$ -symmetry

The cubical symmetries (23)-, (26)-, ($\overline{43}$)- and ($\overline{46}$)- (or (23 C_3)-, (26 C_3)-, ($\overline{43}C_{3v}$)- and ($\overline{46}C_{3v}$)-symmetry, according [2]) are particular cases of the general *P*-symmetry [2,4] with $P \simeq T, T_h, O$ and O_h respectively.

In the case of (23)-symmetry $P \simeq A_4$ is the irregular permutation group, generated by the permutations $c_1 = (123)$ and $c_2 = (12)(34)$, satisfying the relations:

$$c_1^3 = c_2^2 = (c_1 c_2)^3 = E.$$

In the case of (26)-symmetry $P \simeq T_h \simeq A_4 \times C_2$ is the irregular permutation group, generated by the permutations $c_1 = (123)(567), c_2 = (12)(34)(56)(78)$ and $c_3 = (15)(26)(37)(48)$, satisfying the relations:

$$c_1^3 = c_2^2 = (c_1 c_2)^3 = E \quad c_3^2 = E \quad c_1, c_2 c_3.$$

Received February 15, 1995

¹⁹⁹¹ Mathematics Subject Classification: 20H15.

Supported by the Serbian Scientific Foundation, grant N^0 04M01.

¹

In the case of (43)-symmetry $P \simeq O \simeq S_4$ is the irregular permutation group, generated by the permutations $c_1 = (1234)$ and $c_2 = (34)$, satisfying the relations:

$$c_1^4 = c_2^2 = (c_1 c_2)^3 = E.$$

In the case of ($\overline{46}$)-symmetry $P \simeq O_h \simeq S_4 \times C_2$ is the irregular permutation group, generated by the permutations $c_1 = (1728)(3645), c_2 = (17)(35)$ and $c_3 = (15)(26)(37)(48)$, satisfying the relations:

$$c_1^4 = c_2^2 = (c_1 c_2)^3 = E \quad c_3^2 = E \quad c_1, c_2 c_3.$$

By introducing l antiidentity transformations e_1, \ldots, e_l $(l \in N)$ [5,6] commuting between themeselves and with the generators of group P we have $(P, 2^l)$ -symmetry, with the group $P' = P \times C_2^l$.

Definition 1.

(a) a $(P, 2^l)$ -symmetry group is called the M^m -type $(P, 2^l)$ -symmetry group, if it is a M^m -type group regarded as a *l*-multiple antisymmetry group;

(b) a $(P,2^l)$ -symmetry group $G^{l,P}$ is the group of the complete $(P,2^l)$ -symmetry, if every e_i -transformation can be obtained in the group $G^{l,P}$ as an independent $(P,2^l)$ -symmetry transformation. If the condition (b) it is not satisfied, such a group $G^{l,P}$ is the uncomplete $(P,2^l)$ -symmetry group;

(c) a complete $(P, 2^l)$ -symmetry group $G^{l,P}$ is the junior $(P, 2^l)$ -symmetry group if all the relations given in the presentation of its generating symmetry group G remain satisfied after replacing the generators of the group G by the corresponding $(P, 2^l)$ -symmetry group generators.

In this work will be considered only the junior M^m -type complete $(P, 2^l)$ -symmetry groups.

From the reducibility of the group $T_h \simeq A_4 \times C_2 = \{c_1, c_2\} \times \{c_3\}$ results the equality of $(23, 2^l)$ - and $(26, 2^{l-1})$ -symmetry, and from the reducibility of the group $P \simeq S_4 \times C_2 = \{c_1, c_2\} \times \{c_3\}$ results the equality of $(\overline{43}, 2^l)$ - and $(\overline{46}, 2^{l-1})$ - symmetry. Using that equalities, the problem of the derivation of all cubical $(P, 2^l)$ -symmetry groups $(P = 23, 26, \overline{43}, \overline{46})$ is reduced to the derivation of $(P, 2^l)$ -symmetry groups $(P = 23, \overline{43})$.

The derivation will be realized by the use of generalized AC:

Definition 2. Let all the products of P-symmetry generators of a group G^P , within which every generator participates once at the most, be formed, and then subsets of transformations equivalent with regard to P-symmetry, be separated. The resulting system is called the antisymmetric characteristic of the group G^P and denoted by $AC(G^P)$ [3].

In the case of (23)-symmetry, in every transition from the antisymmetric characteristic AC(G) of a generating group G to the antisymmetric characteristic $AC(G^{23})$ of a (23)-symmetry group G^{23} derived from it, the anti-

symmetric characteristic remains unchanged, and the conditions for $(23, 2^l)$ symmetry groups of the M^m -type are the same as the conditions for lmultiple antisymmetry groups of the M^m -type. Hence, from every (23)symmetry group G_3^{23} can be derived N_m junior $(23, 2^l)$ -symmetry groups of the M^m -type, where the number N_m is the same as the number of l-multiple antisymmetry groups of the M^m -type derived from its generating symmetry group G_3 . The corresponding data about $(23, 2^l)$ -symmetry groups and $(26, 2^l)$ -symmetry groups are given in Table 1.

Table 1							
	(23)	(23, 2)	$(23, 2^2)$	$(23, 2^3)$	(26)	(26, 2)	$(26, 2^2)$
38s	1	1					
39s	1	1			1		
43s	1	2	3		2	3	
49s	1	3	6		3	6	
51s	1	2	3		2	3	
52s	1	2	3		2	3	
53s	1	5	24	84	5	24	84
59s	3	3			3		
60s	1	1			1		
61s	3						
62s	3	6	9		6	9	
63s	1	3	6		3	6	
64s	3	3			3		
	21	32	54	84	32	54	84
49h	1	2	3		2	3	
50h	1	1					
	2	3	3		2	3	
62a	1	1			1		
69a	1	1			1		
74a	1	1			1		
75a	1	1			1		
76a	1	3	6		3	6	
77a	1	3	6		3	6	
78a	1	1			1		
81a	1	3	6		3	6	
89a	1						
90a	1	1			1		
91a	1	1			1		
92a	1	2	3		2	3	
	12	18	21		18	21	
	35	53	78	84	53	78	84

Having in mind the equality of $(\overline{43}, 2^l)$ - and $(\overline{46}, 2^{l-1})$ -symmetry, the only non-trivial problem is the derivation of $(\overline{43}, 2^l)$ -symmetry groups.

2. $(\overline{43}, 2^l)$ -symmetry three-dimensional space groups $G_3^{l,\overline{43}}$

The application of the theoretical assumptions given above will be illustrated by example of junior $(\overline{43}, 2^l)$ -symmetry three-dimensional space groups of the M^m -type derived in the family with the common generating symmetry group G = 68s (P432), $\{a, b, c\}(3/4)$ with the $AC:\{4, 4a\}$ belonging to the AC-equivalency class 3.2 [3]. In the case of $(\overline{43})$ -symmetry we have two junior $(\overline{43})$ -symmetry groups [1]:

- (1) $\{a, b, c\}(3^{3})/4^{(\overline{4})},$
- (2) $\{a^{(2)}, b^{(2')}, c^{(2'')}\}(3^{(3)}/4^{2''})$.

The AC of the first group is of the form $\{(\overline{4}, (\overline{4}\}, \text{ so from it can be derived } N_1 = 1 \ (\overline{43}, 2)\text{-symmetry groups.}$ The AC of the second is of the form $\{\underline{2}^n, \underline{2}^n\}(2\}$. Because of non-equivalence of the transformations $\underline{2}^n$) and $\underline{2}^n$)(2 ~ ($\overline{4}$, in the sense of ($\overline{43}$)-symmetry, this AC results in the new $AC:\{\overline{4}\}\{a\}$ belonging to the AC-equivalence class 3.1 and giving $N_1 = 2 \ (\overline{43}, 2)$ -symmetry groups. Because of the equality between ($\overline{43}, 2$)-symmetry and ($\overline{46}$)-symmetry, to the three obtained ($\overline{43}, 2$)-symmetry groups: $\{\underline{a}, \underline{b}, \underline{c}\}(3^3)/4^{(\overline{4})}, \{\underline{a}^{(2}, \underline{b}^{(2'}, \underline{c}^{(2'')}\}(3^3)/4^{2''})\}$ and $\{\underline{a}, \underline{b}, \underline{c}\}(3^3)/4^{2''})$, correspond three ($\overline{46}$)-symmetry groups: $\{a^{(2)}, b^{(2)}, c^{(2)}\}(3^3)/4^{(\overline{4})}, \{a^{(2)}, b^{(2')}, c^{(2'')}\}(3^3)/4^{(\overline{4})}\}$.

In the same manner is realized the partial catalogue of all junior complete $(\overline{43}, 2^l)$ -symmetry three-dimensional space groups of the M^m -type $G_3^{l,3\overline{4}}$, making possibile their complete cataloguation [7]. The final results corresponding respectively to symmorphic, hemisymorphic and asymmorphic $(\overline{43}, 2^l)$ -symmetry groups are summarized in the catalogue, which can be obtained directly from the author. The enumeration results are given in Table 2:

Ta	b	le	2

TUDIC							
	$(\overline{4}3)$	$(\overline{4}3, 2)$	$(\overline{4}3, 2^2)$	$(\overline{4}3, 2^3)$	(46)	$(\overline{4}6, 2)$	$(\overline{4}6, 2^2)$
40s	1	2			2		
41s	1	2			2		
42s	1	2			2		
44s	1	1			1		
45s	1	1			1		
46s	1	1			1		
47s	1	4	12		4	12	
48s	1	4	12		4	12	
50s	1	6	24		6	24	
54s	1	4	12		4	12	
55s	1	4	12		4	12	
56s	1	4	12		4	12	
57s	1	4	12		4	12	
58s	1	10	96	672	10	96	672
65s	2	4			4		

66s	1	2			2		
67s	2						
68s	2	3			3		
69s	1	2			2		
70s	2						
71s	2	8	24		8	24	
72s	1	6	24		6	24	
73s	3	6			6		
	30	80	240	672	80	240	672
39h	1						
40h	1						
41h	1						
42h	1	2			2		
43h	1	2			2		
44h	1	2			2		
45h	1	2			2		
46h	1	2			2		
47h	1	2			2		
48h	1	6	24		6	24	
51h	1						
52h	2						
53h	1	2			2		
54h	3	6			6		
	17	26	24		26	24	
70a	1	1			1		
71a	1	1			1		
72a	1	1			1		
73a	1	1			1		
79a	1	2			2		
80a	1	2			2		
82a	1	2			2		
83a	1	2			2		
84a	1	4	12		4	12	
85a	1	4	12		4	12	
86a	1	2			2		
87a	1	6	24		6	24	
88a	1	6	24		6	24	
93a	1						
94a	1						
95a	1						
96a	1	2			2		
97a	3	_			_		
98a	2	3			3		
99a	1	2			2		
100a	1	2			2		
101a	1	2			2		
102a	1	2			2	10	
103a	1	4	12		4	12	

S.V. Jablan

27	51	84		51	84	
74	157	348	672	157	348	672

From the results of the derivation of the $(\overline{43}, 1)$ -symmetry groups we can first conclude that, because of the equality between $(\overline{43}, 1)$ - and $(\overline{46})$ -symmetry, there exist 157 (not 150) [1,2] ($\overline{43}$, 1)-symmetry groups and, consequently, the same number of ($\overline{46}$)-symmetry groups. Such a disagreement with the results mentioned implies the necessary corrections for the ($\overline{46}$)-symmetry groups in the families with the generating groups 46s (R32), 65s (P43m), 70a (P3₁21), 71a (P3₂21), 72a (P3₁12), 73a (P3₂12) and 98a (P4₂32). For these families, the correct numbers of ($\overline{46}$)-symmetry groups are respectively, 1 (not 2), 4 (not 3), 1 (not 0), 1(not 0), 1(not 0), 1(not 0), and 3 (not 0).

3. Conclusion

As the final result, for the junior cubical complete $(P, 2^l)$ - symmetry three-dimensional space groups of the M^m -type the numbers N_m^P $(P = 23, 26, \overline{43}, \overline{46})$ are the following:

$$\begin{split} & N_0^{23} = 35 & N_0^{\overline{4}3} = 74 \\ & N_1^{23} = N_0^{26} = 53 & N_1^{\overline{4}3} = N_0^{\overline{4}6} = 157 \\ & N_2^{23} = N_1^{26} = 78 & N_2^{\overline{4}3} = N_1^{\overline{4}6} = 348 \\ & N_3^{23} = N_2^{26} = 84 & N_3^{\overline{4}3} = N_2^{\overline{4}6} = 672 \end{split}$$

References

- Chubarova Yu.S., Derivation of junior space groups of P-simmetry, Avtoref. dis. ... kand. fiz.-mat. nauk, Shtiintsa, Kishinev, 1983.
- [2] Zamorzaev A.M., Karpova Yu.S., Lungu A.P., Palistrant A.F., P-symmetry and its further development, Shtiintsa, Kishinev, 1986.
- [3] Jablan S.V., Algebra of Antisymmetric Characteristics, Publ. Inst. Math., 47 (61) (1990), 39-55.
- [4] Zamorzaev A.M., Galyarskij E.I., Palistrant A.F., Colored symmetry, its generalizations and applications, Shtiintsa, Kishinev, 1978.
- [5] Zamorzaev A.M., Theory of simple and multiple antisymmetry, Shtiintsa, Kishinev, 1976.
- [6] Zamorzaev A.M., Palistrant A.F, Antisymmetry, its generalizations and geometrical applications, Z.Kristall., 151 (1980), 231-248.
- [7] Jablan S.V, A New Method of Deriving and Cataloguing Simple and Multiple Antisymmetry G_3^l Space Groups, Acta Cryst., A43 (1987), 326-337.

UNIVERSITY OF NIŠ, FACULTY OF PHILOSOPHY, DEPARTMENT OF MATHEMATICS, ĆIRILA I METODIJA 2, 18000 NIŠ, YUGOSLAVIA, E maile adauškovsko steles and

E-mail:eslavik@ubbg.etf.bg.ac.yu

6