Majorization for Subclasses of Multivalent Meromorphic Functions Defined through Iterations and Combinations of the Liu-Srivastava Operator and a Meromorphic Analogue of the Cho-Kwon-Srivastava Operator

T. Panigrahi ${ }^{\text {a }}$, R. El-Ashwah ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar-751024, Orissa, India
${ }^{b}$ Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

Abstract

In this paper, the authors investigate a majorization problem for certain subclasses of multivalent meromorphic functions defined in the punctured unit disk \mathbb{U}^{*} having a pole of order p at origin. The subclasses under investigation are defined through iterations and combinations of the Liu-Srivastava operator and a meromorphic analogue of the Cho-Kwon-Srivastava operator for normalized analytic function. Several consequences of the main results in form of corollaries are also pointed out.

1. Introduction and Definition

Let $f(z)$ and $g(z)$ be analytic in the open unit disk $\mathbb{U}:=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
We say that f is majorized by g in \mathbb{U} (see [11]) and write

$$
\begin{equation*}
f(z) \ll g(z) \quad(z \in \mathbb{U}) \tag{1}
\end{equation*}
$$

if there exists a function $w(z)$, analytic in \mathbb{U} satisfying $|w(z)| \leq 1$ and

$$
\begin{equation*}
f(z)=w(z) g(z) \quad(z \in \mathbb{U}) . \tag{2}
\end{equation*}
$$

For two analytic functions f and g, we say $f(z)$ is subordinate to $g(z)$ if there exists a Schwarz function w, which (by definition) is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<|z| \quad(z \in \mathbb{U})$ such that

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

We denote this subordination by

$$
\begin{equation*}
f(z)<g(z) \quad(z \in \mathbb{U}) . \tag{4}
\end{equation*}
$$

[^0]It follows from this definition that

$$
f(z)<g(z) \Longrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

In particular, if the function g is univalent in \mathbb{U}, then we have the following equivalence (see [12]).

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

Further, $f(z)$ is said to be quasi-subordinate to $g(z)$ if there exists an analytic function $w(z) \quad(|w(z)| \leq 1)$ such that $\frac{f(z)}{w(z)}$ is analytic in \mathbb{U} and

$$
\begin{equation*}
\frac{f(z)}{w(z)}<g(z) \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

Hence by definition of subordination, (5) is equivalent to (see [1])

$$
\begin{equation*}
f(z)=w(z) g(\phi(z)) \quad(|\phi(z)| \leq|z|, z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

We denote this quasi-subordination by

$$
\begin{equation*}
f(z)<_{q} g(z) \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

If we set $w(z) \equiv 1$ in (6), then (7) becomes the subordination (4).
If we take $\phi(z)=z$ in (6), then the quasi-subordination (7) becomes the majorization (1).
Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad(p \in \mathbb{N}:=\{1,2,3, \ldots\}) \tag{8}
\end{equation*}
$$

that are analytic and p-valent in the punctured unit disk $\mathbb{U}^{*}:=\mathbb{U} \backslash\{0\}$ having a pole of order p at the origin. We note that $\sum_{1}=\sum$.

For the functions $f_{j} \in \sum_{p}$ given by

$$
f_{j}(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p, j} z^{k-p} \quad\left(j=1,2 ; z \in \mathbb{U}^{*}\right)
$$

we define the Hadamard product (or convolution) of f_{1} and f_{2} by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k-p, 1} a_{k-p, 2} z^{k-p}=\left(f_{2} * f_{1}\right)(z) \tag{9}
\end{equation*}
$$

For a function $f \in \sum_{p}$, let $f^{(q)}$ denote q th order ordinary differential operator given by

$$
\begin{align*}
f^{q}(z)= & (-1)^{q} \frac{(p+q-1)!}{(p-1)!} z^{-p-q}+\sum_{k=1}^{\infty} \frac{(k-p)!}{(k-p-q)!} a_{k-p} z^{k-p-q} \\
& \left(p \in \mathbb{N}, q \in \mathbb{N} 0:=\mathbb{N} \cup\{0\} ; z \in \mathbb{U}^{*}\right) \tag{10}
\end{align*}
$$

Liu and Srivastava [10] studied meromorphic analogue of the Saitoh operator [16] by introducing the function $\phi_{p}(z)$ given by

$$
\phi_{p}(a, c, z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k-p} \quad\left(a \in \mathbb{C}, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \ldots\}, z \in \mathbb{U}^{*}\right)
$$

where $(\lambda)_{n}$ is the Pochhammer symbol (or shifted factorial) given by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}=\left\{\begin{array}{ll}
1 & \left(n=0, \lambda \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\right), \\
\lambda(\lambda+1)(\lambda+2) \ldots(\lambda+n-1)
\end{array} \quad(n \in \mathbb{N}, \lambda \in \mathbb{C}) .\right.
$$

They defined the linear operator $\mathcal{L}(a, c): \sum_{p} \longrightarrow \sum_{p}$ by

$$
\mathcal{L}(a, c) f(z)=\phi_{p}(a, c ; z) * f(z) .
$$

Define the function $\phi_{p}^{+}(a, c ; z)$, the generalized multiplicative inverse of $\phi_{p}(a, c ; z)$ by the relation

$$
\begin{equation*}
\phi_{p}(a, c ; z) * \phi_{p}^{+}(a, c ; z)=\frac{1}{z^{p}(1-z)^{\lambda+p}} \quad\left(a, c \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \lambda>-p ; z \in \mathbb{U}^{*}\right) . \tag{11}
\end{equation*}
$$

Using this function we define the following family of transforms $\mathcal{L}_{p}^{\lambda}(a, c): \sum_{p} \longrightarrow \sum_{p}$ defined by

$$
\begin{aligned}
\mathcal{L}_{p}^{\lambda}(a, c) f(z) & =\phi_{p}^{+}(a, c ; z) * f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} \frac{\left.(\lambda+p)_{k}(c)\right)_{k}}{(a)_{k}(1)_{k}} a_{k-p} z^{k-p} \\
& =\frac{{ }^{F_{1}(\lambda+p, c ; a ; z)}}{z^{p}} * f(z) \quad\left(z \in \mathbb{U}^{*}\right) .
\end{aligned}
$$

The holomorphic analogue of the function $\phi_{p}^{+}(a, c ; z)$ and the corresponding transform, which is popularly known as the Cho-Kwon-Srivastava operator in literature (see [4]). We remark in passing that a much more general convolution operator, involving the generalized hypergeometric function in defining Hadamard product (or convolution), was introduced recently by various authors [$5,6,17]$.

Very recently Mishra et al.[13] (also see [15]) defined the generalized multiplier transformation $\mathcal{L}_{\lambda, p}^{n, m}(a, c, t)$: $\Sigma_{p} \longrightarrow \Sigma_{p}$ by

$$
\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)=\mathcal{L}_{p}^{\lambda, n}(a, c) C^{t, m} f(z) .
$$

Thus for a function $f(z)$ of the form (8), we have

$$
\begin{equation*}
\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty}\left[\frac{(\lambda+p)_{k}(c)_{k}}{(a)_{k}(1)_{k}}\right]^{n}\left[\frac{p-k t}{p}\right]^{m} a_{k-p} z^{k-p} \quad\left(z \in \mathbb{U}^{*}\right) . \tag{12}
\end{equation*}
$$

It should be remembered that the operator $\mathcal{L}_{\lambda, p}^{n, m}(a, c, t)$ is the generalized of many other familiar operators considered by earlier authors (for detail, see [13]).

It is easy to verify that

$$
\begin{equation*}
z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{\prime}=\frac{p}{t}(1-t) \mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)-\frac{p}{t} \mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z) \quad(t>0) . \tag{13}
\end{equation*}
$$

Now, by making use of the operator $\mathcal{L}_{\lambda, p}^{n, m}(a, c, t)$, we define a new subclass of function $f \in \sum_{p}$ as follows.
Definition 1.1. Let $-1 \leq B<A \leq 1, p \in \mathbb{N}, j \in \mathbb{N}_{0}, \gamma \in \mathbb{C}^{*}$ and $\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right)<1$. A function $f \in \sum_{p}$ is said to be in the class $\mathcal{T}_{p, j}^{n, m}(a, c, t, \alpha, \gamma ; A, B)$ of multivalent meromorphic functions of complex order $\gamma \neq 0$ in \mathbb{U}^{*} if and only if

$$
\begin{equation*}
1-\frac{1}{\gamma}\left(\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}}+p+j\right)-\alpha\left|-\frac{1}{\gamma}\left(\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}}+p+j\right)\right|<\frac{1+A z}{1+B z} . \tag{14}
\end{equation*}
$$

In particular, for $A=1, B=-1$ and $\alpha=0$, we denote the class

$$
\begin{align*}
& \mathcal{T}_{p, j}^{n, m}(a, c, t, 0, \gamma ; 1,-1)=\mathcal{T}_{p, j}^{n, m}(a, c, t ; \gamma) \\
& =\left\{f \in \sum_{p}: \mathfrak{R}\left[1-\frac{1}{\gamma}\left(\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}}+p+j\right)\right]>0\right\} . \tag{15}
\end{align*}
$$

We note that

- for $\gamma=(p-\delta) \cos \theta e^{-i \theta}\left(|\theta| \leq \frac{\pi}{2}, \quad 0 \leq \delta<p\right)$, the class $\mathcal{T}_{p, j}^{n, m}(a, c, t ; \gamma)=\mathcal{T}_{p, j}^{n, m}\left(a, c, t ;(p-\delta) \cos \theta e^{-i \theta}\right)=$ $\mathcal{T}_{p, j}^{n, m}(a, c, t, \delta, \theta)$, called the generalized class of meromorphic θ-spiral-like functions of order $\delta(0 \leq$ $\delta<p)$ if

$$
\mathfrak{R}\left[e^{i \theta}\left\{\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}}+j\right\}\right]<-\delta \cos \theta
$$

- for $j=0, n=0, m=0, \mathcal{T}_{p, 0}^{0,0}(a, c, t ; \gamma)$ reduces to the class $\sum_{p}(\gamma) \quad\left(\gamma \in \mathbb{C}^{*}\right)$ of p-valently meromorphic starlike function of complex order γ in \mathbb{U}^{*}, where
$\sum_{p}(\gamma)=\left\{f \in \sum_{p}: \mathfrak{R}\left(1-\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)}{f(z)}+p\right)\right)>0, \quad p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right\} ;$
- for $j=0, m=1, t=1, n=0, \mathcal{T}_{p, 0}^{0,1}(a, c, 1 ; \gamma)$ reduces to the class $\mathcal{K}_{p}(\gamma)\left(\gamma \in \mathbb{C}^{*}\right)$ of p-valently meromorphic convex function of complex order γ in \mathbb{U}^{*}, where
$\mathcal{K}_{p}(\gamma)=\left\{f \in \sum_{p}: \mathfrak{R}\left(1-\frac{1}{\gamma}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p\right)\right)>0, p \in \mathbb{N}, \gamma \in \mathbb{C}^{*}\right\} ;$
- for $j=0, n=0, m=0, p=1, \mathcal{T}_{1,0}^{0,0}(a, c, t ; \gamma)=\mathcal{S}(\gamma)$, the class of meromorphic starlike univalent functions of complex order $\gamma \neq 0$;
- for $j=0, n=0, m=0, p=1, \gamma=1-\eta, \mathcal{T}_{1,0}^{0,0}(a, c, t ; 1-\eta)=\sum^{*}(\eta)(0 \leq \eta<1)$, the class of meromorphic starlike univalent function of order η in \mathbb{U}^{*} (see [8]);
- for $j=0, n=0, m=1, t=1, p=1, \mathcal{T}_{1,0}^{0,1}(a, c, 1 ; \gamma)=\mathcal{K}(\gamma)$, the class of meromorphic convex univalent function of complex order γ;
- for $j=0, n=0, m=1, t=1, p=1, \gamma=1-\eta(0 \leq \eta<1), \mathcal{T}_{1,0}^{0,1}(a, c, 1 ; 1-\eta)=\sum_{k}(\eta)$, the class of meromorphic convex univalent function of order η (see [8]).

Another subclass of the class \sum_{p} associated with a linear operators, was studied recently by Srivastava et al. [18] (also see [19, 20]). Also, there is good amount of literature about majorization problems for univalent and multivalent functions discussed by various researchers. A majorization problem for the normalized classes of starlike functions has been investigated by Altintas et al. [2](also see [3]) and MacGreogor [11]. For recent expository work on majorization problems for meromorphic univalent and p-valent functions, see $[7,9,21]$.

Motivated by aforementioned works, in this paper the authors investigate majorization problem for the class of multivalent meromorphic functions using iterations and combinations of the Liu-Srivastava operator and a meromorphic analogue of the Cho-Kwon-Srivastava operator for normalized analytic functions.

2. Main Results

Unless otherwise mentioned we shall assume throughout the sequel that

$$
-1 \leq B<A \leq 1, p \in \mathbb{N}, j \in \mathbb{N}_{0}, \gamma \in \mathbb{C}^{*} ; z \in \mathbb{U}^{*}
$$

Theorem 2.1. Let the function $f \in \sum_{p}$ and suppose that $g \in \mathcal{T}_{p, j}^{n, m}(a, c, t, \alpha, \gamma ; A, B)$. If $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}$ is majorized by $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}$ in \mathbb{U}^{*}, then

$$
\begin{equation*}
\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z)\right)^{j}\right| \leq\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right| \quad\left(|z|<r_{0}\right) \tag{16}
\end{equation*}
$$

where $r_{0}=r_{0}(p, \alpha, t, \gamma ; A, B)$ is the smallest positive root of the equation

$$
\begin{equation*}
p\left[\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right] r^{3}-(2 t|B|+p) r^{2}-\left[2 t+p\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right)\right] r+p=0 \tag{17}
\end{equation*}
$$

Proof. Since $g \in \mathcal{T}_{p, j}^{n, m}(a, c, t, \alpha, \gamma ; A, B)$, we find from (14) that

$$
\begin{equation*}
1-\frac{1}{\gamma}\left(\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}}+p+j\right)-\alpha\left|-\frac{1}{\gamma}\left(\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}}+p+j\right)\right|=\frac{1+A w(z)}{1+B w(z)}, \tag{18}
\end{equation*}
$$

where $w(z)=c_{1} z+c_{2} z^{2}+\ldots, w \in \mathcal{P}, \mathcal{P}$ denote the well- known class of the bounded analytic functions in \mathbb{U} and satisfies the conditions $w(0)=0$ and $w(z)<|z|(z \in \mathbb{U})$.

Taking

$$
\begin{equation*}
\bar{w}=1-\frac{1}{\gamma}\left(\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}}+p+j\right) \tag{19}
\end{equation*}
$$

in (18), we have

$$
\bar{w}-\alpha|\bar{w}-1|=\frac{1+A w(z)}{1+B w(z)}
$$

which implies

$$
\begin{equation*}
\bar{w}=\frac{1+\left(\frac{A-B \alpha e^{-i \theta}}{1-\alpha e^{-i \theta}}\right) w(z)}{1+B w(z)} . \tag{20}
\end{equation*}
$$

Using (20) in (19), we get

$$
\begin{equation*}
\frac{z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}}=-\frac{p+j+\left[\frac{(A-B) \gamma}{1-\alpha e^{-i \theta}}+(p+j) B\right] w(z)}{1+B w(z)} \tag{21}
\end{equation*}
$$

Application of Leibnitz's theorem on (13) gives

$$
\begin{equation*}
z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j+1}=\left(\frac{p}{t}-p-j\right)\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}-\frac{p}{t}\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j} \quad(j>0) . \tag{22}
\end{equation*}
$$

Now, using (22) in (21), we find that

$$
\frac{\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}}{\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}}=\frac{1+\left[\frac{(A-B) t\rangle}{p\left(1-\alpha e^{-i \theta}\right)}+B\right] w(z)}{1+B w(z)}
$$

Or, equivalently,

$$
\begin{equation*}
\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}=\frac{1+B w(z)}{1+\left[\frac{(A-B) t \gamma}{p\left(1-\alpha e^{-i \theta}\right)}+B\right] w(z)}\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j} \tag{23}
\end{equation*}
$$

Since $|w(z)| \leq|z| \quad(z \in \mathbb{U})$, the formula (23) gives

$$
\begin{align*}
\left|\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}\right| & \leq \frac{1+|B \||z|}{1-\left|\frac{(A-B) t \gamma}{p\left(1-\alpha e^{-i \theta}\right)}+B\right||z|}\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right| \\
& \leq \frac{1+|B||z|}{1-\left[\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right]|z|}\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right| \tag{24}
\end{align*}
$$

Further, since $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}$ is majorized by $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}$ in the unit disk \mathbb{U}^{*}, from (2), we have

$$
\begin{equation*}
\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}=w(z)\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j} \tag{25}
\end{equation*}
$$

Differentiating (25) on both sides with respect to z and multiplying by z, we get

$$
\begin{equation*}
z\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j+1}=z w^{\prime}(z)\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}+z w(z)\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j+1} \tag{26}
\end{equation*}
$$

Using (22) and (25) in (26) yields

$$
\begin{equation*}
\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z)\right)^{j}=-\frac{t}{p} z w^{\prime}(z)\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}+w(z)\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j} \tag{27}
\end{equation*}
$$

Thus, noting that $w \in \mathcal{P}$ satisfies the inequality (see [14])

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \tag{28}
\end{equation*}
$$

and making use of (24) and (28) in (27), we obtain

$$
\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z)\right)^{j}\right| \leq\left(|w(z)|+\frac{t|z|\left(1-|w(z)|^{2}\right)(1+|B||z|)}{p\left(1-|z|^{2}\right)\left[1-\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right)|z|\right]}\right)\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right|
$$

which, upon setting

$$
|z|=r \text { and }|w(z)|=\rho \quad(0 \leq \rho<1)
$$

leads us to the inequality

$$
\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z)\right)^{j}\right| \leq \frac{\psi(\rho)}{p\left(1-r^{2}\right)\left[1-\left(\frac{(A-B) t|p|}{p(1-\alpha)}+|B|\right) r\right]}\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right|
$$

where

$$
\begin{align*}
\psi(\rho) & =p\left(1-r^{2}\right)\left[1-\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right) r\right] \rho+t\left(1-\rho^{2}\right)(1+|B| r) r \\
& =-\operatorname{tr}(1+|B| r) \rho^{2}+p\left(1-r^{2}\right)\left[1-\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right) r\right] \rho+\operatorname{tr}(1+|B| r) \tag{29}
\end{align*}
$$

takes its maximum value at $\rho=1$ with $r_{0}=r_{0}(p, \alpha, t, \gamma ; A, B)$ where r_{0} is the smallest positive root of the equation (17). Furthermore, if $0 \leq \delta \leq r_{0}(p, \alpha, t, \gamma ; A, B)$, then the function $\psi(\rho)$ defined by

$$
\begin{equation*}
\psi(\rho)=-t \delta(1+|B| \delta) \rho^{2}+p\left(1-\delta^{2}\right)\left[1-\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right) \delta\right] \rho+t \delta(1+|B| \delta) \tag{30}
\end{equation*}
$$

is an increasing function on the interval $0 \leq \rho \leq 1$, so that

$$
\psi(\rho) \leq \psi(1)=p\left(1-\delta^{2}\right)\left[1-\left(\frac{(A-B) t|\gamma|}{p(1-\alpha)}+|B|\right) \delta\right] \quad\left(0 \leq \rho \leq 1,0 \leq \delta \leq r_{0}(p, \alpha, t, \gamma ; A, B)\right.
$$

Hence, upon setting $\rho=1$ in (30) we conclude that (16) of Theorem 2.1 holds true for $|z| \leq r_{0}(p, \alpha, t, \gamma ; A, B)$, where r_{0} is the smallest positive root of the equation (17). This completes the proof of Theorem 2.1.

3. Corollaries and Concluding Remarks

By letting $A=1$ and $B=-1$ in Theorem 2.1, we obtain the following corollary.
Corollary 3.1. Let the functions $f \in \sum_{p}$ and $g \in \mathcal{T}_{p, j}^{n, m}(a, c, t, \alpha ; \gamma)$. If $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}$ is majorized by $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}$ in \mathbb{U}^{*}, then

$$
\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z)\right)^{j}\right| \leq\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right| \quad\left(|z| \leq r_{1}\right)
$$

where $r_{1}=r_{1}(p, \alpha, t, \gamma)$ is the smallest positive root of the equation

$$
\left(\frac{2 t|\gamma|}{1-\alpha}+p\right) r^{3}-(2 t+p) r^{2}-\left[2 t+\frac{2 t|\gamma|}{1-\alpha}+p\right] r+p=0
$$

given by $r_{1}=\frac{k_{1}-\sqrt{k_{1}^{2}-p\left(p+\frac{2 t|y|}{1-\alpha}\right)}}{p+\frac{2|-|-\alpha}{1-\alpha}}$ and $k_{1}=t+p+\frac{t|\gamma|}{1-\alpha}$.
Taking $\alpha=0$ in Corollary 3.1, we state the following:
Corollary 3.2. Let the functions $f \in \sum_{p}$ and $g \in \mathcal{T}_{p, j}^{n, m}(a, c, t ; \gamma) . \operatorname{If}\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) f(z)\right)^{j}$ is majorized by $\left(\mathcal{L}_{\lambda, p}^{n, m}(a, c, t) g(z)\right)^{j}$ in \mathbb{U}^{*}, then

$$
\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) f(z)\right)^{j}\right| \leq\left|\left(\mathcal{L}_{\lambda, p}^{n, m+1}(a, c, t) g(z)\right)^{j}\right| \quad\left(|z| \leq r_{2}\right)
$$

where $r_{2}=r_{2}(p, t, \gamma)$ is the smallest positive root of the equation

$$
(2 t|\gamma|+p) r^{3}-(2 t+p) r^{2}-[2 t+2 t|\gamma|+p] r+p=0
$$

given by $r_{2}=\frac{k_{2}-\sqrt{k_{2}^{2}-p(p+2 t|\gamma|)}}{p+2 t|\gamma|}$ and $k_{2}=t+p+t|\gamma|$.
Taking $n=m=j=0, t=1$ in Corollary 3.2, we get

Corollary 3.3. Let the functions $f \in \sum_{p}$ and $g \in \sum_{p}(\gamma)$. If $f(z)$ is majorized by $g(z)$ in \mathbb{U}^{*}, then

$$
\left|z f^{\prime}(z)\right| \leq\left|z g^{\prime}(z)\right| \quad\left(|z| \leq r_{3}\right)
$$

where $r_{3}=r_{3}(p, \gamma)$ is the smallest positive root of the equation

$$
(2|\gamma|+p) r^{3}-(2+p) r^{2}-[2+2|\gamma|+p] r+p=0
$$

given by $r_{3}=\frac{k_{3}-\sqrt{k_{3}^{2}-(2|\gamma|+p) p}}{2|\gamma|+p}$ and $k_{3}=|\gamma|+p+1$.
By setting $\gamma=p-\delta(0 \leq \delta<p)$ in Corollary 3.3, we obtain the following results:
Corollary 3.4. Let the functions $f \in \sum_{p}$ and $g \in \sum_{p}(\delta)$. If $f(z)$ is majorized by $g(z)$ in \mathbb{U}^{*}, then

$$
\left|z f^{\prime}(z)\right| \leq\left|z g^{\prime}(z)\right|, \quad|z| \leq r_{4}
$$

where $r_{4}=r_{4}(p, \delta)$ is the smallest positive root of the equation

$$
(p+2|p-\delta|) r^{3}-(2+p) r^{2}-[2+2|p-\delta|+p] r+p=0
$$

given by $r_{4}(p, \delta)=\frac{k_{4}-\sqrt{k_{4}^{2}-(p+2|p-\delta|) p}}{p+2|p-\delta|}$ and $k_{4}=|p-\delta|+p+1$.
By taking $\gamma=(p-\delta) \cos \theta e^{-i \theta}\left(|\theta| \leq \frac{\pi}{2}, \quad \delta(0 \leq \delta<p)\right)$ in Corollary 3.3 , we get the following:
Corollary 3.5. Let the functions $f \in \sum_{p}$ and $g \in \sum_{p}(\theta, \delta)$. If $f(z)$ is majorized by $g(z)$ in \mathbb{U}^{*}, then

$$
\left|z f^{\prime}(z)\right| \leq\left|z g^{\prime}(z)\right|, \quad|z| \leq r_{5}
$$

where $r_{5}=r_{5}(p, \delta, \theta)$ is given by
$r_{5}=\frac{k_{5}-\sqrt{k_{5}^{2}-p(p+2|(p-\delta) \cos \theta|)}}{p+2|(p-\delta) \cos \theta|}$ and $k_{5}=p+1+|(p-\delta) \cos \theta|$.
Letting $p=1$ and $\gamma=1$ in Corollary 3.3 leads to the following result:
Corollary 3.6. Let the functions $f \in \sum$ and $g \in \sum_{1}(1)=\mathcal{S}(1)$. If $f(z)$ is majorized by $g(z)$ in \mathbb{U}^{*}, then

$$
\left|z f^{\prime}(z)\right| \leq\left|z g^{\prime}(z)\right| \text { for }|z| \leq \frac{3-\sqrt{6}}{3}
$$

Concluding Remarks: By specializing different parameters like n, m and t further, one can get various other interesting subclasses of \sum_{p} containing linear operators and the corresponding corollaries can be easily obtained.

Acknowledgement: The authors would like to thank Professor H.M. Srivastava, university of Victoria, for his valuable suggestions

References

[1] O. Altintas and S. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad., 68 (1992), 181-185.
[2] O. Altintas, O. Ozkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var. Theory Appl., 46 (2001), 207-218.
[3] O. Altintas and H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175-183.
[4] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.
[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1)(1999), 1-13.
[6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) (2003), 7-18.
[7] R. M. El-Ashwah and M. K. Aouf, Majorization properties for subclasses of meromorphic univalent functions defined by convolution, Open Sci. J. Math. Appl., 3(3) (2015), 74-78.
[8] S. P. Goyal and J. K. Prajapat, A new class of meromorphic multivalent functions involving certain linear operator, Tamsui Oxf. J. Math. Sci., 25 (2009), 167-176.
[9] T. Janani and G. Murugusundaramoorthy, Majorization problems for p-valently meromorphic functions of complex order involving certain integral operator, Global J. Math. Anal., 2(3) (2014), 146-151.
[10] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581.
[11] T. H. MacGreogor, Majorization by univalent functions, Duke Math. J., 34(1967), 95-102.
[12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
[13] A. K. Mishra, T. Panigrahi and R. K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with application to electromagnetic cloaking, Math. Comput. Modelling, 57 (2013), 945-962.
[14] Z. Nehari, Conformal Mappings, McGraw-Hill Book Company, New York, Toronto, London, 1952.
[15] T. Panigrahi, Convolution properties of multivalent meromorphic functions associated with Cho-Kwon-Srivastava operator, Southeast Asian Bull. Math., 40(2016), 101-108.
[16] H. Saitoh, A linear operator and its application of first order differential subordinations, Math. Japonica, 44 (1996), 31-38.
[17] H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1(1) (2007), 56-71.
[18] H. M. Srivastava, K. R. Alhindi and M. Darus, An investigation into the polylogarithm function and its associated class of meromorphic functions, Maejo Int. J. Sci. Technol., 10(2) (2016), 166-174.
[19] H. M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the λ-generalized Hurwitz-Lerch function, Integral Transforms Spec. Funct., 26(4) (2015), 258-272.
[20] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5 (Special Issue: 1) (2016), 250-258.
[21] H. Tang, M. K. Aouf and G. Deng, Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava operator, Filomat, 29(4) (2015), 763-772, doi: 10.2298/FIL 1504763T.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80
 Keywords. Meromorphic function, Subordination, Convolution, Liu-Srivastava operator, Cho-Kwon-Srivastava operator, Majorization problem

 Received: 25 March 2016; Revised: 25 August 2016; Accepted: 03 September 2016
 Communicated by Hari M. Srivastava
 Email addresses: trailokyap6@gmail.com (T. Panigrahi), r_elashwah@yahoo.com (R. El-Ashwah)

