Filomat 31:20 (2017), 6357–6365 https://doi.org/10.2298/FIL1720357P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

(4)

Majorization for Subclasses of Multivalent Meromorphic Functions Defined through Iterations and Combinations of the Liu-Srivastava Operator and a Meromorphic Analogue of the Cho-Kwon-Srivastava Operator

T. Panigrahi^a, R. El-Ashwah^b

^aDepartment of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar-751024, Orissa, India ^bDepartment of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

Abstract. In this paper, the authors investigate a majorization problem for certain subclasses of multivalent meromorphic functions defined in the punctured unit disk \mathbb{U}^* having a pole of order p at origin. The subclasses under investigation are defined through iterations and combinations of the Liu-Srivastava operator and a meromorphic analogue of the Cho-Kwon-Srivastava operator for normalized analytic function. Several consequences of the main results in form of corollaries are also pointed out.

1. Introduction and Definition

Let f(z) and g(z) be analytic in the open unit disk $\mathbb{U} := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. We say that f is majorized by g in \mathbb{U} (see [11]) and write

$$f(z) \ll g(z) \quad (z \in \mathbb{U}),\tag{1}$$

if there exists a function w(z), analytic in \mathbb{U} satisfying $|w(z)| \le 1$ and

$$f(z) = w(z)g(z) \quad (z \in \mathbb{U}).$$
⁽²⁾

For two analytic functions f and g, we say f(z) is subordinate to g(z) if there exists a Schwarz function w, which (by definition) is analytic in \mathbb{U} with w(0) = 0 and |w(z)| < |z| ($z \in \mathbb{U}$) such that

$$f(z) = g(w(z)) \quad (z \in \mathbb{U}). \tag{3}$$

We denote this subordination by

 $f(z) \prec g(z) \quad (z \in \mathbb{U}).$

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C80

Keywords. Meromorphic function, Subordination, Convolution, Liu-Srivastava operator, Cho-Kwon-Srivastava operator, Majorization problem

Received: 25 March 2016; Revised: 25 August 2016; Accepted: 03 September 2016

Communicated by Hari M. Srivastava

Email addresses: trailokyap6@gmail.com (T. Panigrahi), r_elashwah@yahoo.com (R. El-Ashwah)

It follows from this definition that

$$f(z) < g(z) \Longrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U})$$

In particular, if the function g is univalent in \mathbb{U} , then we have the following equivalence (see [12]).

$$f(z) \prec g(z) \ (z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Further, f(z) is said to be quasi-subordinate to g(z) if there exists an analytic function w(z) ($|w(z)| \le 1$) such that $\frac{f(z)}{w(z)}$ is analytic in \mathbb{U} and

$$\frac{f(z)}{w(z)} < g(z) \quad (z \in \mathbb{U}).$$
⁽⁵⁾

Hence by definition of subordination, (5) is equivalent to (see [1])

$$f(z) = w(z)g(\phi(z)) \quad (|\phi(z)| \le |z|, \ z \in \mathbb{U}).$$

$$\tag{6}$$

We denote this quasi-subordination by

$$f(z) \prec_q g(z) \quad (z \in \mathbb{U}). \tag{7}$$

If we set $w(z) \equiv 1$ in (6), then (7) becomes the subordination (4).

If we take $\phi(z) = z$ in (6), then the quasi-subordination (7) becomes the majorization (1). Let \sum_{p} denote the class of functions of the form

$$f(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in \mathbb{N} := \{1, 2, 3, ...\})$$
(8)

that are analytic and *p*-valent in the punctured unit disk $\mathbb{U}^* := \mathbb{U} \setminus \{0\}$ having a pole of order *p* at the origin. We note that $\sum_1 = \sum_{n=1}^{\infty} \mathbb{E}^n$.

For the functions $f_j \in \sum_p$ given by

$$f_j(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_{k-p,j} z^{k-p} \quad (j = 1, 2; z \in \mathbb{U}^*),$$

we define the Hadamard product (or convolution) of f_1 and f_2 by

$$(f_1 * f_2)(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_{k-p,1} a_{k-p,2} z^{k-p} = (f_2 * f_1)(z).$$
(9)

For a function $f \in \sum_{p}$, let $f^{(q)}$ denote *q*th order ordinary differential operator given by

$$f^{q}(z) = (-1)^{q} \frac{(p+q-1)!}{(p-1)!} z^{-p-q} + \sum_{k=1}^{\infty} \frac{(k-p)!}{(k-p-q)!} a_{k-p} z^{k-p-q}$$
$$(p \in \mathbb{N}, \ q \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}; \ z \in \mathbb{U}^{*}).$$
(10)

Liu and Srivastava [10] studied meromorphic analogue of the Saitoh operator [16] by introducing the function $\phi_p(z)$ given by

$$\phi_p(a,c,z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} \frac{(a)_k}{(c)_k} z^{k-p} \quad (a \in \mathbb{C}, \ c \in \mathbb{C} \setminus \mathbb{Z}_0^- := \{0, -1, -2, ...\}, \ z \in \mathbb{U}^*\},$$

where $(\lambda)_n$ is the Pochhammer symbol (or shifted factorial) given by

$$(\lambda)_n = \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases} 1 \quad (n = 0, \lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}), \\ \lambda(\lambda + 1)(\lambda + 2)...(\lambda + n - 1) \quad (n \in \mathbb{N}, \lambda \in \mathbb{C}). \end{cases}$$

They defined the linear operator $\mathcal{L}(a, c) : \sum_p \longrightarrow \sum_p$ by

$$\mathcal{L}(a,c)f(z) = \phi_p(a,c;z) * f(z)$$

Define the function $\phi_p^+(a, c; z)$, the generalized multiplicative inverse of $\phi_p(a, c; z)$ by the relation

$$\phi_p(a,c;z) * \phi_p^+(a,c;z) = \frac{1}{z^p (1-z)^{\lambda+p}} \quad (a, \ c \in \mathbb{C} \setminus \mathbb{Z}_0^-, \ \lambda > -p; \ z \in \mathbb{U}^*).$$
(11)

Using this function we define the following family of transforms $\mathcal{L}_p^{\lambda}(a, c) : \sum_p \longrightarrow \sum_p$ defined by

$$\begin{aligned} \mathcal{L}_{p}^{\lambda}(a,c)f(z) &= \phi_{p}^{+}(a,c;z) * f(z) = \frac{1}{z^{p}} + \sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(a)_{k}(1)_{k}} a_{k-p} z^{k-p} \\ &= \frac{2F_{1}(\lambda+p,c;a;z)}{z^{p}} * f(z) \quad (z \in \mathbb{U}^{*}). \end{aligned}$$

The holomorphic analogue of the function $\phi_p^+(a, c; z)$ and the corresponding transform, which is popularly known as the Cho-Kwon-Srivastava operator in literature (see [4]). We remark in passing that a much more general convolution operator, involving the generalized hypergeometric function in defining Hadamard product (or convolution), was introduced recently by various authors [5, 6, 17].

Very recently Mishra et al.[13] (also see [15]) defined the generalized multiplier transformation $\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)$: $\sum_{p} \longrightarrow \sum_{p} by$

$$\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z) = \mathcal{L}_{p}^{\lambda,n}(a,c)C^{t,m}f(z).$$

Thus for a function f(z) of the form (8), we have

$$\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} \left[\frac{(\lambda+p)_k(c)_k}{(a)_k(1)_k} \right]^n \left[\frac{p-kt}{p} \right]^m a_{k-p} z^{k-p} \quad (z \in \mathbb{U}^*).$$
(12)

It should be remembered that the operator $\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)$ is the generalized of many other familiar operators considered by earlier authors (for detail, see [13]).

It is easy to verify that

$$z\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z)\right)' = \frac{p}{t}(1-t)\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z) - \frac{p}{t}\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)f(z) \quad (t>0).$$
(13)

Now, by making use of the operator $\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)$, we define a new subclass of function $f \in \sum_{p}$ as follows.

Definition 1.1. Let $-1 \le B < A \le 1$, $p \in \mathbb{N}$, $j \in \mathbb{N}_0$, $\gamma \in \mathbb{C}^*$ and $\left(\frac{(A-B)t|\gamma|}{p(1-\alpha)} + |B|\right) < 1$. A function $f \in \sum_p$ is said to be in the class $\mathcal{T}_{p,j}^{n,m}(a, c, t, \alpha, \gamma; A, B)$ of multivalent meromorphic functions of complex order $\gamma \neq 0$ in \mathbb{U}^* if and only if

$$1 - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t) f(z) \right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t) f(z) \right)^{j}} + p + j \right) - \alpha \left| -\frac{1}{\gamma} \left(\frac{z \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t) f(z) \right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t) f(z) \right)^{j}} + p + j \right) \right| < \frac{1 + Az}{1 + Bz}.$$
(14)

In particular, for A = 1, B = -1 and $\alpha = 0$, we denote the class

$$\mathcal{T}_{p,j}^{n,m}(a,c,t,0,\gamma;1,-1) = \mathcal{T}_{p,j}^{n,m}(a,c,t;\gamma) \\ = \left\{ f \in \sum_{p} : \Re\left[1 - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t) f(z) \right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t) f(z) \right)^{j}} + p + j \right) \right] > 0 \right\}.$$
(15)

We note that

• for $\gamma = (p - \delta) \cos \theta e^{-i\theta}$ $(|\theta| \le \frac{\pi}{2}, 0 \le \delta < p)$, the class $\mathcal{T}_{p,j}^{n,m}(a, c, t; \gamma) = \mathcal{T}_{p,j}^{n,m}(a, c, t; (p - \delta) \cos \theta e^{-i\theta}) = \mathcal{T}_{p,j}^{n,m}(a, c, t, \delta, \theta)$, called the generalized class of meromorphic θ -spiral-like functions of order δ $(0 \le \delta < p)$ if

$$\Re\left[e^{i\theta}\left\{\frac{z(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z))^{j+1}}{(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z))^{j}}+j\right\}\right]<-\delta\cos\theta.$$

• for j = 0, n = 0, m = 0, $\mathcal{T}_{p,0}^{0,0}(a, c, t; \gamma)$ reduces to the class $\sum_{p}(\gamma)$ ($\gamma \in \mathbb{C}^*$) of *p*-valently meromorphic starlike function of complex order γ in \mathbb{U}^* , where

$$\sum_{p}(\gamma) = \left\{ f \in \sum_{p} : \Re\left(1 - \frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)} + p\right)\right) > 0, \ p \in \mathbb{N}, \ \gamma \in \mathbb{C}^* \right\};$$

• for j = 0, m = 1, t = 1, n = 0, $\mathcal{T}_{p,0}^{0,1}(a, c, 1; \gamma)$ reduces to the class $\mathcal{K}_p(\gamma)$ ($\gamma \in \mathbb{C}^*$) of *p*-valently meromorphic convex function of complex order γ in \mathbb{U}^* , where

$$\mathcal{K}_p(\gamma) = \left\{ f \in \sum_p : \mathfrak{R}\left(1 - \frac{1}{\gamma}\left(1 + \frac{zf''(z)}{f'(z)} + p\right)\right) > 0, \ p \in \mathbb{N}, \gamma \in \mathbb{C}^* \right\};$$

- for j = 0, n = 0, m = 0, p = 1, $\mathcal{T}_{1,0}^{0,0}(a, c, t; \gamma) = S(\gamma)$, the class of meromorphic starlike univalent functions of complex order $\gamma \neq 0$;
- for j = 0, n = 0, m = 0, p = 1, $\gamma = 1 \eta$, $\mathcal{T}_{1,0}^{0,0}(a, c, t; 1 \eta) = \sum^{*}(\eta)$ $(0 \le \eta < 1)$, the class of meromorphic starlike univalent function of order η in \mathbb{U}^{*} (see [8]);
- for j = 0, n = 0, m = 1, t = 1, p = 1, $\mathcal{T}_{1,0}^{0,1}(a, c, 1; \gamma) = \mathcal{K}(\gamma)$, the class of meromorphic convex univalent function of complex order γ ;
- for j = 0, n = 0, m = 1, t = 1, p = 1, $\gamma = 1 \eta$ ($0 \le \eta < 1$), $\mathcal{T}_{1,0}^{0,1}(a, c, 1; 1 \eta) = \sum_{k}(\eta)$, the class of meromorphic convex univalent function of order η (see [8]).

Another subclass of the class \sum_{p} associated with a linear operators, was studied recently by Srivastava et al. [18] (also see [19, 20]). Also, there is good amount of literature about majorization problems for univalent and multivalent functions discussed by various researchers. A majorization problem for the normalized classes of starlike functions has been investigated by Altintas et al. [2](also see [3]) and MacGreogor [11]. For recent expository work on majorization problems for meromorphic univalent and *p*-valent functions, see [7, 9, 21].

Motivated by aforementioned works, in this paper the authors investigate majorization problem for the class of multivalent meromorphic functions using iterations and combinations of the Liu-Srivastava operator and a meromorphic analogue of the Cho-Kwon-Srivastava operator for normalized analytic functions.

2. Main Results

Unless otherwise mentioned we shall assume throughout the sequel that

$$-1 \le B < A \le 1$$
, $p \in \mathbb{N}$, $j \in \mathbb{N}_0, \gamma \in \mathbb{C}^*; z \in \mathbb{U}^*$.

Theorem 2.1. Let the function $f \in \sum_{p}$ and suppose that $g \in \mathcal{T}_{p,j}^{n,m}(a, c, t, \alpha, \gamma; A, B)$. If $\left(\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)f(z)\right)^{j}$ is majorized by $\left(\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)g(z)\right)^{j}$ in \mathbb{U}^{*} , then

$$|\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)f(z)\right)^{j}| \le |\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z)\right)^{j}| \quad (|z| < r_{0}),$$
(16)

where $r_0 = r_0(p, \alpha, t, \gamma; A, B)$ is the smallest positive root of the equation

$$p\left[\frac{(A-B)t|\gamma|}{p(1-\alpha)} + |B|\right]r^3 - (2t|B|+p)r^2 - \left[2t + p\left(\frac{(A-B)t|\gamma|}{p(1-\alpha)} + |B|\right)\right]r + p = 0$$
(17)

Proof. Since $g \in \mathcal{T}_{p,j}^{n,m}(a, c, t, \alpha, \gamma; A, B)$, we find from (14) that

$$1 - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j}} + p + j \right) - \alpha \left| -\frac{1}{\gamma} \left(\frac{z \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j}} + p + j \right) \right| = \frac{1 + Aw(z)}{1 + Bw(z)},$$
(18)

where $w(z) = c_1 z + c_2 z^2 + ..., w \in \mathcal{P}, \mathcal{P}$ denote the well-known class of the bounded analytic functions in \mathbb{U} and satisfies the conditions w(0) = 0 and $w(z) < |z| \ (z \in \mathbb{U})$.

Taking

$$\bar{w} = 1 - \frac{1}{\gamma} \left(\frac{z \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j}} + p + j \right)$$
(19)

in (18), we have

$$|\bar{w} - \alpha |\bar{w} - 1| = \frac{1 + Aw(z)}{1 + Bw(z)},$$

which implies

$$\bar{w} = \frac{1 + \left(\frac{A - B\alpha e^{-i\theta}}{1 - \alpha e^{-i\theta}}\right)w(z)}{1 + Bw(z)}.$$
(20)

Using (20) in (19), we get

$$\frac{z\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j+1}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j}} = -\frac{p+j+\left[\frac{(A-B)\gamma}{1-\alpha e^{-i\theta}}+(p+j)B\right]w(z)}{1+Bw(z)}.$$
(21)

Application of Leibnitz's theorem on (13) gives

$$z\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j+1} = \left(\frac{p}{t} - p - j\right)\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j} - \frac{p}{t}\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z)\right)^{j} \quad (j > 0).$$
(22)

Now, using (22) in (21), we find that

$$\frac{\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z)\right)^{j}}{\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j}} = \frac{1 + \left[\frac{(A-B)t\gamma}{p(1-\alpha e^{-i\theta})} + B\right]w(z)}{1 + Bw(z)}.$$

Or, equivalently,

$$\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j} = \frac{1+Bw(z)}{1+\left[\frac{(A-B)t\gamma}{p(1-ae^{-i\theta})}+B\right]w(z)} \left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z)\right)^{j}.$$
(23)

Since $|w(z)| \le |z|$ ($z \in \mathbb{U}$), the formula (23) gives

$$\left| \left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z) \right)^{j} \right| \leq \frac{1 + |B||z|}{1 - \left| \frac{(A-B)t\gamma}{p(1-\alpha e^{-i\theta})} + B \right| |z|} \left| \left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z) \right)^{j} \right|$$

$$\leq \frac{1 + |B||z|}{1 - \left[\frac{(A-B)t|\gamma|}{p(1-\alpha)} + |B| \right] |z|} \left| \left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z) \right)^{j} \right|$$
(24)

Further, since $\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z)\right)^{j}$ is majorized by $\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j}$ in the unit disk \mathbb{U}^{*} , from (2), we have

$$\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z)\right)^{j} = w(z)\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j}$$
(25)

Differentiating (25) on both sides with respect to z and multiplying by z, we get

$$z\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)f(z)\right)^{j+1} = zw'(z)\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j} + zw(z)\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j+1}.$$
(26)

Using (22) and (25) in (26) yields

$$\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)f(z)\right)^{j} = -\frac{t}{p}zw'(z)\left(\mathcal{L}_{\lambda,p}^{n,m}(a,c,t)g(z)\right)^{j} + w(z)\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z)\right)^{j}.$$
(27)

Thus, noting that $w \in \mathcal{P}$ satisfies the inequality (see [14])

$$|w'(z)| \le \frac{1 - |w(z)|^2}{1 - |z|^2} \tag{28}$$

and making use of (24) and (28) in (27), we obtain

$$\left| \left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t) f(z) \right)^j \right| \leq \left(|w(z)| + \frac{t |z| (1 - |w(z)|^2) (1 + |B||z|)}{p(1 - |z|^2) \left[1 - \left(\frac{(A-B)t |\gamma|}{p(1-\alpha)} + |B| \right) |z| \right]} \right) \left| \left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t) g(z) \right)^j \right|,$$

which, upon setting

 $|z|=r \ \text{and} \ |w(z)|=\rho \quad (0\leq \rho<1),$

leads us to the inequality

$$|\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)f(z)\right)^{j}| \leq \frac{\psi(\rho)}{p(1-r^{2})\left[1-\left(\frac{(A-B)t|\gamma|}{p(1-\alpha)}+|B|\right)r\right]} \left|\left(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z)\right)^{j}\right|$$

where

$$\psi(\rho) = p(1 - r^2) \left[1 - \left(\frac{(A - B)t|\gamma|}{p(1 - \alpha)} + |B| \right) r \right] \rho + t(1 - \rho^2)(1 + |B|r)r$$

$$= -tr(1 + |B|r)\rho^2 + p(1 - r^2) \left[1 - \left(\frac{(A - B)t|\gamma|}{p(1 - \alpha)} + |B| \right) r \right] \rho + tr(1 + |B|r),$$
(29)

takes its maximum value at $\rho = 1$ with $r_0 = r_0(p, \alpha, t, \gamma; A, B)$ where r_0 is the smallest positive root of the equation (17). Furthermore, if $0 \le \delta \le r_0(p, \alpha, t, \gamma; A, B)$, then the function $\psi(\rho)$ defined by

$$\psi(\rho) = -t\delta(1+|B|\delta)\rho^{2} + p(1-\delta^{2})\left[1 - \left(\frac{(A-B)t|\gamma|}{p(1-\alpha)} + |B|\right)\delta\right]\rho + t\delta(1+|B|\delta)$$
(30)

is an increasing function on the interval $0 \le \rho \le 1$, so that

$$\psi(\rho) \le \psi(1) = p(1-\delta^2) \left[1 - \left(\frac{(A-B)t|\gamma|}{p(1-\alpha)} + |B|\right) \delta \right] \quad (0 \le \rho \le 1, 0 \le \delta \le r_0(p,\alpha,t,\gamma;A,B))$$

Hence, upon setting $\rho = 1$ in (30) we conclude that (16) of Theorem 2.1 holds true for $|z| \le r_0(p, \alpha, t, \gamma; A, B)$, where r_0 is the smallest positive root of the equation (17). This completes the proof of Theorem 2.1.

3. Corollaries and Concluding Remarks

By letting A = 1 and B = -1 in Theorem 2.1, we obtain the following corollary.

Corollary 3.1. Let the functions $f \in \sum_{p}$ and $g \in \mathcal{T}_{p,j}^{n,m}(a, c, t, \alpha; \gamma)$. If $(\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)f(z))^{j}$ is majorized by $(\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)g(z))^{j}$ in \mathbb{U}^{*} , then

$$|(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)f(z))^{j}| \le |(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z))^{j}| \quad (|z| \le r_{1})$$

where $r_1 = r_1(p, \alpha, t, \gamma)$ is the smallest positive root of the equation

$$\left(\frac{2t|\gamma|}{1-\alpha} + p\right)r^3 - (2t+p)r^2 - \left[2t + \frac{2t|\gamma|}{1-\alpha} + p\right]r + p = 0,$$

given by $r_1 = \frac{k_1 - \sqrt{k_1^2 - p(p + \frac{2t|\gamma|}{1-\alpha})}}{p + \frac{2t|\gamma|}{1-\alpha}}$ and $k_1 = t + p + \frac{t|\gamma|}{1-\alpha}$.

Taking $\alpha = 0$ in Corollary 3.1, we state the following:

Corollary 3.2. Let the functions $f \in \sum_{p}$ and $g \in \mathcal{T}_{p,j}^{n,m}(a, c, t; \gamma)$. If $(\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)f(z))^{j}$ is majorized by $(\mathcal{L}_{\lambda,p}^{n,m}(a, c, t)g(z))^{j}$ in \mathbb{U}^{*} , then

$$|(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)f(z))^{j}| \le |(\mathcal{L}_{\lambda,p}^{n,m+1}(a,c,t)g(z))^{j}| \quad (|z| \le r_{2}),$$

where $r_2 = r_2(p, t, \gamma)$ is the smallest positive root of the equation

$$(2t|\gamma| + p)r^3 - (2t + p)r^2 - [2t + 2t|\gamma| + p]r + p = 0,$$

given by $r_2 = \frac{k_2 - \sqrt{k_2^2 - p(p+2t|\gamma|)}}{p+2t|\gamma|}$ and $k_2 = t + p + t|\gamma|$.

Taking n = m = j = 0, t = 1 in Corollary 3.2, we get

Corollary 3.3. Let the functions $f \in \sum_p$ and $g \in \sum_p (\gamma)$. If f(z) is majorized by g(z) in \mathbb{U}^* , then

 $|zf'(z)| \le |zg'(z)| \quad (|z| \le r_3),$

where $r_3 = r_3(p, \gamma)$ is the smallest positive root of the equation

$$(2|\gamma| + p)r^3 - (2 + p)r^2 - [2 + 2|\gamma| + p]r + p = 0$$

given by $r_3 = \frac{k_3 - \sqrt{k_3^2 - (2|\gamma| + p)p}}{2|\gamma| + p}$ and $k_3 = |\gamma| + p + 1$.

By setting $\gamma = p - \delta$ ($0 \le \delta < p$) in Corollary 3.3, we obtain the following results:

Corollary 3.4. Let the functions $f \in \sum_{v}$ and $g \in \sum_{v} (\delta)$. If f(z) is majorized by g(z) in \mathbb{U}^* , then

$$|zf'(z)| \le |zg'(z)|, |z| \le r_4,$$

where $r_4 = r_4(p, \delta)$ is the smallest positive root of the equation

$$(p+2|p-\delta|)r^3 - (2+p)r^2 - [2+2|p-\delta|+p]r + p = 0$$

given by $r_4(p, \delta) = \frac{k_4 - \sqrt{k_4^2 - (p+2|p-\delta|)p}}{p+2|p-\delta|}$ and $k_4 = |p-\delta| + p + 1$.

By taking $\gamma = (p - \delta) \cos \theta e^{-i\theta}$ ($|\theta| \le \frac{\pi}{2}$, δ ($0 \le \delta < p$)) in Corollary 3.3, we get the following:

Corollary 3.5. Let the functions $f \in \sum_p$ and $g \in \sum_p (\theta, \delta)$. If f(z) is majorized by g(z) in \mathbb{U}^* , then

 $|zf'(z)| \le |zg'(z)|, |z| \le r_5$

where $r_5 = r_5(p, \delta, \theta)$ is given by $r_5 = \frac{k_5 - \sqrt{k_5^2 - p(p+2|(p-\delta)\cos\theta|)}}{p+2|(p-\delta)\cos\theta|}$ and $k_5 = p + 1 + |(p-\delta)\cos\theta|$.

Letting p = 1 and $\gamma = 1$ in Corollary 3.3 leads to the following result:

Corollary 3.6. Let the functions $f \in \sum and g \in \sum_1(1) = S(1)$. If f(z) is majorized by g(z) in \mathbb{U}^* , then

$$|zf'(z)| \le |zg'(z)|$$
 for $|z| \le \frac{3-\sqrt{6}}{3}$.

Concluding Remarks: By specializing different parameters like *n*, *m* and *t* further, one can get various other interesting subclasses of \sum_{p} containing linear operators and the corresponding corollaries can be easily obtained.

Acknowledgement: The authors would like to thank Professor H.M. Srivastava, university of Victoria, for his valuable suggestions

References

- [1] O. Altintas and S. Owa, Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad., 68 (1992), 181-185.
- [2] O. Altintas, O. Ozkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Var. Theory Appl., 46 (2001), 207-218.
- [3] O. Altintas and H. M. Srivastava, Some majorization problems associated with p-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175-183.
- [4] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470-483.

- [5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., **103**(1)(1999), 1-13.
- [6] J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (1) (2003), 7-18.
- [7] R. M. El-Ashwah and M. K. Aouf, Majorization properties for subclasses of meromorphic univalent functions defined by convolution, Open Sci. J. Math. Appl., 3(3) (2015), 74-78.
- [8] S. P. Goyal and J. K. Prajapat, A new class of meromorphic multivalent functions involving certain linear operator, Tamsui Oxf. J. Math. Sci., 25 (2009), 167-176.
- [9] T. Janani and G. Murugusundaramoorthy, Majorization problems for p-valently meromorphic functions of complex order involving certain integral operator, Global J. Math. Anal., 2(3) (2014), 146-151.
- [10] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581.
- [11] T. H. MacGreogor, Majorization by univalent functions, Duke Math. J., 34(1967), 95-102.
- [12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, New York, 2000.
- [13] A. K. Mishra, T. Panigrahi and R. K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with application to electromagnetic cloaking, Math. Comput. Modelling, 57 (2013), 945-962.
- [14] Z. Nehari, Conformal Mappings, McGraw-Hill Book Company, New York, Toronto, London, 1952.
- [15] T. Panigrahi, Convolution properties of multivalent meromorphic functions associated with Cho-Kwon-Srivastava operator, Southeast Asian Bull. Math., 40(2016), 101-108.
- [16] H. Saitoh, A linear operator and its application of first order differential subordinations, Math. Japonica, 44 (1996), 31-38.
- [17] H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1(1) (2007), 56-71.
- [18] H. M. Srivastava, K. R. Alhindi and M. Darus, An investigation into the polylogarithm function and its associated class of meromorphic functions, Maejo Int. J. Sci. Technol., 10(2) (2016), 166-174.
- [19] H. M. Srivastava, S. Gaboury and F. Ghanim, Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the λ-generalized Hurwitz-Lerch function, Integral Transforms Spec. Funct., 26(4) (2015), 258-272.
- [20] H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, *Coefficient estimates for certain subclasses of meromorphically bi-univalent functions*, Palest. J. Math., 5 (Special Issue: 1) (2016), 250-258.
- [21] H. Tang, M. K. Aouf and G. Deng, Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu-Srivastava operator, Filomat, 29(4) (2015), 763-772, doi: 10.2298/FIL 1504763T.