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Abstract. In this paper we introduce the set of strictly quasi-Fredholm linear relations and we give some
of its properties. Furthermore, we study the connection between this set and some classes of linear relations
related to the notions of ascent, essentially ascent, descent and essentially descent. The obtained results are
used to study the stability of upper semi-B-Fredholm and lower semi-B-Fredholm linear relations under
perturbation by finite rank operators.

1. Introduction

Let X and Y be two Banach spaces. A linear relation T : X→ Y is a mapping from a subspace D(T) ⊂ X
called the domain of T, into the collection of nonempty subsets of Y such that T(αx + βy) = αT(x) + βT(y)
for all nonzero α, β scalars and x, y ∈ D(T). We denote the set class of linear relations from X to Y by
LR(X,Y) and abbreviate LR(X,X) to LR(X). The graph of a relation T ∈ LR(X,Y) is the subset G(T) of X × Y
defined by G(T) =

{
(x, y)/ y ∈ Tx

}
. Let T ∈ LR(X,Y). The inverse of T is the linear relation T−1 given

by G(T−1) =
{
(y, x)/ (x, y) ∈ G(T)

}
. The range and kernel part of T, denoted R(T) and N(T) are defined

respectively by R(T) =
⋃

x∈D(T) Tx and N(T) = T−1(0). We say that T is injective, if N(T) = {0}, surjective if
R(T) = Y and bijective if T is both injective and surjective. If M ⊂ X then the image of M under T is defined
to be the set

T(M) =
⋃

x∈D(T)∩M

Tx

and if N ⊂ Y, then the inverse image of N under T is defined to be the set

T−1(N) :=
{
x ∈ D(T) : Tx ∩N , ∅

}
.

In particular, for any y ∈ R(T)
T−1y :=

{
x ∈ D(T) : y ∈ Tx

}
.

The adjoint T∗ of T is defined by G(T∗) = G(−T−1)⊥, that is, (y′, x′) ∈ G(T∗) if and only if, for all (x, y) ∈
G(T), y′y − x′x = 0. For a linear relation T, the root manifold N∞(T) is defined by N∞(T) = ∪∞n=1N(Tn).
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Similarly, the root manifold R∞(T) is defined by R∞(T) = ∩∞n=1R(Tn). The singular chain manifold of T,
denoted by Rc(T), is defined by Rc(T) = N∞(T) ∩ R∞(T) where R∞(T) = ∪∞i=1Ti(0).
Let T ∈ LR(X,Y). The nullity and the deficiency of T are defined respectively as follows: α(T) :=
dim N(T) and β(T) := dim Y/R(T). If α(T) < ∞ and R(T) is closed then T is called upper-semi Fredholm
linear relation and if β(T) < ∞ and R(T) is closed then T is called lower-semi Fredholm linear relation. If
either α(T) < ∞ and β(T) < ∞, then T is called a Fredholm linear relation and we define the index of T by
ind(T) := α(T) − β(T).
For a given closed subspace E of X, let QX

E or simply QE denoted the natural quotient map from X onto X/E.
We shall denote QX

T(0)
by QT. Clearly QTT is single valued. For x ∈ D(T), ‖ Tx ‖:=‖ QTTx ‖ and the norm of

T is defined by ‖ T ‖:=‖ QTT ‖. We note that this quantity is not a true norm since ‖ T ‖= 0 does not imply
T = 0.
Let T and S ∈ LR(X). The linear relations T+S and TS are defined respectively by G(T+S) =

{
(x, y+z) ∈ X×X :

(x, y) ∈ G(T) and (x, z) ∈ G(S)
}

and G(TS) =
{
(x, y) ∈ X×X : ∃z ∈ X such that (x, z) ∈ G(S) and (z, y) ∈ G(T)

}
.

We say that T commutes with S, if TS ⊆ ST, and T and S commute mutually if TS = ST. We say that a
linear relation is closed if its graph is a closed subspace of X ×X, continuous if for each neighborhood V in
R(T), T−1(V) is neighborhood in D(T) and open if its inverse is continuous. Continuous everywhere defined
linear relation on X is referred to be a bounded linear relation. We denote by CR(X) (resp. by BR(X)) the set
of all closed (resp. bounded) linear relations on X. The class of all bounded and closed linear relations on
X is denoted by BCR(X).

The kernels and the ranges of the iterates Tn,n ∈ N, of a linear relation T defined on a vector space X,
form two increasing and decreasing chains, respectively.

N(T0) = {0} ⊆ N(T) ⊆ N(T2) ⊆ ...

R(T0) = X ⊇ R(T) ⊇ R(T2)...

Let T ∈ LR(X), n ∈N and let cn(T) = dim R(Tn)/R(Tn+1). The descent of T is defined by:

δ(T) = inf{n : cn(T) = 0} = inf{n : R(Tn) = R(Tn+1)}

and the essential descent of T is defined by:

δe(T) = inf{n : cn(T) < ∞}.

Let T ∈ LR(X), n ∈N and let c′n(T) = dim N(Tn+1)/N(Tn). The ascent of T is defined by:

a(T) = inf{n : c′n(T) = 0} = inf{n : N(Tn) = N(Tn+1)}

and the essential ascent of T is defined by:

ae(T) = inf{n : c′n(T) < ∞}.

If T is a bounded linear relation on a Banach space X, then, for each nonnegative integer n, T induces a linear
transformation from the vector space R(Tn)/R(Tn+1) to the space R(Tn+1)/R(Tn+2). Let kn(T) be the dimension
of the null space of the induced map. kn(T) is called the difference sequence of T. The following definition
describes the class of linear relations that we will study. Let T ∈ BCR(X). If there exists a nonnegative
integer d for which kn(T) = 0 for all n ≥ d and R(Td+1) is closed, we say that T is Strictly quasi-Fredholm
linear relation. We denote the set of these linear relations by Sqφ(X).
Recall that T ∈ BCR(X) is said to be quasi-Fredholm

(
resp. relatively quasi-Fredholm

)
linear relation if there

exists d ∈N such that:
1) kn(T) = 0 for all n ≥ d.
2) R(Td) ∩N(T) and R(T) + N(Td) are closed

(
resp. complemented

)
in X.

The class of all quasi-Fredholm
(
resp. relatively quasi-Fredholm

)
linear relations is denoted by qφ(X)

(
resp.
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Rqφ(X)
)
.

We have the following relationship Rqφ(X) ⊂ Sqφ(X) ⊂ qφ(X) and where X is a Hilbert space we have
Rqφ(X) = Sqφ(X) = qφ(X).Moreover, when X is a Banach space and ρ(T) , ∅we have T ∈ qφ(X) if and only
if T ∈ Sqφ(X).
Trivial examples of Strictly quasi-Fredholm linear relations are upper semi-Fredholm linear relations, lower
semi-Fredholm linear relations as well as semi-regular linear relations, essential-semi regular linear relations
and bounded below linear relations.

To make the paper easily accessible, some algebraic properties of linear relations are given in Section 2.
In particular, generalization of Lemma 10 in [12] and Lemma 11 in [12] are given in the context of linear
relations. In the Section 3, we investigate the properties of the difference sequence (kn(T))n of bounded
linear relation T. The main result of this section is Proposition 3.2, wish gives some relations between kn(T),
cn(T) and c′n(T). In the Section 4, we introduce and study the class of strictly quasi-Fredholm linear relations.
Section 5, is devoted to give the connection between the class of strictly quasi-Fredholm linear relations and
a various classes of relations defined by means of ascent, descent, essentially ascent and essentially descent.
After that, we apply the results given, to study in Section 6, the stability of the upper semi-B-Fredholm and
lower semi-B-Fredholm linear relations under commuting finite rank operator perturbation.

2. Some Algebraic Properties for Linear Relations.

In this section, we collect some algebraic properties of linear relations defined in Banach spaces and we
give some technical lemmas which we will need repeatedly in the sequel.

Definition 2.1. A subset U of X
(
resp. a subset V of Y

)
is said to be a neighbourhood of a point x ∈ X

(
resp. of Tx

)
if U contains an open set containing x

(
resp. V contains an open set containing Tx

)
. Let T ∈ LR(X,Y). Then T is

said to be continuous at a point x ∈ D(T) if the inverse image of any neighbourhood of Tx is a neighbourhood of x.
T is said to be continuous if it is continuous at every point in its domain. A continuous linear relation of domain
D(T) = X is called bounded. We denote BR(X,Y) the class of all bounded linear relations and as useful we write
BR(X,X) := BR(X).

Definition 2.2. Let T ∈ LR(X,Y). T is called open if whenever U is a neighbourhood in D(T), the image T(U) is a
neighbourhood in R(T). Clearly

T is open if and only if T−1 is continuous.

Definition 2.3. Let T ∈ LR(X,Y). The closure of T is the relation T defined by G(T) = G(T). The relation T is called
closed if G(T) is closed in X × Y or, equivalently, T = T. We denote the class of all closed linear relations from X to Y
by CR(X,Y) and as useful we write CR(X,X) := CR(X).

Definition 2.4. Let X be a Banach space and T ∈ CR(X). For λ ∈ C, the linear relation (T − λ)−1 is called the
resolvent of T (corresponding to λ). The resolvent set of T is the set:

ρ(T) =
{
λ ∈ C : (T − λ) is injective and surjective

}
.

The spectrum of T is the set σ(T) := C\ρ(T).

Lemma 2.1. ([8], Corollary 3.1.) Let X and Y be two Banach spaces and let T ∈ CR(X). If β(T) < ∞, then R(T) is
closed.

Definition 2.5. Let A and B ∈ LR(X). We say that A commutes with B, if AB ⊂ BA. And we say that A and B
commute mutually if AB = BA.

Lemma 2.2. ([14], Lemma 22.2) Let U,V and W be three subspaces of a Banach space X such that U ⊂W. Then

(U + V) ∩W = U + (V ∩W).
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Definition 2.6. [16] Let M be a subspace of a Banach space Y. M is said to be a range subspace, if there exists a
Banach space X and a bounded linear operator T defined from X to Y where the range of T is M.

The following proposition gives a characterization of range subspaces.

Proposition 2.1. ([16], Proposition 2.1) Let M be a linear subspace of a Banach space (Y, ‖ . ‖). The following
properties are equivalent:

i) M is a range subspace.

ii) M is a domain of a closed operator defined in Y.

iii) There is a norm ‖ . ‖1 on M such that (M, ‖ . ‖1) is a Banach space and ‖ y ‖1≥‖ y ‖ for all y ∈M.

Remark 2.1. i) Any closed subspace of a Banach space X is a range subspace of X.

ii) M and N are range subspaces in X if and only if M ×N is a range subspace in X × X.

iii) The sum of two range subspaces is a range subspace.

iv) The intersection of two range subspaces is a range subspace.

Lemma 2.3. Let T be a closed linear relation in a Banach space X. Then R(T) and N(T) are range subspaces of X.

Proof

Let T be a closed linear relation. Then G(T) is a closed subspace of X × X and so a range subspace of
X × X. In other hand we have

N(T) × {0} = G(T) ∩ (X × {0}) and G(T) + (X + {0}) = X × R(T).

So using Remark 2.1, we get that N(T) and R(T) are range subspaces of X. �

Lemma 2.4. ([11], Theorem 2.4) Let M and N be two range subspaces of a Banach space X such that M + N and
M ∩N are closed. Then M and N are closed.

The next lemma is a generalization of Lemma 10 in [12].

Lemma 2.5. Let T ∈ BCR(X), m ≥ 0 and n ≥ i ≥ 1. If R(Tn) + N(Tm) is closed then R(Tn−i) + N(Tm+i) is closed .

Proof

Since T is bounded hence QTT is a bounded operator. It’s clear that

QT(R(Tn) + N(Tm)) = R(Tn) + N(Tm) + T(0)/T(0) = R(Tn) + N(Tm)/T(0).

As T is closed so T(0) is closed then QT(R(Tn) + N(Tm)) is closed. On the other hand we have

(QTT)−1(QT(R(Tn) + N(Tm))) = T−1(R(Tn) + N(Tm) + N(QT))
= T−1(R(Tn) + N(Tm) + T(0))
= T−1(R(Tn) + N(Tm))
= R(Tn−1) + N(Tm+1).

Thus R(Tn−1) + N(Tm+1) is closed. By repeating the same technique we get the result.
�

The next lemma is a generalization of Lemma 11 in [12].

Lemma 2.6. Let T ∈ BCR(X), ρ(T) , ∅ and n ≥ 0. If R(Tn) and R(T) + N(Tn) are closed then R(Tn+1) is closed.



H. Bouaniza, M. Mnif / Filomat 31:20 (2017), 6337–6355 6341

Proof

Let x j ∈ R(Tn+1), such that x j −→ x. It suffices to show that x ∈ R(Tn+1). Since R(Tn) is closed and
x j ∈ R(Tn+1) ⊂ R(Tn), then x ∈ R(Tn) and there exist u j ∈ X and u ∈ X such that x j ∈ Tn+1u j and x ∈ Tnu. It
follows that x j − x ∈ Tn+1u j − Tnu = Tn(Tu j − u). Then, there exists z j ∈ Tu j such that x j − x ∈ Tn(z j − u).
Thus, x j − x + Tn(0) = Tn(z j − u).
We consider

T̂n : X/N(Tn) −→ X/Tn(0)

T̂nx = {ỹ, y ∈ Tnx}.

We have T̂n(0) = {ỹ, y ∈ Tn(0)} = {̃0}. This implies that T̂n is an operator.

T̂n(u − z j) =
{
ỹ, y ∈ Tn(u − z j)

}
=

{
ỹ, y ∈ x j − x + Tn(0)

}
= x̃ j − x = x̃ j − x̃ −→ 0̃,

(
since, x j −→ x

)
.

The operator T̂n is injective. In fact, let x ∈ X/N(Tn) such that T̂n(x) = {ỹ, y ∈ Tnx} = 0̃. It follows that
Tnx ⊂ Tn(0) and hence x = 0.
Furthermore, R(T̂n) is closed. In fact:
R(T̂n) = {T̂nx, x ∈ X/N(Tn)} = {ỹ, y ∈ Tn(x)} = {ỹ, y ∈ R(Tn)} = R(Tn)/Tn(0).
Since T is closed and ρ(T) , ∅, then by Lemma 3.1 in [8], Tn is closed. Thus Tn(0) is closed and hence
R(Tn)/Tn(0) is closed in the Banach space X/Tn(0). Thus R(Tn)/Tn(0) is a Banach space.
Then T̂n : X/N(Tn) −→ R(Tn)/Tn(0) is bijective and continuous, with R(Tn)/Tn(0) and X/N(Tn) are Banach
spaces. Thus, by the Banach Theorem (T̂n)−1 is continuous.
Now, since, T̂n(u − z j)→ 0̃ and (T̂n)−1 is continuous, this implies that, u − z j → 0 in X/N(Tn). So there exists
v j ∈ N(Tn) such that z j + v j → u. Since z j + v j ∈ Tu j + N(Tn) ⊂ R(T) + N(Tn), and R(T) + N(Tn) is closed, then
u ∈ R(T) + N(Tn). On the other hand, we have

Tnu ⊂ Tn
(
R(T) + N(Tn)

)
= Tn

(
R(T)

)
+ Tn(N(Tn)

)
= Tn

(
R(T)

)
+ TnT−n(0),

(
by Poroposition I.3.1 in [4]

)
= R(Tn+1) + Tn(0) = R(Tn+1),

(
since Tn(0) ⊂ R(Tn+1)

)
.

So, x ∈ Tnu ⊂ R(Tn+1). Hence R(Tn+1) is closed. �

3. Some Properties of the Difference Sequence
(
kn(T)

)
n.

This section is devoted to the study of the difference sequence
(
kn(T)

)
n
, where T ∈ BR(X). We first recall

the following definition.

Definition 3.1. If T is a bounded linear relation on a Banach space X, then, for each nonnegative integer n, T induces
a linear transformation from the vector space R(Tn)/R(Tn+1) to the space R(Tn+1)/R(Tn+2). Let kn(T) be the dimension
of the null space of the induced map and k−1(T) = ∞.

Proposition 3.1. Let T ∈ BR(X). Then

kn(T) = dim
(
R(Tn) ∩N(T)

)/(
R(Tn+1) ∩N(T)

)
for each nonnegative integer n.
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Proof

Let n ∈N. We consider T̂ the linear transformation induced by T defined by:
T̂ : R(Tn)

/
R(Tn+1) −→ R(Tn+1)

/
R(Tn+2) x 7−→ T̂x

where T̂x = {ỹ, y ∈ Tx}. We have T̂0 = {ỹ, y ∈ T(0)} = 0̃. Hence T̂ is an operator.

N(T̂) = { x ∈ R(Tn)
/
R(Tn+1), T̂x = 0̃ }

= { x ∈ R(Tn)
/
R(Tn+1), Tx ⊂ R(Tn+2)}

= { x ∈ R(Tn)
/
R(Tn+1), x ∈ T−1(R(Tn+2) }

= { x ∈ R(Tn)
/
R(Tn+1), x ∈ R(Tn+1) + N(T) }

=
[
R(Tn) ∩

(
R(Tn+1) + N(T)

)]/
R(Tn+1).

So by Lemma 2.2, we get

N(T̂) =
[
R(Tn) ∩

(
R(Tn+1) + N(T)

)]/
R(Tn+1) =

[
R(Tn+1) +

(
R(Tn) ∩N(T)

)]/
R(Tn+1).

Using (a) in Lemma 2.1 in [15], we get:

kn(T) = dim N(T̂) = dim
[
R(Tn+1) +

(
R(Tn) ∩N(T)

)]/
R(Tn+1)

= dim
[
R(Tn) ∩N(T)

]/[
R(Tn+1) ∩N(T)

]
.

�

The next proposition provides the relationships between the sequences:
(
kn(T)

)
n
,
(
cn(T)

)
n

and
(
c′n(T)

)
n
.

Proposition 3.2. Let T ∈ BR(X). The sequence
(
kn(T)

)
n

satisfies the following relations:

i) If cn(T) < ∞ for some n ∈N, then kn(T) = cn(T) − cn+1(T).

ii) If c′n(T) < ∞ for some n ∈N and Rc(T) = {0}, then kn(T) = c′n(T) − c′n+1(T).

Proof

i) We consider :
T̂ : R(Tn)

/
R(Tn+1) −→ R(Tn+1)

/
R(Tn+2)

x 7−→ T̂x.

If cn(T) = dim R(Tn)
/
R(Tn+1) < ∞ for some n ∈ N, then, applying the rank theorem to T̂, we get that

dim R(T̂) + dim N(T̂) = dim R(Tn)
/
R(Tn+1). Hence

kn(T) = dim N(T̂) = dim R(Tn)
/
R(Tn+1) − dim R(T̂)

= dim R(Tn)
/
R(Tn+1) − dim R(Tn+1)

/
R(Tn+2)

= cn(T) − cn+1(T).

ii) If Rc(T) = {0} then by Lemma 4.4 in [15], we have N(Ti+k)
/
N(Ti) ' N(Tk) ∩ R(Ti). So,

kn(T) = dim R(Tn) ∩N(T)
/
R(Tn+1) ∩N(T)

= dim R(Tn) ∩N(T) − dim R(Tn+1) ∩N(T)
= dim N(Tn+1)

/
N(Tn) − dim N(Tn+2)

/
N(Tn+1)

= c′n(T) − c′n+1(T).

�

Using Lemma 3.1 in [7] and Lemma 4.2.2 in [16], we get:
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Lemma 3.1. Let T ∈ BR(X), ρ(T) , ∅, p,n ∈N and Tn = T/R(Tn). Then

i) cp(Tn) = cp+n(T). In particular c0(Tn) = β(Tn) = cn(T).

ii) c′p(Tn) = c′p+n(T). In particular c′0(Tn) = α(Tn) = c′n(T).

iii) kp(Tn) = kp+n(T).

Lemma 3.2. Let X be a Banach space and T ∈ BR(X). Then we have

dim
(
N(T)/(N(T) ∩ R(Tn)

)
=

n−1∑
i=0

dim
(
N(T) ∩ R(Ti)

/
N(T) ∩ R(Ti+1)

)
.

Proof

Observe that N(T) ∩ R(Tn) ⊂ N(T) ∩ R(Tn−1) ⊂ N(T) ∩ R(Tn−2) ⊂ · · · ⊂ N(T).
Using Lemma 2.1 in [15], we get:
dim N(T)/N(T) ∩ R(Tn) = dim N(T)/N(T) ∩ R(Tn−1) + dim N(T) ∩ R(Tn−1)/N(T) ∩ R(Tn).
As we have
dim N(T)/N(T) ∩ R(Tn−1) = dim N(T)/N(T) ∩ R(Tn−2) + dim N(T) ∩ R(Tn−2)/N(T) ∩ R(Tn−1), by a repeated
application of Lemma 2.1 in [15], we get

dim
(
N(T)/(N(T) ∩ R(Tn)

)
=

n−1∑
i=0

dim
(
N(T) ∩ R(Ti)

/
N(T) ∩ R(Ti+1)

)
.

�

As a consequence of Lemma 3.2, we get:

Proposition 3.3. Let T ∈ BR(X). Then

k(T) =

∞∑
i=0

ki(T) = dim[N(T)/(N(T) ∩ R∞(T))].

4. Strictly Quasi-Fredholm Linear Relations.

The goal of this section is to introduce and study the class of strictly quasi-Fredholm linear relations.

Definition 4.1. Let X be a Banach space and T ∈ BCR(X). We say that T is strictly quasi-Fredholm relation of degree
d ∈ N, if kn(T) = 0 for all n ≥ d, kd−1(T) , 0 and R(Td+1) is closed. We denote by Sqφ(d)(X), the set of all strictly
quasi-Fredholm linear relations of degree d and by Sqφ(X) the set of all strictly quasi-Fredholm linear relations for
some degree d ∈N.

We start by giving this lemma. Which is useful to the proof of the following propositions.

Lemma 4.1. Let T ∈ BCR(X) and d ∈ N such that ρ(T) , ∅ and ki(T) < ∞ for every i ≥ d. Then the following
statements are equivalent:

i) there exists n0 ≥ d + 1 such that R(Tn0 ) is closed.

ii) R(Tn) is closed for every n ≥ d.

iii) R(Tn) + N(Tm) is closed for all n, m with n + m ≥ d.
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Proof
It is clear that: iii)⇒ ii)⇒ i).
ii)⇒iii): Let n ≥ d. We have R(Tn) is closed. If n = 0, then there is nothing to prove. If n ≥ 1, then from
Lemma 2.5, for all 1 ≤ i ≤ n we have R(Tn−i) + N(Ti) is closed. Thus R(Tn) + N(Tm) is closed for all n, m ∈N
with n + m ≥ d.
i)⇒ ii): If there exits n0 ≥ d+1 such that R(Tn0 ) is closed then, by Lemma 2.5, R(T)+N(Tn0−1) is closed. Since
ki(T) < ∞ for all i ≥ d, it follows that,
kn0−1(T) = dim R(Tn0−1) ∩ N(T)/R(Tn0 ) ∩ N(T) = dim R(T) + N(Tn0 )

/
R(T) + N(Tn0−1) < ∞. This implies that

R(T) + N(Tn0 ) is closed. So, by Lemma 2.6, R(Tn0+1) is closed. Consequently R(Tn) is closed for all n ≥ n0.
On the other hand, by Lemma 2.5, we have R(Tn0−1) + N(T) is closed. And as, R(Tn0 ) ∩ N(T) is closed and
kn0−1(T) = dim R(Tn0−1)∩N(T)/R(Tn0 )∩N(T) < ∞ then R(Tn0−1)∩N(T) is closed. By Lemma 2.3 and Lemma
2.4, it follows that R(Tn0−1) is closed. By repeating these considerations, we can prove that R(Tn) is closed
for all n with d ≤ n ≤ n0. �

In the next we give some characterizations of strictly quasi-Fredholm linear relations.

Proposition 4.1. Let T ∈ BCR(X) and d ∈ N. Then, T ∈ Sqφ(d)(X) if and only if R(T) + N(Td) = R(T) + N∞(T)
and R(Td+1) is closed.

Proof

The result follows immediately from the equivalence :[
R(T) + N(Tn+1)

]
/
[
R(T) + N(Tn)

]
'

[
N(T) ∩ R(Tn)

]
/
[
N(T) ∩ R(Tn+1)

]
.

�

The following proposition is another characterization of the strictly quasi-Fredholm linear relations.

Proposition 4.2. Let T ∈ BCR(X) such that ρ(T) , ∅ and d ∈N. Then, T ∈ Sqφ(d)(X) if and only if

i) kn(T) = 0 for all n ≥ d and kd−1(T) , 0.

ii) R(Tn) is a closed subspace of X for each integer n ≥ d.

iii) R(T) + N(Td) is a closed subspace of X.

Proof

Let T ∈ Sqφ(d)(X). Then R(Td+1) is closed, kn(T) = 0 for all n ≥ d and kd−1(T) , 0. It follows from Lemma
4.1, that R(Tn) is closed for all n ≥ d. The statement iii) follows immediately from Lemma 2.5.
Conversely, by i) we have kn(T) = 0 for all n ≥ d and kd−1(T) , 0 and by ii) we have R(Td+1) is closed. Then
T ∈ Sqφ(d)(X). �

Proposition 4.3. Let T ∈ BCR(X) such that ρ(T) , ∅. Then T ∈ Sqφ(X) if and only if there exists n ∈N such that
R(Tn) is closed and Tn is semi-regular.

Proof

Suppose that T ∈ Sqφ(X). There exists d ∈ N, such that T ∈ Sqφ(d)(X). So by Proposition 4.2, we have
R(Tn) is closed for all n ≥ d. By Lemma 3.1, we have ki(Td) = ki+d(T), for all i ∈ N. Hence ki(Td) = 0 for all
i ≥ 0. Then Td is semi-regular.
Conversely, suppose that there exists n ∈ N such that R(Tn) is closed and Tn is semi-regular. Then R(Tn) is
closed and ki(Tn) = 0 for all i ≥ 0. It follows that km(T) = 0 for all m ≥ n. and R(Tn+1) = R(Tn) is closed. Thus
T ∈ Sqφ(n)(X). �
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Next, we recall some well known classes of linear relations and we give some connection between them
and the class of strictly quasi-Fredholm linear relations.
Let X be a Banach space and T ∈ BCR(X). We say that T is upper semi-Fredholm linear relation if it
has finite dimensional null space and closed range. We denote the set of all upper semi-Fredholm linear
relations by φ+(X). We say that T is lower semi-Fredholm if its range is closed and has a finite codimension.
We denote the set of all lower semi-Fredholm linear relations by φ−(X). We say that T is semi-regular if
N(T) ⊂ R∞(T) and R(T) is closed. We denote the set of all semi-regular linear relations by SR(X). We say
that T is essentially semi-regular if N(T) ⊂e R∞(T) and R(T) is closed. We denote the set of all essentially
semi-regular linear relations by ESR(X).
As trivial examples of strictly quasi-Fredholm linear relations we have:

Example 4.1. Let X be a Banach space and T ∈ BCR(X) with ρ(T) , ∅. If T is semi-Fredholm then T is strictly
quasi-Fredholm for some degree d ∈N.
Indeed, first if T is upper semi-Fredholm then c′0(T) < ∞. Since the sequence

(
c′n(T)

)
n

is decreasing then c′n(T) < ∞
for all n ∈ N. Thus kn(T) = c′n(T) − c′n+1(T) < ∞ for all n ∈ N. As R(T) is closed, then by Lemma 4.1, R(Tn) is
closed for all n ∈ N. The sequence

(
c′n(T)

)
n

is stationary for n large enough. Let d = inf{n ∈ N, kn(T) = 0}. Then
d < ∞ and R(Td+1) is closed. So T ∈ Sqφ(d)(X).
Secondly, if T is lower semi-Fredholm then c0(T) < ∞. Since

(
cn(T)

)
n

is decreasing, it follows, by Proposition 3.2,
that there exists n0 ∈ N such that kn(T) = cn(T) − cn+1(T) = 0 for all n ≥ n0. Let d = inf{n ∈ N, kn(T) = 0}. Then
clearly kn(T) = 0 for all n ≥ d. Furthermore, Since T ∈ φ−(X) and ρ(T) , ∅, then by Proposition 3.1 in [8], we have
Td+1

∈ φ−(X) and so R(Td+1) is closed. Thus T ∈ Sqφ(d)(X).

Example 4.2. Let X be a Banach space and T ∈ BCR(X). If T is onto or bounded below then T is strictly quasi-
Fredholm of degree 0. In fact, if T is onto then R(T) = X is closed and kn(T) = cn(T) − cn+1(T) = 0 for all n ∈ N. It
follows that T is strictly quasi-Fredholm of degree 0. On the other hand, if T is bounded below then R(T) is closed and
c′0(T) = dim N(T) = 0. Since

(
c′n(T)

)
n

is decreasing then c′n(T) = 0 for all n ∈N. So kn(T) = 0 for all n ∈N. Hence
T is strictly quasi-Fredholm of degree 0.

Example 4.3. Let X be a Banach space and T ∈ BCR(X). If T is semi-regular or essentially semi-regular then T is
strictly quasi-Fredholm. Indeed, if T is essentially semi-regular then N(T) ⊂e R∞(T) so dim N(T)

/
N(T)∩R∞(T) < ∞.

This implies that
∞∑

i=0

ki(T) < ∞. Thus, there exists d ∈N such that kn(T) = 0 for all n ≥ d and kd−1 , 0. As R(T) is

closed, then by Lemma 4.1, R(Td+1) is closed. Thus T ∈ Sqφ(d)(X).

Afterwards, we give the main theorem of this section where we investigate the relations between the
following sets: the set of relatively quasi-Fredholm linear relations, the set of strictly quasi-Fredholm linear
relations and the set of quasi-Fredholm linear relations. The following theorem is a generalization of
Proposition 3 in [13].

Theorem 4.1. Let X be a Banach space. We have:

i) Rqφ(X) ⊂ Sqφ(X) ⊂ qφ(X).

ii) If T ∈ BCR(X) be such that ρ(T) , ∅, then T ∈ qφ(X) if and only if T ∈ Sqφ(X).

Proof
i) Let T ∈ Rqφ(X). By Theorem 2.1 in [7], there exist X1 and X2 two closed subspaces of X such that
X = X1 ⊕ X2, dim X1 < ∞ and T = T1 ⊕ T2 where T1 = T ∩ (X1 × X1) is nilpotent with degree d and
T2 = T ∩ (X2 × X2) is semi-regular. Hence R(Td+1) = R(Td+1

1 ) + R(Td+1
2 ) = R(Td+1

2 ). Since T2 is semi-regular
then R(Td+1

2 ) is closed. Thus R(Td+1) is closed. As kn(T) = 0 for all n ≥ d, it follows that T ∈ Sqφ(d)(X).
Now, let T ∈ Sqφ(d)(X). So kn(T) = 0 for all n ≥ d and by Proposition 4.2, we have N(Td) + R(T) and R(Td)
are closed. As N(T) is closed then R(Td) ∩N(T) is also closed. Hence T ∈ qφ(d)(X).
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ii) Let T ∈ BCR(X) be a quasi-Fredholm linear relation of degree d with ρ(T) , ∅. First we claim that
T(0) + N(Td) is closed. Indeed, using Lemma 3.1 in [8], we get Td

∈ BCR(X). So, QTd Td is a bounded operator
and QTd (Td+1(0)) is closed. Hence, (QTd Td)−1(QTd (Td+1(0))) = T(0) + N(Td) is closed.
To show that R(Td+1) is closed, it is therefore sufficient to prove that R(Td+1) + N(Td) and R(Td+1)∩N(Td) are
closed. First, we prove by induction on j that for all j ≥ 1, we have

N(T j) ∩ R(Td) = N(T j) ∩ R(Td+1). (1)

This is true for j = 1. Let j ≥ 1 and suppose that N(T j) ∩ R(Td) = N(T j) ∩ R(Td+1). We will show that
N(T j+1)∩R(Td) = N(T j+1)∩R(Td+1). It is clear that N(T j+1)∩R(Td+1) ⊂ N(T j+1)∩R(Td) so it suffices to show that

N(T j+1)∩R(Td) ⊂ N(T j+1)∩R(Td+1). Let x ∈ N(T j+1)∩R(Td). Then by Lemma 2.2 in [7], we obtain x ∈
∞⋂

n=0

R(Tn)

and so x ∈ R(Td+1). It follows that x ∈ N(T j+1) ∩ R(Td+1). Hence, N(T j+1) ∩ R(Td) = N(T j+1) ∩ R(Td+1). This
proves Eq. (1).
We now, prove that

N(T j) ∩ R(Td) is closed for all 1 ≤ j ≤ d. (2)

This is true for j = 1. Suppose that N(T j) ∩ R(Td) is closed for all 1 ≤ j < d. We have

T−1
(
N(T j) ∩ R(Td+1)

)
= N(T) + N(T j+1) ∩ R(Td).

Indeed, let x ∈ T−1
(
N(T j) ∩ R(Td+1)

)
. It follows that Tx ∩

(
N(T j) ∩ R(Td+1)

)
, ∅. Hence there exists z ∈

Tx ∩
(
N(T j) ∩ R(Td+1)

)
such that Tx = z + T(0). Therefore x + N(T) = T−1(z) + N(T) and so x ∈ T−1(z) + N(T).

On the other hand z ∈ N(T j) and z ∈ R(Td+1) hence x ∈ T−1(N(T j)) ∩ T−1(R(Td+1)) + N(T) = N(T j+1) ∩(
R(Td) + N(T)

)
+ N(T). This means that x ∈ N(T j+1) ∩ R(Td) + N(T). It follows that T−1

(
N(T j) ∩ R(Td)

)
⊂

N(T) + N(T j+1) ∩ R(Td). It remains to show that N(T) + N(T j+1) ∩ R(Td) ⊂ T−1
(
N(T j) ∩ R(Td+1)

)
. Let

x ∈ N(T) + N(T j+1) ∩ R(Td). Then x = z1 + z2 with z1 ∈ N(T) and z2 ∈ N(T j+1) ∩ R(Td). Hence Tz1 ⊂ T(0),
Tz2 ⊂ T

(
N(T j+1)

)
= N(T j) ∩ R(T) + T(0) ⊂ N(T j) + T(0) and Tz2 ⊂ T

(
R(Td)

)
= R(Td+1). It follows that

Tx = Tz1+Tz2 ⊂ T(0)+
(
N(T j)+T(0)

)
∩R(Td+1) = T(0)+N(T j)∩R(Td+1). Hence x ∈ T−1

(
N(T j)∩R(Td+1)

)
+N(T).

This means that N(T) ⊂ T−1
(
N(T j) ∩ R(Td+1)

)
. Hence x ∈ T−1

(
N(T j) ∩ R(Td+1)

)
.

We prove now that N(T)+N(T j+1)∩R(Td) is closed. Indeed, we have QT

(
N(T j)∩R(Td+1)

)
=

(
N(T j)∩R(Td+1)+

T(0)
)/

T(0). Then,

(QTT)−1
(
QT(N(T j) ∩ R(Td+1))

)
= T−1

(
N(T j) ∩ R(Td+1) + N(QT)

)
= T−1

(
N(T j) ∩ R(Td+1) + T(0)

)
= T−1

(
N(T j) ∩ R(Td+1)) + T−1(0).

Hence (QTT)−1
(
QT(N(T j) ∩ R(Td+1))

)
= N(T) + N(T j+1) ∩ R(Td). Since QTT is a bounded operator, it suffices

to prove that QT

(
N(T j) ∩ R(Td+1)

)
is closed. For this we recall that QT

(
N(T j) ∩ R(Td+1)

)
= N(T j) ∩ R(Td+1) +

T(0)
/
T(0). As j < d then N(T j)∩R(Td+1) ⊂ N(Td). It follows that, (T(0)+N(T j)∩R(Td+1))+N(Td) = T(0)+N(Td)

is closed. On the other hand and by Lemma 2.2, we have (T(0)+N(T j)∩R(Td+1))∩N(Td) = N(T j)∩R(Td+1) is
closed. Thus by Lemma 2.4, T(0)+N(T j)∩R(Td+1) is closed. As T(0) is closed then N(T j)∩R(Td+1)+T(0)

/
T(0) is

closed. Further, N(T)∩N(T j+1)∩R(Td) = N(T)∩R(Td) is closed. By Lemma 2.4, N(T j+1)∩R(Td) is closed. This
proves Eq. (2).
Using Eq. (1) and Eq. (2) we get N(Td) ∩ R(Td) = N(Td) ∩ R(Td+1) is closed. It remains to show that
N(Td) + R(Td+1) is closed. We show first that

N(Td+1) ⊂ R(T j) + N(Td) for each j ∈N. (3)
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Let x ∈ N(Td+1) hence 0 ∈ Td+1(x) and so Td+1(x) = Td+1(0). This implies that Td(x) + N(T) = Td(0) + N(T) ⊂
N(T) + R(Td). Thus Td(x) ⊂ N(T) + Td(0). It follows that Td(x) ⊂ R(Td)∩

(
N(T) + Td(0)

)
= R(Td)∩N(T) + Td(0).

Since R(Td)∩N(T) = R(Td+ j)∩N(T) for all j ∈N. This implies that Td(x) ⊂ R(Td+ j)∩N(T)+Td(0) for all j ∈N.
Hence there exists y ∈ R(Td+ j)∩N(T) such that Tdx ⊂ Td+ jy + Td(0), so Td(x−T jy) ⊂ Td+ j(0) + Td(0) = Td+ j(0).
It follows that x − T jy ⊂ N(Td) + T j(0) so there exists z ∈ T jy such that x − z ∈

(
N(Td) + T j(0)

)
. This implies

that x ∈ z + N(Td) + T j(0) ⊂ N(Td) + R(T j). Thus N(Td+1) ⊂ N(Td) + R(T j).
We consider now

T̂ : X/N(Td) −→ X/N(Td)

T̂x̃ = {ỹ, y ∈ Tx}.

T̂ is a linear relation. Let x̃ ∈ N(T̂). Then 0̃ ∈ T̂(x̃) = {ỹ : y ∈ Tx}. Hence there exists y ∈ Tx ∩ N(Td) such
that Tx = y + T(0). Therefore, Td+1x = Tdy + Td+1(0) = Td(0) + Td+1(0) = Td+1(0). Thus x ∈ N(Td+1) and so
N(T̂) ⊂ {x̃, x ∈ N(Td+1)}. On the other hand we have R(T̂) = {T̂x̃, x ∈ X} = {ỹ, y ∈ R(T)} and for all j ∈ N we

have R(T̂ j) = {ỹ, y ∈ R(T j)}. Using Eq. (3), we get N(T̂) ⊂
∞⋂
j=0

R(T̂ j). Further R(T) + N(Td) is closed and thus

R(T̂) is a closed subspace of X/N(Td), then T̂ is semi regular. Consequently kn(T̂) = 0 for all n ∈N. As R(T̂) is
closed, using Lemma 4.1, we get R(T̂d+1) is closed. Let Q be the canonical projection: X −→ X/N(Td). Then
the space R(Td+1) + N(Td) = Q−1

(
R(T̂d+1)

)
is closed. Hence we have R(Td+1) + N(Td) and R(Td+1)∩N(Td) are

closed and so by referring to Lemma 2.4, we infer that R(Td+1) is closed. Thus T ∈ Sqφ(X). �

5. Some Classes of Linear Relations Defined by Means of Ascent and Descent.

In this section we study the connection between the class of strictly quasi-Fredholm linear relations and
some classes of linear relations related to the notions of ascent, descent, essentially ascent and essentially
descent.
Now we give the definitions of the classes Ri(X) for i ∈ {1, 2, 3} related to the notions of descent and
essentially descent.

Definition 5.1. Let X be a Banach space.

R1(X) = {T ∈ BCR(X) : T ∈ φ−(X) and δ(T) < ∞}
R2(X) = {T ∈ BCR(X) : δ(T) < ∞ and R(Tδ(T)) is closed }
R3(X) = {T ∈ BCR(X) : δe(T) < ∞ and R(Tδe(T)) is closed}.

In the next proposition we give the dual versions of Ri(X), 1 ≤ i ≤ 3 according to Sqφ(X).

Proposition 5.1. Let T ∈ BCR(X), such that ρ(T) , ∅. Then we have:

i) T ∈ R1(X) if and only if T ∈ Sqφ(d)(X), c0(T) < ∞ and cd(T) = 0, for some d ∈N.

ii) T ∈ R2(X) if and only if T ∈ Sqφ(d)(X) and cd(T) = 0, for some d ∈N.

iii) T ∈ R3(X) if and only if T ∈ Sqφ(d)(X) and cd(T) < ∞, for some d ∈N.

Proof

i) Let T ∈ Sqφ(d)(X), such that cd(T) = 0 and c0(T) < ∞. Then, dim X/R(T) < ∞ and δ(T) ≤ d < ∞. Using
Proposition 3.1 in [8], we obtain that R(T) is closed. It follows that T ∈ R1(X).
Conversely, let T ∈ R1(X). Then c0(T) = dim X/R(T) < ∞. Since

(
cn(T)

)
n

is decreasing then cn(T) < ∞ for all
n ≥ 0. By using Proposition 3.2, we have kn(T) = cn(T) − cn+1(T) < ∞ for all n ≥ 0. As R(T) is closed, then by
Lemma 4.1, we have R(Tn) is closed for all n ∈ N. On the other hand, we have for all n ≥ δ(T), cn(T) = 0.
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This implies that kn(T) = 0 for all n ≥ δ(T). So, for d := δ(T), we have T ∈ Sqφ(d)(X) and cd(T) = 0.
ii) Let T ∈ Sqφ(d)(X) with cd(T) = 0. Then δ(T) ≤ d < ∞ and R(Td+1) is closed. Since cδ(T)(T) = 0, then
cn(T) = 0 for all n ≥ δ(T), and so kn(T) < ∞ for all n ≥ δ(T). As we have R(Td+1) is closed with d+1 ≥ δ(T)+1,
thus by Lemma 4.1, we have R(Tn) is closed for all n ≥ δ(T). In particular R(Tδ(T)) is closed. Thus T ∈ R2(X).
Conversely, let T ∈ R2(X). Hence, δ(T) < ∞ and R(Tδ(T)) is closed. Further, since cδ(T)(T) = 0, then R(Tδ(T)+1)
is also closed. Let d = inf{n ∈ N, kn(T) = 0}. Clearly d ≤ δ(T) and for all n ≥ d, kn(T) = 0. So, by
Lemma 4.1, R(Td+1) is closed, which implies that T ∈ Sqφ(d)(X). It remains to show that cd(T) = 0. We
have dim X/

(
R(T) + N(Tδ(T))

)
< ∞ and kn(T) = 0 for all n ≥ d. This implies, by Corollary 2.6 in [10], that

R(T)+N(Td) = R(T)+N(Tn) for all n ≥ d. In particular for n := δ(T). Thus cd(T) = dim X/
(
R(T)+N(Td)

)
< ∞.

Hence kd(T) = cd(T) − cd+1(T) = 0 and so, cd(T) = 0.
iii) Let T ∈ Sqφ(d)(X) with cd(T) < ∞. It follows that δe(T) ≤ d < ∞ and kn(T) = cn(T) − cn+1(T) < ∞ for all
n ≥ δe(T). Then, Lemma 4.1, leads to R(Tn) is closed for all n ≥ δe(T). So T ∈ R3(X).
Conversely, let T ∈ R3(X). Then δe(T) < ∞. So kn(T) < ∞ for all n ≥ δe(T) and there exists n0 ∈ N such
that kn0 (T) = 0. Let d = inf{n ∈ N, kn(T) = 0}. Thus by Lemma 4.1, we have R(Tn) is closed for all n ≥ d
and so T ∈ Sqφ(d)(X). It remains to prove that cd(T) < ∞. We have R(Tδe(T)) is closed and cδe(T)(T) < ∞.

Then dim
(
X
/
R(T) + N(Tδe(T))

)
< ∞. We have N(T)∩R(Td)

N(T)∩R(Td+1) '
N(Td+1)+R(T)
N(Td)+R(T) then suppose that d < δe(T), we get

N(Tδe(T)) + R(T) = N(Tδe(T)−1) + R(T) and hence cδe(T)−1(T) < ∞ which is absurd. So d ≥ δe(T) and hence
cd(T) < ∞.

�

Now we give the definitions of the classes Ri(X) for i ∈ {4, 5, 6} related to the notions of ascent and essentially
ascent.

Definition 5.2. Let X be a Banach space.

R4(X) = {T ∈ BCR(X) : T ∈ φ+(X) and a(T) < ∞ }
R5(X) = {T ∈ BCR(X) : a(T) < ∞ and R(Ta(T)+1) is closed }
R6(X) = {T ∈ BCR(X) : ae(T) < ∞ and R(Tae(T)+1) is closed }.

In the next proposition we give the dual versions of R4(X),R5(X) and R6(X) according to the set Sqφ(X).

Proposition 5.2. Let T ∈ BCR(X), such that ρ(T) , ∅. Then

i) T ∈ R4(X) if and only if T ∈ Sqφ(d)(X), c′0(T) < ∞ and c′d(T) = 0, for some d ∈N.

ii) T ∈ R5(X) if and only if T ∈ Sqφ(d)(X) and c′d(T) = 0, for some d ∈N.

iii) T ∈ R6(X) if and only if T ∈ Sqφ(d)(X) and c′d(T) < ∞, for some d ∈N.

Proof
i) Let T ∈ Sqφ(d)(X) such that c′0(T) < ∞ and c′d(T) = 0. Then dim N(T) = c′0(T) < ∞ and a(T) ≤ d < ∞. As
c′n(T) < ∞ for all n ∈ N, then kn(T) = c′n(T) − c′n+1(T) < ∞ for all n ∈ N. So by Lemma 4.1, we have R(Tn) is
closed for all n ≥ 0. Thus R(T) is closed. So T ∈ φ+(T) and a(T) < ∞.
Conversely, let T ∈ R4(X). Thus c′n(T) < ∞ for all n ∈ N and so kn(T) = c′n(T) − c′n+1(T) < ∞ for all n ≥ 0.
As R(T) is closed, then by Lemma 4.1, R(Tn) is closed for all n ∈ N. On the other hand, since

(
c′n(T)

)
n

is
decreasing, then there exists n0 ∈ N such that kn(T) = 0 for all n ≥ n0. Let d = inf{n ∈ N, kn(T) = 0}. It is
clear that d ≤ a(T) < ∞, kn(T) = 0 for all n ≥ d and c′d(T) = c′a(T)(T) = 0. Thus T ∈ Sqφ(d)(X), c′d(T) = 0 and
c′0(T) < ∞.
ii) Let T ∈ Sqφ(d)(X) such that c′d(T) = 0. Then a(T) ≤ d and c′n(T) = 0, for all n ≥ a(T). It follows that
kn(T) = 0 for all n ≥ a(T). This implies that d ≤ a(T). Using Proposition 4.2, it follows that R(Tn) is closed
for all n ≥ d. Thus R(Ta(T)+1) is closed. So T ∈ R5(X).
Conversely, let T ∈ R5(X). Then a(T) < ∞ and so c′n(T) = 0, for all n ≥ a(T). Let d = inf{n ∈ N, kn(T) = 0}.
Then a(T) ≥ d, kn(T) = 0 for all n ≥ d and R(Ta(T)+1) is closed. Hence, by Lemma 4.1, R(Tn) is closed for all



H. Bouaniza, M. Mnif / Filomat 31:20 (2017), 6337–6355 6349

n ≥ d and so T ∈ Sqφ(d)(X). It remains to prove that c′d(T) = 0. We have α(Ta(T)+1) = c′a(T)+1(T) = 0, then

dim
(
N(T) ∩ R(Ta(T)+1)

)
= 0 and so dim

(
N(T) ∩ R(Tm)

)
= 0 for all m ≥ a(T) + 1. Then dim

(
N(T) ∩ R(Td)

)
= 0

and so c′d(T) = 0.
iii) Let T ∈ Sqφ(d)(X) such that c′d(T) < ∞. Then ae(T) ≤ d < ∞ and so kn(T) = c′n(T) − c′n+1(T) < ∞ for all
n ≥ ae(T). Since R(Td+1) is closed with d + 1 ≥ ae(T) + 1, then by Lemma 4.1, R(Tae(T)+1) is also closed. Hence
T ∈ R6(X).
Conversely, let T ∈ R6(X) then ae(T) < ∞. So there exists p ∈N such that c′p(T) < ∞.Thus dim

(
R(Tp)∩N(T)

)
<

∞. The sequence
(
R(Tp) ∩N(T)

)
p

is stationary for p large enough. Let d = inf{n ∈ N, kn(T) = 0} then d < ∞.

On the other hand, R(Tae(T)+1) is closed leads to R(Td+1) is closed, by Lemma 4.1. So T ∈ Sqφ(d)(X). It remains
to prove that c′d(T) < ∞. We have kn(T) = 0, for all n ≥ d, then dim

(
N(T) ∩ R(Td)

)
= dim

(
N(T) ∩ R(Tp)

)
for

all p ≥ d so dim
(
N(T) ∩ R(Td)

)
= c′d(T) < ∞.

�

As a consequence of Propositions 5.1 and 5.2, we have the following results.

Corollary 5.1. Let T ∈ BCR(X) such that ρ(T) , ∅. Then

i) T ∈ R2(X) if and only if T ∈ Sqφ(d)(X) for some d ∈N and Td is onto.

ii) T ∈ R3(X) if and only if T ∈ Sqφ(d)(X) for some d ∈N and Td is lower semi-Fredholm.

iii) T ∈ R5(X) if and only if T ∈ Sqφ(d)(X) for some d ∈N and Td is bounded below.

iv) T ∈ R6(X) if and only if T ∈ Sqφ(d)(X) for some d ∈N and Td is upper semi-Fredholm.

Proof

i) Let T ∈ R2(X). Then by referring to Proposition 5.1 and Lemma 3.1, we infer that T ∈ Sqφ(d)(X) for
some d ∈N and c0(Td) = cd(T) = 0. Thus Td is onto.
Conversely, if Td is onto for some d ∈ N then by Lemma 3.1, cd(T) = c0(Td) = 0. Since by hypothesis
T ∈ Sqφ(d)(X), then by Proposition 5.1, we have T ∈ R2(X).
ii) Let T ∈ R3(X). Then by Proposition 5.1, we have T ∈ Sqφ(d)(X) and cd(T) < ∞ for some d ∈N. It follows,
by Lemma 3.1, that c0(Td) = cd(T) < ∞. Since T ∈ Sqφ(d)(X) then R(Td) = R(Td+1) is closed and so Td is lower
semi-Fredholm.
Conversely, if T ∈ Sqφ(d)(X) for some d ∈N and Td is lower semi-Fredholm, then c0(Td) < ∞. So by Lemma
3.1, cd(T) = c0(Td) < ∞. Hence by Proposition 5.1, it follows that T ∈ R3(X).
The results of iii) and iv) are deduced from Proposition 5.2 and Lemma 3.1, by the same way. �

6. Perturbation of Semi-B-Fredholm Linear Relations.

The purpose of this section is to investigate the perturbation problem of semi-B-Fredholm linear relation
under a finite rank operator and as consequences we deduce the stability of various essential spectra related
to semi-B-Fredholm linear relations classes.

Definition 6.1. ([7], Definition 3.1) Let X be a Banach space. A linear relation T ∈ LR(X) is called B-Fredholm if T
is a range space relation and there exists d ∈N such that R(Td) is closed and the restriction Td = T/R(Td) is a Fredholm
linear relation.

Definition 6.2. Let X be a Banach space. A linear relation T ∈ LR(X) is called upper semi-B-Fredholm (resp. Lower
semi-B-Fredholm) if T is a range space relation and there exists d ∈ N such that R(Td) is closed and the restriction
Td = T/R(Td) is an upper-semi Fredholm linear relation (resp. Lower-semi-Fredholm).
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Definition 6.3. Let R be one of the classes Ri, with 1 ≤ i ≤ 6. We define the associated B-class BR as the set:

BR =
{
T ∈ LR(X) : there exists n ∈N such that R(Tn) is closed and Tn = T/R(Tn) ∈ R

}
.

The following propositions will be required in the proof of the main results of this section.

Proposition 6.1. Let X be a Banach space and T ∈ BCR(X), such that ρ(T) , ∅. Then the following statements are
equivalent:

i) T ∈ R6(X).

ii) T is upper semi-B-Fredholm linear relation.

iii) T ∈ BR6(X).

Proof

i) ⇒ ii) If T ∈ R6(X) then by Corollary 5.1 and Proposition 4.2, T ∈ Sqφ(d)(X), R(Td) is closed and Td is
upper semi Fredholm for some d ∈N. Then T is upper semi-B-Fredholm.
ii) ⇒ iii) First, we show that if T is upper semi-Fredholm then T ∈ R6(X). Indeed, if T is upper semi-
Fredholm then T ∈ Sqφ(d)(X) for some d ∈ N. As c′0(T) < ∞ and

(
c′n(T)

)
n

is decreasing then c′d(T) < ∞.
Using Proposition 5.2, we get T ∈ R6(X). Now we have T is upper semi-B-Fredholm then there exists d ∈N
such that R(Td) is closed and Td is upper semi-Fredholm. Hence Td ∈ R6 and so T ∈ BR6(X).
iii) ⇒ i) Now, let T ∈ BR6(X). There exists n ∈ N such that R(Tn) is closed and Tn ∈ R6(X). It follows by
Proposition 5.2, that Tn ∈ Sqφ(d)(R(Tn)) and c′d(Tn) < ∞ for some d ∈ N. Hence we have ki(Tn) = 0 for all
i ≥ d. So, by Lemma 3.1, we have ki(T) = 0 for all i ≥ n + d. As we have R(Tn+d+1) = R((Tn)d+1) is closed then
T ∈ Sqφ(n + d)(X) and c′d+n(T) = c′d(Tn) < ∞. Using Proposition 5.2 , we get T ∈ R6(X). �

Proposition 6.2. Let X be a Banach space and T ∈ BCR(X), such that ρ(T) , ∅. Then the following statements are
equivalent:

i) T ∈ R3(X).

ii) T is lower semi-B-Fredholm linear relation.

iii) T ∈ BR3(X).

The proof may be sketched in a similar way to the proof of Proposition 6.1, it suffices to replace Proposition
5.2 by Proposition 5.1.
We are now ready to express the main result of this section which gives a generalization of Proposition 2.7
in [3].

Theorem 6.1. Let X be a Banach space and F be a bounded operator of finite rank. Let T ∈ BCR(X) such that
ρ(T) , ∅. Suppose that TF = FT. If T is upper semi-B-Fredholm linear relation then T + F is upper semi-B-Fredholm
linear relation.

Proof

Since T is upper semi-B-Fredholm, then there exists d ∈N such that R(Td) is closed and Td is upper-semi
Fredholm. By Proposition 6.1, it follows that T ∈ R6(X). Thus ae(T) < ∞ and R(Tae(T)+1) is closed. We verify
that ae(T + F) < ∞ and R(T + F)ae(T)+1 is closed.
Step 1: We claim that ae(T + F) < ∞. We first prove that for all non negative integer n

dim
[
N(Tn)/N(T + F)n

∩N(Tn)
]
< ∞. (4)
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Indeed, we have TF = FT. Then for all n, TnF = FTn. So, Tn(0) = F(Tn(0)). It follows that Tn(0) ⊂ R(F). Let
x ∈ N(Tn). Then,

(T + F)nx ⊂

n∑
i=0

Ci
nTn−iFix

⊂ Tnx + F
( n∑

i=1

Ci
nFi−1Tn−ix

)
⊂ Tn(0) + R(F) ⊂ R(F).

Let us introduce, the relation A given by:

A = (T + F)n
/N(Tn) : N(Tn) −→ R(F)

x 7−→ (T + F)nx

and Â induced by A by:
Â : N(Tn)/N(A) −→ R(F)

x 7−→ Ax.

Therefore, N(Â) = {0} and according to Proposition I.6.4 in [5], we get:

dim D(Â) = dim
[
N(Tn)/N(T + F)n

∩N(Tn)
]
≤ dim

(
R(F)

)
< +∞.

Now, let p = ae(T). Given n ≥ p + 1, it follows by substituting T + F for T in (4) that:

dim
[
N(T + F)n/N(Tn) ∩N(T + F)n

]
< +∞.

Since, dim
[
N(Tn)/N(Tp)

]
< +∞, we have

dim
[
N(T + F)n/N(Tp) ∩N(T + F)n

]
< +∞. (5)

We shall now show that for all n ≥ p + 1, there exists a subspace vn such that dim(vn) < +∞ and

N(F) ∩N(Tp) ⊂
[
N(T + F)n + vn

]
∩N(Tp) ⊂ N(Tp).

Let x ∈ N(F) ∩N(Tp). Then, (T + F)nx ⊂ R(F). Thus,

x ∈ (T + F)−n(R(F)) = N((T + F)n) + vn.

Where dim(vn) < +∞. Hence, N(F)∩N(Tp) ⊂
[
N(T +F)n +vn

]
∩N(Tp).Using now the hypothesis dim R(F) <

+∞, it follows that codim(N(F)) < +∞. Then

dim
[
N(Tp)/N(F) ∩N(Tp)

]
< +∞ (6)

and so,

dim
[
N(Tp)/

(
N(T + F)n + vn

)
∩N(Tp)

]
< +∞. (7)

We prove now that:

dim
[(

N(T + F)n + vn

)
/N(F) ∩N(Tp)

]
< +∞. (8)

In fact, we have
dim

[(
N(T + F)n + vn

)
/N(F) ∩ N(Tp)

]
≤ dim

[(
N(T + F)n + vn

)
/
(
N(T + F)n + vn

)
∩ N(Tp)

]
+ dim

[(
N(T + F)n +
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vn

)
∩N(Tp)/N(F) ∩N(Tp)

]
.

Since, N(T + F)n
∩N(Tp) ⊂

[(
N(T + F)n + vn

)
∩N(Tp)

]
, then using (5), we get:

dim
[(

N(T + F)n + vn

)
/
(
N(T + F)n + vn

)
∩N(Tp)

]
≤ dim

[(
N(T + F)n + vn

)
/N(T + F)n

∩N(Tp)
]

≤ dim
[
N(T + F)n/N(T + F)n

∩N(Tp)
]

+ dim(vn) < +∞

and by (6), we get:

dim
[(

N(T + F)n + vn

)
∩N(Tp)/N(F) ∩N(Tp)

]
≤ dim

[
N(Tp)/N(F) ∩N(Tp)

]
< +∞.

Thus, proves (8). As, consequence of (8) we get:

dim
[
N(T + F)n+1 + vn + vn+1/N(T + F)n + vn + vn+1

]
≤ dim

[
N(T + F)n+1 + vn + vn+1/N(F) ∩N(Tp)

]
−dim

[
N(T + F)n + vn + vn+1/N(F) ∩N(Tp)

]
< +∞.

So, dim
[
N(T + F)n+1/N(T + F)n

]
< +∞. Thus ae(T + F) ≤ p + 1.

Step2: We claim that R(T + F)ae(T+F)+1 is closed. Let n ≥ q + 1 with q = max(ae(T), ae(T + F)). Denote T0 and F0,
the restrictions of T and F to R(Tq) respectively. Then T0 is both closed and upper semi-Fredholm. Indeed,
for n ≥ ae(T), we have c′n(T) < +∞ and so, kn(T) < +∞.As R(Tae(T)+1) is closed using Lemma 4.1, we get R(Tq)
is closed. So, T0 is a closed linear relation with R(T0) = R(Tq+1) closed and by Lemma 3.1, α(T0) = c′q(T) < +∞.
Then T0 ∈ φ+. Moreover T0 + F0 is closed us a sum of a closed linear relation and bounded operator. So
T0 +F0 is upper semi-Fredholm and by Proposition 24 in [1], we get (T0 +F0)n

∈ φ+(R(Tq)). Hence R(T0 +F0)n

is closed.
We claim now that

(T + F)nTq(X) =e Tq(T + F)n(X). (9)

We prove (9) by induction on n. For n = 1, let x ∈ X and y ∈ Tqx. Then, Tqx = y + Tq(0). Hence:

(T + F)Tqx = (T + F)(y + Tq(0)) = (T + F)y + (T + F)Tq(0)
⊂ Ty + Fy + (T + F)Tq(0)
⊂ TTqx + FTqx + (T + F)Tq(0)
⊂ Tq(T + F)x + (T + F)Tq(0)
⊂ Tq(T + F)x + V1

where V1 is a finite dimensional subspace. Hence, (T + F)Tq(X) ⊂ Tq(T + F)(X) + V1. On the other hand we
have,

Tq(T + F)x = Tq+1x + TqFx
= Ty + Fy + Tq+1(0) + FTq(0)
= (T + F)y + Tq+1(0) + FTq(0)
⊂ (T + F)Tqx + W1

where W1 is a finite dimensional subspace. Hence, Tq(T + F)(X) ⊂ (T + F)Tq(X) + W1. Then, the result is
proved for n = 1. Suppose now that (T+F)nTq(X) ⊂ Tq(T+F)n(X)+Vn and Tq(T+F)n(X) ⊂ (T+F)nTq(X)+Wn.
Let x ∈ X

(T + F)n+1Tqx = (T + F)(T + F)nTqx
⊂ (T + F)

[
Tq(T + F)nx + Vn

]
⊂ (T + F)Tq(T + F)nx + (T + F)Vn.
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Let z ∈ (T + F)nx, then (T + F)nx = z + (T + F)n(0). So,

(T + F)n+1Tqx ⊂ (T + F)Tqz + (T + F)Tq(T + F)n(0) + (T + F)Vn
⊂ Tq(T + F)z + V1 + (T + F)Tq(T + F)n(0) + (T + F)Vn
⊂ Tq(T + F)(T + F)nx + V1 + (T + F)Tq(T + F)n(0) + (T + F)Vn.

Then (T + F)n+1Tq(X) ⊂ Tq(T + F)n+1(X) + Vn+1. By the same way, we prove that Tq(T + F)n+1(X) ⊂ (T +
F)n+1Tq(X) + Wn+1 and so, (9) is proved.
Then R(T0 + F0)n = (T0 + F0)n(R(Tq)) = (T + F)nTq(X) =e Tq(T + F)n(X). It follows that Tq(T + F)n(X) is closed.
So, T−q(Tq(T + F)n(X)) = (T + F)n(X) + N(Tq) = R(T + F)n + N(Tq) is closed. It remains to prove that:
R(T + F)n

∩N(Tq) is closed. By (7), we have

dim
[
R(T + F)n

∩N(Tp)/R(T + F)n
∩

[
N(T + F)n + vn

]
∩N(Tp) < +∞.

Then it suffices to prove that R(T + F)n
∩

(
N(T + F)n + vn

)
is closed.

As dim
[
N(T + F)n + vn/N(T + F)n

]
< +∞, then

dim
[
R(T + F)n

∩

[
N(T + F)n + vn

]
/R(T + F)n

∩N(T + F)n
]
< +∞.

Then it suffices to prove that R(T + F)n
∩N(T + F)n is closed. This is an immediate consequence of Lemmas

4.1, 4.2 and 4.4 in [15], and ae(T + F) < +∞. The result is now an immediate consequence of Lemma 2.4 and
Lemma 4.1. In view of Proposition 6.1, since we have T + F ∈ R6(X), then T + F is upper semi-B-Fredholm.
�

Theorem 6.2. Let X be a Banach space and F be a bounded operator with finite rank and T ∈ BCR(X) such that
ρ(T) , ∅. Suppose that TF = FT. If T is lower semi-B-Fredholm linear relation then T + F is lower semi-B-Fredholm
linear relation.

Proof

Since T is lower semi-B-Fredholm, then there exists d ∈N such that R(Td) is closed and Td is lower-semi
Fredholm. By Proposition 6.2, it follows that T ∈ R3(X). Then de(T) < ∞ and R(Tde(T)) is closed. We claim
that de(T + F) < ∞ and R(T + F)de(T+F) is closed. Indeed,
Step 1: We prove that de(T + F) < ∞. First we show that, for all n ≥ 1,

dim
[
R(Tn)/R(T + F)n

∩ R(Tn)
]
≤ dim R(F) < +∞. (10)

Let y1, ..., ym ∈ R(Tn) such that
(
y1, y2..., ym

)
is linearly independent in R(Tn)/R(T + F)n

∩ R(Tn). Then there
exist x1, x2, ..., xm ∈ X such that yi ∈ Tnxi for all 1 ≤ i ≤ m. Hence, yi ∈ R(T + F)n + R(F). So, there exists zi

and ti such that yi ∈ (T + F)nzi + Fti. Suppose that dim
(
R(F)

)
< m. Then there exist α1, ..., αm not all zero

such that α1Ft1 + ...+ αmFtm = 0. It follows that, α1y1 + ...+ αmym ∈ (T + F)n
(
α1z1 + ...+ αmzm

)
. This leads to,

α1y1 + ... + αmym = 0. Which is a contradiction. Let d = de(T) < +∞, then for all n ≥ d, we have

dim
[
R(Td)/R(Tn)

]
< +∞. (11)

By combination of (10) and (11) we get, for all n ≥ d

dim
[
R(Td)/R(T + F)n

∩ R(Tn)
]
< +∞. (12)

Thus,

dim
[
R(Td) + R(F)/R(T + F)n

∩ R(Td)
]
< +∞, for all n ≥ d + 1. (13)
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Using (13) and substituting T + F for T in (10) we get

dim
[
R(Td) + R(F)/R(T + F)n

]
< +∞, for all n ≥ d + 1.

Therefore, dim
[
R(T + F)n/R(T + F)n+1

]
= dim

[
R(Td) + R(F)/R(T + F)n+1

]
−dim

[
R(Td) + R(F)/R(T + F)n

]
< +∞

for all n ≥ d. Thus de(T + F) < +∞.
Step 2: We show that R(T + F)de(T+F) is closed. Since de(T) < ∞ so R(Tde(T)) =e R(Tn) for all n ≥ de(T). Suppose
that de(T) ≤ de(T+F) then R(Tde(T)) =e R(Tde(T+F)). As F is of finite rank so we have R(T+F)de(T+F) =e R(Tde(T+F)).
Indeed, by (10) we get

dim
[
R(Tde(T+F))/R(T + F)de(T+F)

∩ R(Tde(T+F))
]
≤ dim R(F) < ∞.

Hence, R(Tde(T+F)) ⊂e R(T + F)de(T+F). We replace T by T + F and F by −F in (10) we get

dim
[
R(T + F)de(T+F)/R(T)de(T+F)

∩ R(T + F)de(T+F)
]
≤ dim R(F) < ∞.

Hence, R(T + F)de(T+F)
⊂e R(T)de(T+F). It follows that, R(T + F)de(T+F) =e R(Tde(T+F)). Since R(Tde(T+F)) is closed

then R(T + F)de(T+F) is closed.
Now, if de(T +F) ≤ de(T) then R(T +F)de(T+F) =e R(T +F)de(T). As F is of finite rank then we have R(T +F)de(T) =e
R(Tde(T)). Indeed, using (10) we get

dim
[
R(Tde(T))/R(T + F)de(T)

∩ R(Tde(T))
]
≤ dim R(F) < ∞.

Hence R(Tde(T)) ⊂e R(T + F)de(T). By interchanging T by T + F and F by −F in (10), we have dim
[
R(T +

F)de(T)/R(Tde(T)) ∩ R(T + F)de(T)
]
< ∞. Hence R(T + F)de(T)

⊂e R(Tde(T)). It follows that, R(T + F)de(T) =e R(Tde(T)).
As R(Tde(T)) is closed then R(T + F)de(T) is closed which implies that, R(T + F)de(T+F) is closed. Thus we have
T + F ∈ R3(X) so by Proposition 6.2, T + F is lower semi-B-Fredholm. �

By means of B-Fredholm linear relation classes, we can define the following spectra :

σBF(T) =
{
λ ∈ C such that T − λI is not a B-Fredholm relation

}
,

σUSBF(T) =
{
λ ∈ C such that T − λI is not an upper semi-B-Fredholm relation

}
,

σLSBF(T) =
{
λ ∈ C such that T − λI is not a lower semi-B-Fredholm relation

}
,

σSBF(T) =
{
λ ∈ C such that T − λI is not a semi-B-Fredholm relation

}
,

the B-Fredholm spectrum, upper semi-B-Fredholm spectrum, lower semi-B-Fredholm spectrum and semi-
B-Fredholm sepctrum, respectively.
As consequences of the above theorems we give the following corollary.

Corollary 6.1. Let X be a Banach space and F be a bounded operator such that F is of finite rank and T ∈ BCR(X)
such that ρ(T) , ∅ and ρ(T + F) , ∅. Suppose that TF = FT, then

i) σUSBF(T + F) = σUSBF(T),

ii) σLSBF(T + F) = σLSBF(T),

iii) σSBF(T + F) = σSBF(T),

iv) σBF(T + F) = σBF(T).
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