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The aAB-, BAB-, yAB- and NAB-duals for Sequence Spaces
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Abstract. Let A = (a,x) and B = (b,x) be two infinite matrices with real entries. The main purpose of
this paper is to generalize the multiplier space for introducing the concepts of aAB-, BAB-, yAB-duals and
NAB-duals. Moreover, these duals are investigated for the sequence spaces X and X(A), where X € {c, ¢, [,,}
for 1 < p < co. The other purpose of the present study is to introduce the sequence spaces

[e5]
€ X} P
n=1

where X € {l, ¢, cp}, and computing the NAB-(or Null) duals and fAB-duals for these spaces.

o [}

X(A,A) = {x = (xx) : [Z Ap X — Z Ap—1,kXk
k=1

k=1

1. Introduction

Let w denote the space of all real-valued sequences. Any vector subspace of w is called a sequence space.
For 1 < p < oo, denote by [, the space of all real sequences x = (x,) € w such that

o 1/p
Il = [Z w] <o,
n=1

Forp = oo, (X4 )7 s interpreted as sup, ., |x,|. We write c and co for the spaces of all convergent and
null sequences, respectively. Also, bs and cs are used for the spaces of all bounded and convergent series,
respectively. Kizmaz [8] defined the backward difference sequence space

X(A) ={x=(x): Ax e X},
for X € {lw, ¢, co}, where Ax = (xx — Xk-1);-1, Xo = 0. Observe that X(A) is a Banach space with the norm

lIxlla = sup |xx — xk-1l.
k>1

In the summability theory, the f-dual of a sequence space is very important in connection with inclusion
theorems. The idea of dual sequence space was introduced by Kéthe and Toeplitz [9], and it is generalized
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to the vector-valued sequence spaces by Maddox [10]. For the sequence spaces X and Y, the set M(X, Y)
defined by
MYV =z=@)ew : @u), €Y Vr=(y)eX),

is called the multiplier space of X and Y. With the above notation, the a-, - y and N-duals of a sequence
space X, which are respectively denoted by X¢, Xf, X” and XV, are defined by

X*=M(X, 1), XP=M(X,cs), X' =MX,bs), XN =M(X,cp).
For a sequence space X, the matrix domain X(A) of an infinite matrix A is defined by
XA)=fx=m)ew : AxeX}, (1)

which is a sequence space. The new sequence space X(A) generated by the limitation matrix A from a
sequence space X can be the expansion or the contraction and or the overlap of the original space X.

In the past, several authors studied Kothe-Toeplitz duals of sequence spaces that are the matrix domains
in classical spaces I, I, ¢ and cp. For instance, some matrix domains of the difference operator was studied
in [4]. Domain of backward difference matrix in the space [, was investigated for 1 < p < co by Basar and
Altay in [3] and was studied for 0 < p < 1 by Altay and Basar in [1]. Recently the Kéthe-Toeplitz duals
were computed for some new sequence spaces by Erfanmanesh and Foroutannia [5], [6] and Foroutannia
[7]. For more details on the domain of triangle matrices in some sequence spaces, the reader may refer to
Chapter 4 of [2].

In this study, the concept of the multiplier space is generalized and the aAB-, BAB-, yAB- and NAB-
duals are determined for the classical sequence spaces ., c and cy. Also the normed sequence space X(A)
is extended to semi-normed space X(A, A), where X € {l.,c,co}. We consider some topological properties
of this space and derive inclusion relations concerning with its. Moreover, we compute the NAB-(or Null)
duals for the space X(A, A). The results are generalizations of some results of Malkowsky and Rakocevic
[11], Kizmaz [8] and Erfanmanesh and Foroutannia [5].

2. The Generalized Multiplier Space and its Kéthe-Toeplitz Duals and Null Duals

In this section, we introduce the generalization of multiplier space and present the new generalizations
of Kothe-Toeplitz duals and Null duals of sequence spaces. Furthermore, we obtain these duals for the
sequence spaces ., ¢ and ¢g. Throughout this paper, let I be the identity matix.

Definition 2.1. Suppose that A = (a,x) and B = (byy) are two infinite matrices with real entries such that
Yoreq AngXx < oo forall x = (xx) € X and n = 1,2,---. For the sequence spaces X and Y, the set Map(X,Y)
defined by

Map(X,Y) = {z Ew : Z byxzk < co, ¥Yn and [Z by kzk Z an,kxk] €Y Vxe X},
n=1

k=1 k=1 k=1
is called the generalized multiplier space of X and Y.

The aAB-, BAB-, yAB- and NAB-duals of a sequence space X, which are respectively denoted by X*48, XP48,
X748 and XN4B, are defined by

X = Map(X, ), XPAP = Myp(X,cs), XP = Map(X,bs), XNP = Myp(X, co).
It should be noted that in the special case A = B = I, we have M4 3(X,Y) = M(X,Y). So
XUtAB = X¢ XﬂAB — Xﬂ XVAB =X XNAB — XN.
Let E = (E,) and F = (F,) be two partitions of finite subsets of the positive integers such that

maxE, < minE, ., maxF, <minF,,
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forn=1,2,---. If the infinite matrices A = (a,x) and B = (b,) are defined by

|1 ifkeE,
Ik = { 0 otherwise, 2)

and

0 otherwise,

bn,k:{ 1 ifkeF, 3)

then M p(X,Y) = Mgr(X,Y) and the new multiplier space M4 p(X,Y) is a generalization of the multiplier
space Mg r(X,Y) introduced in [5].

Lemma 2.2. Let X,Y,Z C w and {X; : 0 € I} be any collection of subsets of w, then
(i) X ¢ Z implies Map(Z,Y) C Map(X,Y),
(ll) YcZz implies MA/B(X, Y) C MA/B(X, Z),
(iii) X € Map(Mp (X, Y),Y),
(iv) Map(X,Y) = Map(Mpa(Ma (X, Y),Y),Y),
(@) Map(User X5, Y) = (Noer Ma,p(Xs, Y).

Proof. Parts (i) and (ii) are obvious, by using the definition of generalized multiplier space.

(iii) Let x € X. We have (X2, anjzk YLpoq buiXi)ey € Y for all z € Mpa(X,Y), and consequently x €
Map(Mpa(X,Y),Y).

(iv) By applying (iii) with X replaced by Mp 4(X,Y), we deduce that

Map(X,Y) C Map(Mpa(Map(X,Y),Y),Y).
Conversely, due to (iii), we have X C Mpa(Map(X,Y),Y). So
Mas(Mpa(Map(X,Y),Y),Y) C Map(X,Y),

by part ().
(v) First, X5 C [Use; X5 for all 6 € I implies

Mas(_JXo, ¥) € [\ Mas(Xo, V),

o€l o€l

by part (i). Conversely, if a € (5¢; Map(Xs,Y), thenz € My p(Xs,Y) forall 6 € I. So

(o) (o) ©
Z bn,kzk Z Ap Xk €y,
k=1 k=1 n=1

for all 6 € I and for all x € Xs. This implies (Y32, buxzk Ypoq niXk)yey € Y for all x € (Jse X5, hence
z e MA,B(UE)GI Xé, Y) Thus méelMA,B(Xél Y) C MA,B(U(‘)EI X5, Y) [l

Remark 2.3. If A = B = I, we have Lemma 1.25 from [11].
Remark 2.4. If two matrices A and B are defined by (2) and (3), then we obtain Lemma 2.1 from [5].

If t denotes either of the symbols «, , ¥ or N, from now on we will use the following notation

(X‘I'AB)TAB — X‘H‘AB .
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Corollary 2.5. Let X,Y C wand { Xs : 6 € I} be any collection of subsets of w, also t denotes either of the symbols
a, B,y or N, then

(i) X*AB c XPAB ¢ XYAB C w; in particular, X8 is a sequence space.

(i) X C Z implies Z*4B c X148,

(i) X c XtA4,

(iZ)) XTAA — YTttAA
(

0) (User XO)MB = Nser X?;AB-
Remark 2.6. If A = B = I, we have Corollary 1.26 from [11].
Remark 2.7. If two matrices A and B are defined by (2) and (3), then we obtain Corollary 2.1 from [5].

Below, we determine the generalized multiplier space for some sequence spaces. For this purpose, we recall
the following theorem from [11]. Let X and Y be two sequence spaces and A = (a,,x) be an infinite matrix
of real numbers a,,, where n,k € N = {1,2,---}. We say that A defines a matrix mapping from X into Y,
and we denote itby A : X — Y, if for every sequence x € X the sequence Ax = {(Ax),} ", exists and isin Y,
where (Ax), = Yo anixx forn =1,2,---. By (X, Y), we denote the class of all infinite matrices A such that
A : X — Y. We consider the conditions

[z mn,k']m, @
T\ k=1

lima, ;=0 (k=1,2,---), (5)

lima,, =1l forsomel;eR (i=1,2,--), (6)

lim (Z an,k} =1 for somel € R. (7)
k=1

With the notation of (1), the spaces I (A), c(A) and cy(A) contain all of the sequences x = (x,,) that Ax = {(Ax),}
are the bounded, convergent and null sequences, respectively.

Theorem 2.8. ([11], Theorem 1.36) We have
(1) A € (Ieo, o) if and only if the condition (4) holds, in this case I C lo(A);
(if) A € (co, o) if and only if the conditions (4) and (5) hold, in this case ¢y C co(A);
(iii) A € (c, c) if and only if the conditions (4), (6) and (7) hold, in this case c C c(A);
(iv) A € (co, ¢) if and only if the conditions (4) and (6) hold, in this case ¢y C c(A).

Theorem 2.9. Let A be an invertible matrix. We have the following statements.
(1) Ma g(co, X) = Ioo(B), where X € {lw, ¢, co} and A satisfies the conditions (4) and (5);
(i) Ma (I, X) = co(B), where X € {c, co} and A satisfies the condition (4);
(iii) If in addition Y ;2 anx = R for all n, then Ma g(c, ¢) = c(B) and A satisfies the conditions (4), (6) and (7).

Proof. (i) Since cy C ¢ C I, by applying Lemma 2.2(ii), we have
Ma,p(co, o) C Ma,p(co, €) C Map(co, lo)-

So it is sufficient to verify l(B) € Ma(co, co) and Map(co, ) C l(B). Suppose that z € [o(B) and x € co.
Due to Theorem 2.8(ii) we have x € ¢y(A), so

321;10 (i bn,ka i a,,,kxk] = 0, (8)
k=1

k=1
this means that z € My g(co, cp). Thus I (B) € Ma p(co, co)-
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o)

Now we assume z ¢ l(B). Then there is a subsequence (ZZ; bn,,ka)] , of the sequence (¥;2, bukZic)ee

such that |Z;11 b,,/,kzk} > j2 for j =1,2,---. Since A is an invertible matrix, there exists a sequence x = (x)
such that ‘

Z e = (-1)j

=t " Yoot b iz’

for all j. Hence

this shows that M4 5(co, Is) C Ieo(B).
(i7) We have
MA,B(ZOO/ CO) - MA,B(ZOO/ C)/
by applying Lemma 2.2(ii). It is sufficient to prove cop(B) € M4 p(ls, co) and Ma p(le, ¢) C co(B). Suppose that

z € co(B). By Theorem 2.8, we have limy—co (X 5oq UniZk Lgeq AniXk) = 0 for all x € I, that is z € M p(le, o).
Thus ¢o(B) € My p(l, co)-

Now we assume z ¢ ¢o(B). Then there is a real number as b > 0 and a subsequence (Z,‘:‘;l b”/rkzk)j=1 of

the sequence (Y52 byxzk),., such that |Z,‘21 bnj,kzk| >bforallforj=1,2,--- . We define the sequence x as in
part (ii). We have x € [, and
[Z by kzk Z an,kxk] ¢c,
k=1 k=1

n=1

which implies z ¢ M4 p(lw, ¢). This shows that Ma p(le, ¢) C co(B).

(iii) Suppose that z € ¢(B). By applying Theorem 2.8(iii), we deduce that limy,—,eo (Y 50q bukZk Xopeq BniXk)
exists for all x € c. Soz € My (¢, c) and c(B) € Ma p(c, ¢).

Conversely we assume z ¢ c¢(B). We define the sequence x by x = (%, %, --+). It is obvious that x € c and
(Xt bugzie Yo AngeXic ey = (Lieq bukzi)pe; & €- S0 z & Mag(c, ¢), this shows M g(c,c) C ¢(B). O

Remark 2.10. If A = B = I, we have Example 1.28 from [11].
Remark 2.11. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.2 from [5].
Corollary 2.12. Suppose that sup,, Y21 ayl < 00, we have cYA® = I,(B) and INAP = ¢o(B).
Proof. The desired result follows from Theorem 2.9. [
Theorem 2.13. If matrix A satisfies the conditions in Theorem 2.9, then we have the following statements.
(i) Map(co(A), X) = l(B), where X € {lw, ¢, co}. In particular (co(A))NAE = I(B).
(i1) Ma 5(I(A), X) = co(B), where X € {c, co}. In particular (Io(A))NAE = ¢o(B).
(iii) If in addition Y, a,x = R for all n, then M g(c(A), ¢) = ¢(B).

Proof. We only prove the part (i), the other parts are proved similarly. Since cy C ¢o(A), according to
Corollary 2.5(ii) and Theorem 2.9 we obtain

Ma,p(co(A), X) € Map(co, X) = leo(B).
The inclusion I (B) € Ma p(co(A), X) is gained by the relation (8). O

In the following, we obtain the aAB-, BAB- and yAB-duals for the sequence spaces [, ¢ and ¢.
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Theorem 2.14. Suppose that A is an invertible matrix that satisfies the condition (4), and t denote either of the
symbols a, p or y. We have
CSAB — AB — II?B — ll(B)

In particular for B =1,

cHA = ctAL = [HAl =

Proof. We only prove the statement for the case t = f3, the other cases prove similarly. Obviously P c

cPAB ¢ CO ¥ by Corollary 2.5(ii). So it is sufficient to show that ;(B) c I2¥ and cﬁ 4B - L (B).
Now, let z € [1(B) and x € I, be given. Due to Theorem 2.8(i), we deduce that x € lo(A). Hence

(o] (o] (o]
22 buack ) s
k=1

n=1 k=1

o)

Z Ay Xk

k=1

0o

< sup by zk| < o0, )

k=1

-

which shows (X721 by xzk Yopeq an,kxk):;l €cs. Thusz € lgf B and ll(B) C ZE? B On the other hand, for a given
z ¢ ll(B) we prove the existence of a sequence x € cg with (X121 buizk Yopeq n kxk):lo 1 ¢ cs, which implies

z¢ c thus altogether C e l1(B). Because z ¢ [;(B), we may choose an index subsequence (1) in N with

ng = 0 and
n;i—1 0
Z Z by kzk

n=nj [ k=1

> (j=1,2,---).

Since A is an invertible matrix, there exists a sequence x = (xx) such that

o)

1 oo
Z A Xy = ;sgn Z bn],kzk,
k=1

k=1

for all j. Hence x € ¢g and

Zb xze| > 1,

k=1

Y [Zb Z] Ly

n=nj1 \ k=1 ”"11

for j=1,2,---. Therefore (Y721 @ik Yopoq bn,ka)Zil ¢cs,and z ¢ cﬁAB. This completes the proof. [J
Remark 2.15. If A = B = I and 1 denote either of the symbols a, § or y. we have
CS:C’L:lL:ll,
hence Theorem 1.29 from [11] is resulted.
Remark 2.16. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.3 from [5].

In the next theorem, we examine the a#AB-, BAB- and yAB-duals for the sequence spaces [(A), c(A) and
CQ(A).

Theorem 2.17. Let A be a matrix which satisfies the conditions in Theorem 2.8. If t denote either of the symbols a,
Bory, then
(co(AN™? = (c(AN™P = (I(A)F = L(B).

Proof. We only prove the statement for the case t = 3, the other case prove similarly. Obviously
(leo(A)PE C ((A)PA < (co(A)P7,

by Corollary 2.5(i). So it is sufficient to verify (co(A))f*8 c I;(B) and 1(B) C (Io(A))*8. By applying
Corollary 2.5(ii) and Theorem 2.14, we deduce that (co(A))PA8 c cﬁ AP

by the relation (9). O

= [1(B). The other inclusion will gain
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Theorem 2.18. Suppose that A is an invertible matrix. If 1 < p < coand q = p/(p — 1), then (l,,(A))ﬁAB = 1,(B).
Moreover for p = 1, we have (11(A))PA8 = 1(B).

Proof. We only prove the statement for the case 1 < p < oo, the case p = 1 will prove similarly. Let z € [;(B)

be given. By Holder’s inequality, we have
Z Zbk]z] Zak]x] Z Zbk]z] Z < 00, (10)
k=1 \ j= k=1 ]j=1 k=1

for all x € I,(A). This shows z € (I,(A))*? and hence I;(B) C (I,(A))E.

Now, let z € (I, (A))P1B be given. We consider the linear functional f, : [,(A) — R defined by

fn(x) = Z [Z bk,jZ]'] {Z ak,]‘x]'] ( X € lp(A)) ,
k=1 j=1 =1

forn =1,2,---. Similar to (10), we obtain
qu/q[ " P]l/p
=1

ful)l < [Z
for every x € [,(A). So the linear functional f, is bounded and

k=1
n n 1 1/‘1
A< YD bezi| |
k=1 | j=1
for all n. We now prove reverse of the above inequality. Since A is invertible, we define the sequence x = (xy)

such that
Z g, jXj = [sgn Z bk]z]J Z bk]z]

j=1
for 1 < k < n, and put the remaining elements zero. Obviously x € [,(A), so

n
> bz

=1

(o8]
2o

=1

Z b iz

j=1

{Ilk/]'x]'
j=1

-1

7

Ifull 2

k=1

L TialDiabez (Z
llxl, (ZZ:l |Z7:1 bk,]'Z]'|q)l/p

forn=1,2,---. Since z € I,(A)f%, the map f. : I,(A) — R defined by

f=Y [Z bk,jz]»] w o (xel@),
k=1 \j=1

is well-defined and linear, and also the sequence (f,) is pointwise convergent to f.. By using the Banach-

q]l/a

Steinhaus theorem, it can be shown that ||£;|| < sup, I|f.ll < oo, so (ZkZl |):j:1 bk,]-z]-|q) "<candze 1;(B).
This establishes the proof of theorem. [J

Remark 2.19. IfA=B=1Iand1 <p <ooand q=p/(p —1). Then we have lﬁ = l;. Moreover forp =1, llj = .

Definition 2.20. A subset X of w is said to be A-normal if y € X and | Y721 ap Xl < | Yopoy niyl forn =1,2,---,
together imply x € X. In the special case that A = I, the set X is called normal.
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Example 2.21. The sequence spaces ¢y and ls, are normal, but they are not A-normal. Sinceifx = (1,-1,2,-2,--+),
y=(, %, -+ ) and the matrix A = (a, ) is defined by

|1 ifke{2n-1,2n}
k=10 otherwise.

We have | Y221 anpxil < | Xpeq Aniyil and y € co, loo, while x & co, loo.

Example 2.22. The sequence spaces co(A) and 1(A) are A-normal, but they are not normal. Because, if x =
(1,1,2,2,--)and y = (1,-1,2,-2,---) and A is the matrix as in Example 2.21, then it is obvious that |x;| < |yil,
y € co(A) and y € l(A), while x ¢ co(A) and x ¢ I(A).

Example 2.23. The sequence spaces ¢ and c(A) are neither A-normal nor normal.

Theorem 2.24. Suppose that A is an invertible matrix and X is a A-normal subset of w. We have

XaAB — XﬁAB — XVAB .

Proof. Obviously X8 c XPAB ¢ X74B, by Corollary 2.5(i). To prove the statement, it is sufficient to verify
X8 ¢ X4B Let z € X4 and x € X be given. Since A is invertible, we define the sequence y such that

i AniYk = [sgn i bn,kzk] i A Xk
k=1

k=1 k=1
, for all n. Consequently y € X, since X is A-normal. So

7

forn=1,2,---. Itis clear |Z,‘f;1 a,1,kyk| < |Z,‘:;1 Ay Xk

i [i by xzk i ﬂn,kyk]
k=1 k

k=1 =1

sup < oo,

n

Furthermore, by the definition of the sequence y, ., |Z;°=1 bukzk Yopeq an,kxk| < 0. Since x € X was arbitrary,
z € X*4B_ This finishes the proof of the theorem. [J

Remark 2.25. If A = B = [ and X be a normal subset of w, we have
X=X =X,
hence Remark 1.27 from [11] is gained.

Remark 2.26. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.4 from [5].

3. The Difference Sequence Space X(A, A)

Suppose that A = (a,,x) is an infinite matrix with real entries. For every sequence space X, we define the
generalized difference sequence space X(A, A) as follows:

X(A/ A) = {x = (xk) : [Z(an,k - an—l,k)xk] € X} ’
n=1

k=1

where X € {l»,c,cp}. The seminorm |.Ja,A on X(A, A) is defined by

: (11)

(o]
Z(an,k — A1) Xk
=1

Ixla,n = sup
n
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It should be noted that the function |.Ja o cannot be the norm. Since if x = (1,-1,0,0,---) and A = (a,x) is
defined by,

|1 ifke{2n-1,2n}
k=190 otherwise,

then |xl4a = 0 while x # 0. It is also significant that in the special case A = I, we have X(4, A) = X(A) and

lxla,a = lIxlla-
If the infinite matrix A = (6,,) is defined by

1 ifk=n
O =4 -1 ifk=n-1

0 otherwise,

with the notation of (1), we can redefine the spaces l(A, A), c(A, A) and co(A, A) as follows:
loo(A/ A) = (ZOO)AA/ C(A/ A) = (C)AA/ CO(A/ A) = (CO)AA'

The purpose of this section is to consider some properties of the sequence spaces X(A, A) and is to derive
some inclusion relations related to them. We also characterize NAB-duals and fAB-duals of X(A, A) where
X e {lw,c,col.

Now, we may begin with the following theorem which is essential in the study.

Theorem 3.1. The sequence spaces X(A, A) for X € {lw, ¢, co} are complete semi-normed linear spaces with respect
to the semi-norm defined by (11).

Proof. This is a routine verification and so we omit the details. [

It can easily be checked that the absolute property does not hold on the space X(A, A), thatis Ixlaa # x|l
for at least one sequence in this space which says that X(A, A) is the sequence space of non-absolute type,
where |x| = (|xk|).

Theorem 3.2. Let A = (a,x) be an invertible matrix. The space X(A, A) is linearly isomorphic to the space X(A), for
X € {le, ¢, co}.

Proof. Consider the map
T: XA A) — X(A)

I~ o]

Z Ay Xk

k=1

X —>

7

n=1

obviously the map T is linear, surjective and injective. [

In the following, we derive some inclusion relations concerning with the spaces X, X(A), X(A) and X(A, A)
where X € {l., ¢, co}.

Theorem 3.3. We have the following inclusions.
(i) If the condition (4) holds, then I, C l(A, A).
(i) If the conditions (4) and (5) hold, then cy C co(A, A).
(iii) If the conditions (4), (6) and (7) hold, then c C c(A, A).
(iv) We have X(A) C X(A, A) where X € {l, ¢, co}-

Proof. The parts (i), (if) and (iii) obtain by applying Theorem 2.8.
(iv) Put A = I in parts (i), (ii) and (iii), it can conclude that X C X(A). Let x € X(A) be given. We deduce
that (Lo aniX),; € X 50 (Lpeq @nixk) ey € X(A). Hence x € X(A, A) and X(A) c X(A,A). O
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Below, we compute NAB-dual of the difference sequence spaces X(A, A) where X € {I«, ¢, co}. In order to do
this, we first give a preliminary lemma.

Lemma 3.4. (i) If x € lo(A) then sup, |%| < 00,
(i) If x € c(A) then 3 — & (k — o0) where Axy — & (k — o0).
(iii) If x € co(A) then F — 0 (k — oo).

Proof. The proof is trivial and so is omitted. [

Theorem 3.5. Define the set d; as follows:

dy = {z = (zk) : [”Z bn,kzk] € CO},
k=1 n=1

then
NP(A, A) = IEB(A, A) = dy.

Proof. We first show that cN48(A, A) = d;. Suppose that z € (NB(A, A), we have

(o)

[oe]
lim bn,ka Z Ap Xk = 0,

n—oo

k=1 k=1
for all x € c(A, A). Since A is invertible, we can choose the sequence x such that Y., 4, xxx = n for all n, so
x € ¢(A, A) and hence limy 0 11 Y521 byizi = 0. Thus cMB(A, A) € di. Now let z € dy. Since (Y12, i), €

c(A) for every x € c(A, A), by previous lemma lim,, e M = &, where & = im0 Yoy (@ — An—1)c)Xk-
Hence

(o] (o] oo (o)
. . Yke1 A Xk
lim by zk E AniXe = lim n E bpzr———— =0,
n—o0 n—o0 n
k=1 k=1 k=1

therefore z € cNB(A, A) and d; c (NB(A, A).
Below, we prove that INB(A, A) = d;. It is clear that c(A, A) C lw(A, A), so INB(A, A) c NB(A,A) = dy.

Now let z € di and x € I(A, A). We have (Y12 aniXk),—; € lo(A) and sup, M < oo by Lemma 3.4. So
limoob zia x—limnib ZM—O
””O"kl n,kkk1 n,kk—nHoo L n,k%k n =Y,

This implies that z € IN4B(A, A). O
Remark 3.6. If A = B = I, we have cN(A) = IN(A) = {z = (z) : (kay) € co}, [8].
Remark 3.7. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.4 from [5].

Theorem 3.8. Let A = (a,) be an invertible matrix. We define the set d; as follows:

dy = {z =(z¢) : [nz b,,,kzk] € lm},
k=1 n=1

then cN4B(A, A) = ds.
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Proof. Suppose that z € d,. Since (Y12, an,kxk);o:1 € ¢o(A) for all x € co(A, A), we have lim,, M =0, by
Lemma 3.4. So

(o] (o] (o) [ee)
. . Zkzl A ke Xk
lim buxze Y anpxe=limn Y b z——— =0,
n— o0 4 4 n—oo0 4 n
k=1 k=1 k=

this implies that z € c)45(4, A).

Now let z € cf)\’AB(A, A) and x € cyo(A,A) be given. By Theorem 3.2, there exists one and only one

y = (y&) € co such that Y;2; anxxx = X7y yj. So

(o)

lim Z Z buxzry; = lim Z by kzk Z an X =0,

=1 k=1

for all y = (yx) € co. If we define the matrix D = (dy)),_, by

d. = Y bz forl<j<n
v 0 for j>mn,

then lim,,_,o, Z‘]ﬁl dyjyj = 0forall y € cg. So D = (dy;) € (co, co) and

sup ankzk —sup Zankzk —sup id”f < o0,
j=1 k=1 j=1

by Theorem 2.8(ii). This completes the proof of the theorem. [
Remark 3.9. If A = B = I, we have cg’(A) ={z = (z) : (kax) € I}, hence Lemma 2 from [8] is resulted.
Remark 3.10. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.6 from [5].

In order to investigate the BAB-dual of the difference sequence space c) (A), we need the following lemma.
Lemma 3.11. ([8], Lemma 1) Let (zx) € Iy and if limy_,o |zxxx| = L exists for an x € co(A), then L = 0.

For the next result, we introduce the sequence (Rx) given by
= Z by jzj.
t=k j=1
Theorem 3.12. Let A = (a,x) be an invertible matrix. If
dy={z=(z) €i(B) : (Re) € h Ny (A)),
then we have C’SAB(A, A) =

Proof. Suppose that z € d; and x € ¢o(A, A), by using Abel’s summation formula we have

m
n=1
m n [oe] (o) (o] m (o] (o9
= (S Y, [Z o= Yo ] . [ S, ] 3 i,
n=1\t=1 j=1 k=1 n=1 k=1 k=1
m (o] 00
= Z Ri = Ryu41) [Z Ay kX — Z ﬂn+1,kxk] + (R1 = Ry41) Z A1 Xk
1 k=1 k=1

(o] o0 (o]
= R, (Z Ap X — Z Ap kxk] - Ry Z A1 Xk (12)
1 =1 k=1
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This implies that Y~ (Y72 bukzk Yoy dniXx) is convergent, so z € chB(A, A).

Conversely let z € C’SAB(A, A), we show that z € d;. Obviously z € [1(B). Suppose that z ¢ [1(B), we can
choose an index sequence (1,) in IN with

ny—1
np=1 and Z

Nn=ny-1

(o]
Z bn,kzk

k=1

>v (velN).

Since A is an invertible matrix, we may find x = (xx) € co(A) C co(A, A) such that

0o

1 (o]
Z Ay kX = Esgn Z burzk (ny—1 <n<mny, and v € N),

k=1 k=1
hence
1 ny—1 [
Z [Z b kzk Z an,kka =3 Z Z burze| > 1 (v € N),
n=ny-1 \ k=1 n=ty—1 | k=1

therefore (Y30 buizk Ypeq GniXk) ey ¢ cs and z & cﬁAB(A, A).

Let x € co(A, A). Since A is invertible, by Theorem 3.2 there exist y = (yx) € co such that Y.}, a, 2 =
Y.i.1yj, then by Abel’s summation formula

i Ruyn i(Rn - Ry41) [i ]/j] + i Riys1Yn
n=1 n=1 i=1 n=1
Z [Z y]] (Z by ]Z]] + Z Rius1Yn.

n=1

So

m o (o)
Z(Z bz ) ans
k=1

n=1 k=1

= i(Rn — Ryps1)Yn = Z [i i bi ]z]] (13)
n=1

n=1\i=n j=1

Now we define the matrix D = (d,,x) by

d. = Yl Xiabijzj forl<k<n
e 0 fork > n,

Since limy—co Yopoq itk = liMyseo Yooy dniyi exists for all y € ¢ by (13), then D = (d,x) € (co,¢). This

implies that
sup Z |yl = sup Z Z Z bi jz

k=1 |i=k j=1

< o,

by Theorem 2.8(iv). Thus we conclude Y ;”; |Ri| < co. Furthermore (12) implies that limy,_co Ry+1 Yopeq @n+1kXk
exists for each x € ¢o(A, A). So by Lemma 3.11 we have (R,) € c)'(A), which completes the proof. [

Remark 3.13. If A = B = I, we have c’é(A) ={z=@)eh : (R)ehng N(A)} where Ry = Y2\ zi, hence Lemma
3 from [8] is resulted.
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