
Filomat 31:19 (2017), 6219–6231
https://doi.org/10.2298/FIL1719219F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let A = (an,k) and B = (bn,k) be two infinite matrices with real entries. The main purpose of
this paper is to generalize the multiplier space for introducing the concepts of αAB-, βAB-, γAB-duals and
NAB-duals. Moreover, these duals are investigated for the sequence spaces X and X(A), where X ∈ {c0, c, lp}

for 1 ≤ p ≤ ∞. The other purpose of the present study is to introduce the sequence spaces

X(A,∆) =

x = (xk) :

 ∞∑
k=1

an,kxk −

∞∑
k=1

an−1,kxk


∞

n=1

∈ X

 ,
where X ∈ {l∞, c, c0}, and computing the NAB-(or Null) duals and βAB-duals for these spaces.

1. Introduction

Letω denote the space of all real-valued sequences. Any vector subspace ofω is called a sequence space.
For 1 ≤ p < ∞, denote by lp the space of all real sequences x = (xn) ∈ ω such that

‖x‖p =

 ∞∑
n=1

|xn|
p


1/p

< ∞.

For p = ∞,
(∑∞

n=1 |xn|
p)1/p is interpreted as supn≥1 |xn|. We write c and c0 for the spaces of all convergent and

null sequences, respectively. Also, bs and cs are used for the spaces of all bounded and convergent series,
respectively. Kizmaz [8] defined the backward difference sequence space

X(∆) = {x = (xk) : ∆x ∈ X},

for X ∈ {l∞, c, c0}, where ∆x = (xk − xk−1)∞k=1, x0 = 0. Observe that X(∆) is a Banach space with the norm

‖x‖∆ = sup
k≥1
|xk − xk−1|.

In the summability theory, the β-dual of a sequence space is very important in connection with inclusion
theorems. The idea of dual sequence space was introduced by Köthe and Toeplitz [9], and it is generalized
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to the vector-valued sequence spaces by Maddox [10]. For the sequence spaces X and Y, the set M(X,Y)
defined by

M(X,Y) =
{
z = (zk) ∈ ω : (zkxk)∞n=1 ∈ Y ∀x = (xk) ∈ X

}
,

is called the multiplier space of X and Y. With the above notation, the α-, β- γ and N-duals of a sequence
space X, which are respectively denoted by Xα, Xβ, Xγ and XN, are defined by

Xα = M(X, l1), Xβ = M(X, cs), Xγ = M(X, bs), XN = M(X, c0).

For a sequence space X, the matrix domain X(A) of an infinite matrix A is defined by

X(A) = {x = (xn) ∈ ω : Ax ∈ X}, (1)

which is a sequence space. The new sequence space X(A) generated by the limitation matrix A from a
sequence space X can be the expansion or the contraction and or the overlap of the original space X.

In the past, several authors studied Köthe-Toeplitz duals of sequence spaces that are the matrix domains
in classical spaces lp, l∞, c and c0. For instance, some matrix domains of the difference operator was studied
in [4]. Domain of backward difference matrix in the space lp was investigated for 1 ≤ p ≤ ∞ by Başar and
Altay in [3] and was studied for 0 < p < 1 by Altay and Başar in [1]. Recently the Köthe-Toeplitz duals
were computed for some new sequence spaces by Erfanmanesh and Foroutannia [5], [6] and Foroutannia
[7]. For more details on the domain of triangle matrices in some sequence spaces, the reader may refer to
Chapter 4 of [2].

In this study, the concept of the multiplier space is generalized and the αAB-, βAB-, γAB- and NAB-
duals are determined for the classical sequence spaces l∞, c and c0. Also the normed sequence space X(∆)
is extended to semi-normed space X(A,∆), where X ∈ {l∞, c, c0}. We consider some topological properties
of this space and derive inclusion relations concerning with its. Moreover, we compute the NAB-(or Null)
duals for the space X(A,∆). The results are generalizations of some results of Malkowsky and Rakocevic
[11], Kizmaz [8] and Erfanmanesh and Foroutannia [5].

2. The Generalized Multiplier Space and its Köthe-Toeplitz Duals and Null Duals

In this section, we introduce the generalization of multiplier space and present the new generalizations
of Köthe-Toeplitz duals and Null duals of sequence spaces. Furthermore, we obtain these duals for the
sequence spaces l∞, c and c0. Throughout this paper, let I be the identity matix.

Definition 2.1. Suppose that A = (an,k) and B = (bn,k) are two infinite matrices with real entries such that∑
∞

k=1 an,kxk < ∞ for all x = (xk) ∈ X and n = 1, 2, · · · . For the sequence spaces X and Y, the set MA,B(X,Y)
defined by

MA,B(X,Y) =

z ∈ ω :
∞∑

k=1

bn,kzk < ∞, ∀n and

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk


∞

n=1

∈ Y, ∀x ∈ X

 ,
is called the generalized multiplier space of X and Y.

The αAB-, βAB-, γAB- and NAB-duals of a sequence space X, which are respectively denoted by XαAB, XβAB,
XγAB and XNAB, are defined by

XαAB = MA,B(X, l1), XβAB = MA,B(X, cs), XγAB = MA,B(X, bs), XNAB = MA,B(X, c0).

It should be noted that in the special case A = B = I, we have MA,B(X,Y) = M(X,Y). So

XαAB = Xα, XβAB = Xβ, XγAB = Xγ, XNAB = XN.

Let E = (En) and F = (Fn) be two partitions of finite subsets of the positive integers such that

max En < min En+1, max Fn < min Fn+1,
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for n = 1, 2, · · · . If the infinite matrices A = (an,k) and B = (bn,k) are defined by

an,k =

{
1 i f k ∈ En
0 otherwise, (2)

and

bn,k =

{
1 i f k ∈ Fn
0 otherwise, (3)

then MA,B(X,Y) = ME,F(X,Y) and the new multiplier space MA,B(X,Y) is a generalization of the multiplier
space ME,F(X,Y) introduced in [5].

Lemma 2.2. Let X,Y,Z ⊂ ω and {Xδ : δ ∈ I} be any collection of subsets of ω, then
(i) X ⊂ Z implies MA,B(Z,Y) ⊂MA,B(X,Y),
(ii) Y ⊂ Z implies MA,B(X,Y) ⊂MA,B(X,Z),
(iii) X ⊂MA,B(MB,A(X,Y),Y),
(iv) MA,B(X,Y) = MA,B(MB,A(MA,B(X,Y),Y),Y),
(v) MA,B(

⋃
δ∈I Xδ,Y) =

⋂
δ∈I MA,B(Xδ,Y).

Proof. Parts (i) and (ii) are obvious, by using the definition of generalized multiplier space.
(iii) Let x ∈ X. We have

(∑∞
k=1 an,kzk

∑
∞

k=1 bn,kxk
)∞

n=1 ∈ Y for all z ∈ MB,A(X,Y), and consequently x ∈
MA,B(MB,A(X,Y),Y).

(iv) By applying (iii) with X replaced by MB,A(X,Y), we deduce that

MA,B(X,Y) ⊂MA,B(MB,A(MA,B(X,Y),Y),Y).

Conversely, due to (iii), we have X ⊂MB,A(MA,B(X,Y),Y). So

MA,B(MB,A(MA,B(X,Y),Y),Y) ⊂MA,B(X,Y),

by part (i).
(v) First, Xδ ⊂

⋃
δ∈I Xδ for all δ ∈ I implies

MA,B(
⋃
δ∈I

Xδ,Y) ⊂
⋂
δ∈I

MA,B(Xδ,Y),

by part (i). Conversely, if a ∈
⋂
δ∈I MA,B(Xδ,Y), then z ∈MA,B(Xδ,Y) for all δ ∈ I. So ∞∑

k=1

bn,kzk

∞∑
k=1

an,kxk


∞

n=1

∈ Y,

for all δ ∈ I and for all x ∈ Xδ. This implies
(∑∞

k=1 bn,kzk
∑
∞

k=1 an,kxk
)∞

n=1 ∈ Y for all x ∈
⋃
δ∈I Xδ, hence

z ∈MA,B(
⋃
δ∈I Xδ,Y). Thus

⋂
δ∈I MA,B(Xδ,Y) ⊂MA,B(

⋃
δ∈I Xδ,Y).

Remark 2.3. If A = B = I, we have Lemma 1.25 from [11].

Remark 2.4. If two matrices A and B are defined by (2) and (3), then we obtain Lemma 2.1 from [5].

If † denotes either of the symbols α, β, γ or N, from now on we will use the following notation

(X†AB)†AB = X††AB.
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Corollary 2.5. Let X,Y ⊂ ω and {Xδ : δ ∈ I } be any collection of subsets of ω, also † denotes either of the symbols
α, β, γ or N, then

(i) XαAB
⊂ XβAB

⊂ XγAB
⊂ ω; in particular, X†AB is a sequence space.

(ii) X ⊂ Z implies Z†AB
⊂ X†AB.

(iii) X ⊂ X††AA.
(iv) X†AA = X†††AA.
(v) (

⋃
δ∈I Xδ)

†AB =
⋂
δ∈I X†AB

δ .

Remark 2.6. If A = B = I, we have Corollary 1.26 from [11].

Remark 2.7. If two matrices A and B are defined by (2) and (3), then we obtain Corollary 2.1 from [5].

Below, we determine the generalized multiplier space for some sequence spaces. For this purpose, we recall
the following theorem from [11]. Let X and Y be two sequence spaces and A = (an,k) be an infinite matrix
of real numbers an,k, where n, k ∈ N = {1, 2, · · · }. We say that A defines a matrix mapping from X into Y,
and we denote it by A : X→ Y, if for every sequence x ∈ X the sequence Ax = {(Ax)n}

∞

n=1 exists and is in Y,
where (Ax)n =

∑
∞

k=1 an,kxk for n = 1, 2, · · · . By (X,Y), we denote the class of all infinite matrices A such that
A : X→ Y. We consider the conditions

sup
n

 ∞∑
k=1

|an,k|

 < ∞, (4)

lim
n→∞

an,k = 0 (k = 1, 2, · · · ), (5)

lim
n→∞

an,k = lk f or some li ∈ R (i = 1, 2, · · · ), (6)

lim
n→∞

 ∞∑
k=1

an,k

 = l f or some l ∈ R. (7)

With the notation of (1), the spaces l∞(A), c(A) and c0(A) contain all of the sequences x = (xn) that Ax = {(Ax)n}

are the bounded, convergent and null sequences, respectively.

Theorem 2.8. ([11], Theorem 1.36) We have
(i) A ∈ (l∞, l∞) if and only if the condition (4) holds, in this case l∞ ⊂ l∞(A);
(ii) A ∈ (c0, c0) if and only if the conditions (4) and (5) hold, in this case c0 ⊂ c0(A);
(iii) A ∈ (c, c) if and only if the conditions (4), (6) and (7) hold, in this case c ⊂ c(A);
(iv) A ∈ (c0, c) if and only if the conditions (4) and (6) hold, in this case c0 ⊂ c(A).

Theorem 2.9. Let A be an invertible matrix. We have the following statements.
(i) MA,B(c0,X) = l∞(B), where X ∈ {l∞, c, c0} and A satisfies the conditions (4) and (5);
(ii) MA,B(l∞,X) = c0(B), where X ∈ {c, c0} and A satisfies the condition (4);
(iii) If in addition

∑
∞

k=1 an,k = R for all n, then MA,B(c, c) = c(B) and A satisfies the conditions (4), (6) and (7).

Proof. (i) Since c0 ⊂ c ⊂ l∞, by applying Lemma 2.2(ii), we have

MA,B(c0, c0) ⊂MA,B(c0, c) ⊂MA,B(c0, l∞).

So it is sufficient to verify l∞(B) ⊂ MA,B(c0, c0) and MA,B(c0, l∞) ⊂ l∞(B). Suppose that z ∈ l∞(B) and x ∈ c0.
Due to Theorem 2.8(ii) we have x ∈ c0(A), so

lim
n→∞

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk

 = 0, (8)

this means that z ∈MA,B(c0, c0). Thus l∞(B) ⊂MA,B(c0, c0).
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Now we assume z < l∞(B). Then there is a subsequence
(∑
∞

k=1 bn j,kzk

)∞
j=1

of the sequence
(∑∞

k=1 bn,kzk
)∞

k=1

such that
∣∣∣∑∞k=1 bn j,kzk

∣∣∣ > j2 for j = 1, 2, · · · . Since A is an invertible matrix, there exists a sequence x = (xk)
such that

∞∑
k=1

an j,kxk =
(−1) j j∑
∞

k=1 bn j,kzk
,

for all j. Hence  ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk


∞

n=1

< l∞,

this shows that MA,B(c0, l∞) ⊂ l∞(B).
(ii) We have

MA,B(l∞, c0) ⊂MA,B(l∞, c),

by applying Lemma 2.2(ii). It is sufficient to prove c0(B) ⊂MA,B(l∞, c0) and MA,B(l∞, c) ⊂ c0(B). Suppose that
z ∈ c0(B). By Theorem 2.8, we have limn→∞

(∑∞
k=1 bn,kzk

∑
∞

k=1 an,kxk
)

= 0 for all x ∈ l∞, that is z ∈ MA,B(l∞, c0).
Thus c0(B) ⊂MA,B(l∞, c0).

Now we assume z < c0(B). Then there is a real number as b > 0 and a subsequence
(∑
∞

k=1 bn j,kzk

)∞
j=1

of

the sequence
(∑∞

k=1 bn,kzk
)∞

n=1 such that
∣∣∣∑∞k=1 bn j,kzk

∣∣∣ > b for all for j = 1, 2, · · · .We define the sequence x as in
part (ii). We have x ∈ l∞ and  ∞∑

k=1

bn,kzk

∞∑
k=1

an,kxk


∞

n=1

< c,

which implies z <MA,B(l∞, c). This shows that MA,B(l∞, c) ⊂ c0(B).
(iii) Suppose that z ∈ c(B). By applying Theorem 2.8(iii), we deduce that limn→∞

(∑∞
k=1 bn,kzk

∑
∞

k=1 an,kxk
)

exists for all x ∈ c. So z ∈MA,B(c, c) and c(B) ⊂MA,B(c, c).
Conversely we assume z < c(B). We define the sequence x by x = ( 1

R ,
1
R , · · · ). It is obvious that x ∈ c and(∑∞

k=1 bn,kzk
∑
∞

k=1 an,kxk
)∞

k=1 =
(∑∞

k=1 bn,kzk
)∞

k=1 < c. So z <MA,B(c, c), this shows MA,B(c, c) ⊂ c(B).

Remark 2.10. If A = B = I, we have Example 1.28 from [11].

Remark 2.11. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.2 from [5].

Corollary 2.12. Suppose that supn
∑
∞

k=1 |an,k| < ∞, we have cNAB
0 = l∞(B) and lNAB

∞ = c0(B).

Proof. The desired result follows from Theorem 2.9.

Theorem 2.13. If matrix A satisfies the conditions in Theorem 2.9, then we have the following statements.
(i) MA,B(c0(A),X) = l∞(B), where X ∈ {l∞, c, c0}. In particular (c0(A))NAB = l∞(B).
(ii) MA,B(l∞(A),X) = c0(B), where X ∈ {c, c0}. In particular (l∞(A))NAB = c0(B).
(iii) If in addition

∑
∞

k=1 an,k = R for all n, then MA,B(c(A), c) = c(B).

Proof. We only prove the part (i), the other parts are proved similarly. Since c0 ⊂ c0(A), according to
Corollary 2.5(ii) and Theorem 2.9 we obtain

MA,B(c0(A),X) ⊂MA,B(c0,X) = l∞(B).

The inclusion l∞(B) ⊂MA,B(c0(A),X) is gained by the relation (8).

In the following, we obtain the αAB-, βAB- and γAB-duals for the sequence spaces l∞, c and c0.
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Theorem 2.14. Suppose that A is an invertible matrix that satisfies the condition (4), and † denote either of the
symbols α, β or γ. We have

c†AB
0 = c†AB = l†AB

∞ = l1(B).

In particular for B = I,
c†AI

0 = c†AI = l†AI
∞ = l1.

Proof. We only prove the statement for the case † = β, the other cases prove similarly. Obviously lβAB
∞ ⊂

cβAB
⊂ cβAB

0 by Corollary 2.5(ii). So it is sufficient to show that l1(B) ⊂ lβAB
∞ and cβAB

0 ⊂ l1(B).
Now, let z ∈ l1(B) and x ∈ l∞ be given. Due to Theorem 2.8(i), we deduce that x ∈ l∞(A). Hence

∞∑
n=1

∣∣∣∣∣∣∣
∞∑

k=1

bn,kzk

∞∑
k=1

an,kxk

∣∣∣∣∣∣∣ ≤ sup
n

∣∣∣∣∣∣∣
∞∑

k=1

an,kxk

∣∣∣∣∣∣∣
∞∑

n=1

∣∣∣∣∣∣∣
∞∑

k=1

bn,kzk

∣∣∣∣∣∣∣ < ∞, (9)

which shows
(∑∞

k=1 bn,kzk
∑
∞

k=1 an,kxk
)∞

n=1 ∈ cs. Thus z ∈ lβAB
∞ and l1(B) ⊂ lβAB

∞ . On the other hand, for a given
z < l1(B) we prove the existence of a sequence x ∈ c0 with

(∑∞
k=1 bn,kzk

∑
∞

k=1 an,kxk
)∞

n=1 < cs, which implies
z < cβAB

0 ; thus altogether cβAB
0 ⊂ l1(B). Because z < l1(B), we may choose an index subsequence (n j) in N with

n0 = 0 and
n j−1∑

n=n j−1

∣∣∣∣∣∣∣
∞∑

k=1

bn,kzk

∣∣∣∣∣∣∣ > j ( j = 1, 2, · · · ).

Since A is an invertible matrix, there exists a sequence x = (xk) such that

∞∑
k=1

an j,kxk =
1
j
s1n

∞∑
k=1

bn j,kzk,

for all j. Hence x ∈ c0 and

n j−1∑
n=n j−1

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk

 =
1
j

n j−1∑
n=n j−1

∣∣∣∣∣∣∣
∞∑

k=1

bn,kzk

∣∣∣∣∣∣∣ > 1,

for j = 1, 2, · · · . Therefore
(∑∞

k=1 an,kxk
∑
∞

k=1 bn,kzk
)∞

k=1 < cs, and z < cβAB
0 . This completes the proof.

Remark 2.15. If A = B = I and † denote either of the symbols α, β or γ. we have

c†0 = c† = l†∞ = l1,

hence Theorem 1.29 from [11] is resulted.

Remark 2.16. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.3 from [5].

In the next theorem, we examine the αAB-, βAB- and γAB-duals for the sequence spaces l∞(A), c(A) and
c0(A).

Theorem 2.17. Let A be a matrix which satisfies the conditions in Theorem 2.8. If † denote either of the symbols α,
β or γ, then

(c0(A))†AB = (c(A))†AB = (l∞(A))†AB = l1(B).

Proof. We only prove the statement for the case † = β, the other case prove similarly. Obviously

(l∞(A))βAB
⊂ (c(A))βAB

⊂ (c0(A))βAB,

by Corollary 2.5(ii). So it is sufficient to verify (c0(A))βAB
⊂ l1(B) and l1(B) ⊂ (l∞(A))βAB. By applying

Corollary 2.5(ii) and Theorem 2.14, we deduce that (c0(A))βAB
⊂ cβAB

0 = l1(B). The other inclusion will gain
by the relation (9).
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Theorem 2.18. Suppose that A is an invertible matrix. If 1 < p < ∞ and q = p/(p − 1), then (lp(A))βAB = lq(B).
Moreover for p = 1, we have (l1(A))βAB = l∞(B).

Proof. We only prove the statement for the case 1 < p < ∞, the case p = 1 will prove similarly. Let z ∈ lq(B)
be given. By Hölder’s inequality, we have∣∣∣∣∣∣∣∣

∞∑
k=1

 ∞∑
j=1

bk, jz j


 ∞∑

j=1

ak, jx j


∣∣∣∣∣∣∣∣ ≤

 ∞∑
k=1

∣∣∣∣∣∣∣∣
∞∑
j=1

bk, jz j

∣∣∣∣∣∣∣∣
q

1/q  ∞∑
k=1

∣∣∣∣∣∣∣∣
∞∑
j=1

ak, jx j

∣∣∣∣∣∣∣∣
p

1/p

< ∞, (10)

for all x ∈ lp(A). This shows z ∈ (lp(A))βAB and hence lq(B) ⊂ (lp(A))βAB.
Now, let z ∈ (lp(A))βAB be given. We consider the linear functional fn : lp(A)→ R defined by

fn(x) =

n∑
k=1

 n∑
j=1

bk, jz j


 n∑

j=1

ak, jx j

 (
x ∈ lp(A)

)
,

for n = 1, 2, · · · . Similar to (10), we obtain

| fn(x)| ≤

 n∑
k=1

∣∣∣∣∣∣∣∣
n∑

j=1

bk, jz j

∣∣∣∣∣∣∣∣
q

1/q  n∑
k=1

∣∣∣∣∣∣∣∣
n∑

j=1

ak, jx j

∣∣∣∣∣∣∣∣
p

1/p

,

for every x ∈ lp(A). So the linear functional fn is bounded and

‖ fn‖ ≤

 n∑
k=1

∣∣∣∣∣∣∣∣
n∑

j=1

bk, jz j

∣∣∣∣∣∣∣∣
q

1/q

,

for all n. We now prove reverse of the above inequality. Since A is invertible, we define the sequence x = (xk)
such that

n∑
j=1

ak, jx j =

s1n
n∑

j=1

bk, jz j


∣∣∣∣∣∣∣∣

n∑
j=1

bk, jz j

∣∣∣∣∣∣∣∣
q−1

,

for 1 ≤ k ≤ n, and put the remaining elements zero. Obviously x ∈ lp(A), so

‖ fn‖ ≥
| fn(x)|
‖x‖p

=

∑n
k=1

∣∣∣∑n
j=1 bk, jz j

∣∣∣q(∑n
k=1

∣∣∣∑n
j=1 bk, jz j

∣∣∣q)1/p =

 n∑
k=1

∣∣∣∣∣∣∣∣
n∑

j=1

bk, jz j

∣∣∣∣∣∣∣∣
q

1/q

,

for n = 1, 2, · · · . Since z ∈ lp(A)βAB, the map fz : lp(A)→ R defined by

fz(x) =

∞∑
k=1

 ∞∑
j=1

bk, jz j

 xk

(
x ∈ lp(A)

)
,

is well-defined and linear, and also the sequence ( fn) is pointwise convergent to fz. By using the Banach-

Steinhaus theorem, it can be shown that ‖ fz‖ ≤ supn ‖ fn‖ < ∞, so
(∑
∞

k=1

∣∣∣∑∞j=1 bk, jz j

∣∣∣q)1/q
< ∞ and z ∈ lq(B).

This establishes the proof of theorem.

Remark 2.19. If A = B = I and 1 < p < ∞ and q = p/(p − 1). Then we have lβp = lq. Moreover for p = 1, lβ1 = l∞.

Definition 2.20. A subset X of ω is said to be A-normal if y ∈ X and |
∑
∞

k=1 an,kxk| ≤ |
∑
∞

k=1 an,kyk| for n = 1, 2, · · · ,
together imply x ∈ X. In the special case that A = I, the set X is called normal.
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Example 2.21. The sequence spaces c0 and l∞ are normal, but they are not A-normal. Since if x = (1,−1, 2,−2, · · · ),
y = (1, 1

2 , · · · ) and the matrix A = (an,k) is defined by

an,k =

{
1 i f k ∈ {2n − 1, 2n}
0 otherwise.

We have |
∑
∞

k=1 an,kxk| ≤ |
∑
∞

k=1 an,kyk| and y ∈ c0, l∞, while x < c0, l∞.

Example 2.22. The sequence spaces c0(A) and l∞(A) are A-normal, but they are not normal. Because, if x =
(1, 1, 2, 2, · · · ) and y = (1,−1, 2,−2, · · · ) and A is the matrix as in Example 2.21, then it is obvious that |xi| ≤ |yi|,
y ∈ c0(A) and y ∈ l∞(A), while x < c0(A) and x < l∞(A).

Example 2.23. The sequence spaces c and c(A) are neither A-normal nor normal.

Theorem 2.24. Suppose that A is an invertible matrix and X is a A-normal subset of ω. We have

XαAB = XβAB = XγAB.

Proof. Obviously XαAB
⊂ XβAB

⊂ XγAB, by Corollary 2.5(i). To prove the statement, it is sufficient to verify
XγAB

⊂ XαAB. Let z ∈ XγAB and x ∈ X be given. Since A is invertible, we define the sequence y such that

∞∑
k=1

an,kyk =

s1n
∞∑

k=1

bn,kzk


∣∣∣∣∣∣∣
∞∑

k=1

an,kxk

∣∣∣∣∣∣∣ ,
for n = 1, 2, · · · . It is clear

∣∣∣∑∞k=1 an,kyk

∣∣∣ ≤ ∣∣∣∑∞k=1 an,kxk

∣∣∣, for all n. Consequently y ∈ X, since X is A-normal. So

sup
n

∣∣∣∣∣∣∣
n∑

k=1

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kyk


∣∣∣∣∣∣∣ < ∞.

Furthermore, by the definition of the sequence y,
∑
∞

n=1

∣∣∣∑∞k=1 bn,kzk
∑
∞

k=1 an,kxk

∣∣∣ < ∞. Since x ∈ X was arbitrary,
z ∈ XαAB. This finishes the proof of the theorem.

Remark 2.25. If A = B = I and X be a normal subset of ω, we have

Xα = Xβ = Xγ,

hence Remark 1.27 from [11] is gained.

Remark 2.26. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 2.4 from [5].

3. The Difference Sequence Space X(A,∆)

Suppose that A = (an,k) is an infinite matrix with real entries. For every sequence space X, we define the
generalized difference sequence space X(A,∆) as follows:

X(A,∆) =

x = (xk) :

 ∞∑
k=1

(an,k − an−1,k)xk


∞

n=1

∈ X

 ,
where X ∈ {l∞, c, c0}. The seminorm |||.|||A,∆ on X(A,∆) is defined by

|||x|||A,∆ = sup
n

∣∣∣∣∣∣∣
∞∑

k=1

(an,k − an−1,k)xk

∣∣∣∣∣∣∣ . (11)
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It should be noted that the function |||.|||A,∆ cannot be the norm. Since if x = (1,−1, 0, 0, · · · ) and A = (an,k) is
defined by,

an,k =

{
1 i f k ∈ {2n − 1, 2n}
0 otherwise,

then |||x|||A,∆ = 0 while x , 0. It is also significant that in the special case A = I, we have X(A,∆) = X(∆) and
|||x|||A,∆ = ‖x‖∆.

If the infinite matrix ∆ = (δn,k) is defined by

δn,k =


1 i f k = n
−1 i f k = n − 1
0 otherwise,

with the notation of (1), we can redefine the spaces l∞(A,∆), c(A,∆) and c0(A,∆) as follows:

l∞(A,∆) = (l∞)∆A, c(A,∆) = (c)∆A, c0(A,∆) = (c0)∆A.

The purpose of this section is to consider some properties of the sequence spaces X(A,∆) and is to derive
some inclusion relations related to them. We also characterize NAB-duals and βAB-duals of X(A,∆) where
X ∈ {l∞, c, c0}.

Now, we may begin with the following theorem which is essential in the study.

Theorem 3.1. The sequence spaces X(A,∆) for X ∈ {l∞, c, c0} are complete semi-normed linear spaces with respect
to the semi-norm defined by (11).

Proof. This is a routine verification and so we omit the details.

It can easily be checked that the absolute property does not hold on the space X(A,∆), that is |||x|||A,∆ , ||||x||||A,∆
for at least one sequence in this space which says that X(A,∆) is the sequence space of non-absolute type,
where |x| = (|xk|).

Theorem 3.2. Let A = (an,k) be an invertible matrix. The space X(A,∆) is linearly isomorphic to the space X(∆), for
X ∈ {l∞, c, c0}.

Proof. Consider the map

T : X(A,∆) −→ X(∆)

x −→

 ∞∑
k=1

an,kxk


∞

n=1

,

obviously the map T is linear, surjective and injective.

In the following, we derive some inclusion relations concerning with the spaces X, X(A), X(∆) and X(A,∆)
where X ∈ {l∞, c, c0}.

Theorem 3.3. We have the following inclusions.
(i) If the condition (4) holds, then l∞ ⊂ l∞(A,∆).
(ii) If the conditions (4) and (5) hold, then c0 ⊂ c0(A,∆).
(iii) If the conditions (4), (6) and (7) hold, then c ⊂ c(A,∆).
(iv) We have X(A) ⊂ X(A,∆) where X ∈ {l∞, c, c0}.

Proof. The parts (i), (ii) and (iii) obtain by applying Theorem 2.8.
(iv) Put A = I in parts (i), (ii) and (iii), it can conclude that X ⊂ X(∆). Let x ∈ X(A) be given. We deduce

that
(∑∞

k=1 an,kxk
)∞

n=1 ∈ X so
(∑∞

k=1 an,kxk
)∞

n=1 ∈ X(∆). Hence x ∈ X(A,∆) and X(A) ⊂ X(A,∆).
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Below, we compute NAB-dual of the difference sequence spaces X(A,∆) where X ∈ {l∞, c, c0}. In order to do
this, we first give a preliminary lemma.

Lemma 3.4. (i) If x ∈ l∞(∆) then supk

∣∣∣ xk
k

∣∣∣ < ∞.
(ii) If x ∈ c(∆) then xk

k → ξ (k→∞) where ∆xk → ξ (k→∞).
(iii) If x ∈ c0(∆) then xk

k → 0 (k→∞).

Proof. The proof is trivial and so is omitted.

Theorem 3.5. Define the set d1 as follows:

d1 =

z = (zk) :

n
∞∑

k=1

bn,kzk


∞

n=1

∈ c0

 ,
then

cNAB(A,∆) = lNAB
∞ (A,∆) = d1.

Proof. We first show that cNAB(A,∆) = d1. Suppose that z ∈ cNAB(A,∆), we have

lim
n→∞

∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk = 0,

for all x ∈ c(A,∆). Since A is invertible, we can choose the sequence x such that
∑
∞

k=1 an,kxk = n for all n, so
x ∈ c(A,∆) and hence limn→∞ n

∑
∞

k=1 bn,kzk = 0. Thus cNAB(A,∆) ⊂ d1. Now let z ∈ d1. Since
(∑∞

k=1 an,kxk
)∞

n=1 ∈

c(∆) for every x ∈ c(A,∆), by previous lemma limn→∞

∑
∞

k=1 an,kxk

n = ξ, where ξ = limn→∞
∑
∞

k=1(an,k − an−1,k)xk.
Hence

lim
n→∞

∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk = lim
n→∞

n
∞∑

k=1

bn,kzk

∑
∞

k=1 an,kxk

n
= 0,

therefore z ∈ cNAB(A,∆) and d1 ⊂ cNAB(A,∆).
Below, we prove that lNAB

∞ (A,∆) = d1. It is clear that c(A,∆) ⊂ l∞(A,∆), so lNAB
∞ (A,∆) ⊂ cNAB(A,∆) = d1.

Now let z ∈ d1 and x ∈ l∞(A,∆). We have
(∑∞

k=1 an,kxk
)∞

n=1 ∈ l∞(∆) and supn

∣∣∣∣∑∞k=1 an,kxk

n

∣∣∣∣ < ∞ by Lemma 3.4. So

lim
n→∞

∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk = lim
n→∞

n
∞∑

k=1

bn,kzk

∑
∞

k=1 an,kxk

n
= 0,

This implies that z ∈ lNAB
∞ (A,∆).

Remark 3.6. If A = B = I, we have cN(∆) = lN∞(∆) = {z = (zk) : (kak) ∈ c0}, [8].

Remark 3.7. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.4 from [5].

Theorem 3.8. Let A = (an,k) be an invertible matrix. We define the set d2 as follows:

d2 =

z = (zk) :

n
∞∑

k=1

bn,kzk


∞

n=1

∈ l∞

 ,
then cNAB

0 (A,∆) = d2.
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Proof. Suppose that z ∈ d2. Since
(∑∞

k=1 an,kxk
)∞

n=1 ∈ c0(∆) for all x ∈ c0(A,∆), we have limn→∞

∑
∞

k=1 an,kxk

n = 0, by
Lemma 3.4. So

lim
n→∞

∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk = lim
n→∞

n
∞∑

k=1

bn,kzk

∑
∞

k=1 an,kxk

n
= 0,

this implies that z ∈ cNAB
0 (A,∆).

Now let z ∈ cNAB
0 (A,∆) and x ∈ c0(A,∆) be given. By Theorem 3.2, there exists one and only one

y = (yk) ∈ c0 such that
∑
∞

k=1 an,kxk =
∑n

j=1 y j. So

lim
n→∞

n∑
j=1

∞∑
k=1

bn,kzky j = lim
n→∞

∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk = 0,

for all y = (yk) ∈ c0. If we define the matrix D = (dnj)∞n=1 by

dnj =

{ ∑
∞

k=1 bn,kzk f or 1 ≤ j ≤ n
0 f or j > n,

then limn→∞
∑
∞

j=1 dnjy j = 0 for all y ∈ c0. So D = (dkj) ∈ (c0, c0) and

sup
n

∣∣∣∣∣∣∣n
∞∑

k=1

bn,kzk

∣∣∣∣∣∣∣ = sup
n

∣∣∣∣∣∣∣∣
n∑

j=1

∞∑
k=1

bn,kzk

∣∣∣∣∣∣∣∣ = sup
n

∣∣∣∣∣∣∣∣
∞∑
j=1

dnj

∣∣∣∣∣∣∣∣ < ∞,
by Theorem 2.8(ii). This completes the proof of the theorem.

Remark 3.9. If A = B = I, we have cN
0 (∆) = {z = (zk) : (kak) ∈ l∞}, hence Lemma 2 from [8] is resulted.

Remark 3.10. If two matrices A and B are defined by (2) and (3), then we obtain Theorem 3.6 from [5].

In order to investigate the βAB-dual of the difference sequence space cN
0 (∆), we need the following lemma.

Lemma 3.11. ([8], Lemma 1) Let (zk) ∈ l1 and if limk→∞ |zkxk| = L exists for an x ∈ c0(∆), then L = 0.

For the next result, we introduce the sequence (Rk) given by

Rk =

∞∑
t=k

∞∑
j=1

bt, jz j.

Theorem 3.12. Let A = (an,k) be an invertible matrix. If

d3 = {z = (zk) ∈ l1(B) : (Rk) ∈ l1 ∩ cN
0 (∆)},

then we have cβAB
0 (A,∆) = d3

Proof. Suppose that z ∈ d3 and x ∈ c0(A,∆), by using Abel’s summation formula we have
m∑

n=1

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk


=

m∑
n=1

 n∑
t=1

∞∑
j=1

bt, jz j


 ∞∑

k=1

an,kxk −

∞∑
k=1

an+1,kxk

 +

 m∑
n=1

∞∑
k=1

bn,kzk

 ∞∑
k=1

am+1,kxk

=

m∑
n=1

(R1 − Rn+1)

 ∞∑
k=1

an,kxk −

∞∑
k=1

an+1,kxk

 + (R1 − Rm+1)
∞∑

k=1

am+1,kxk

=

m+1∑
n=1

Rn

 ∞∑
k=1

an,kxk −

∞∑
k=1

an−1,kxk

 − Rm+1

∞∑
k=1

am+1,kxk. (12)
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This implies that
∑
∞

n=1
(∑∞

k=1 bn,kzk
∑
∞

k=1 an,kxk
)

is convergent, so z ∈ cβAB
0 (A,∆).

Conversely let z ∈ cβAB
0 (A,∆), we show that z ∈ d3. Obviously z ∈ l1(B). Suppose that z < l1(B), we can

choose an index sequence (nv) inNwith

n0 = 1 and
nv−1∑

n=nv−1

∣∣∣∣∣∣∣
∞∑

k=1

bn,kzk

∣∣∣∣∣∣∣ > v (v ∈N).

Since A is an invertible matrix, we may find x = (xk) ∈ c0(A) ⊂ c0(A,∆) such that

∞∑
k=1

an,kxk =
1
v

s1n
∞∑

k=1

bn,kzk (nv−1 ≤ n < nv and v ∈N),

hence
nv−1∑

n=nv−1

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk

 =
1
v

nv−1∑
n=nv−1

∣∣∣∣∣∣∣
∞∑

k=1

bn,kzk

∣∣∣∣∣∣∣ > 1 (v ∈N),

therefore
(∑∞

k=1 bn,kzk
∑
∞

k=1 an,kxk
)∞

n=1 < cs and z < cβAB
0 (A,∆).

Let x ∈ c0(A,∆). Since A is invertible, by Theorem 3.2 there exist y = (yk) ∈ c0 such that
∑
∞

k=1 an,kxk =∑n
j=1 y j, then by Abel’s summation formula

m∑
n=1

Rnyn =

m∑
n=1

(Rn − Rn+1)

 n∑
j=1

y j

 +

m∑
n=1

Rm+1yn

=

m∑
n=1

 n∑
j=1

y j


 ∞∑

j=1

bn, jz j

 +

m∑
n=1

Rm+1yn.

So

m∑
n=1

 ∞∑
k=1

bn,kzk

∞∑
k=1

an,kxk

 =

m∑
n=1

(Rn − Rm+1)yn =

m∑
n=1

 m∑
i=n

∞∑
j=1

bi, jz j

 yn. (13)

Now we define the matrix D = (dn,k) by

dn,k =

{ ∑n
i=k

∑
∞

j=1 bi, jz j f or 1 ≤ k ≤ n
0 f or k > n,

Since limn→∞
∑
∞

k=1 dn,kyk = limn→∞
∑n

k=1 dn,kyk exists for all y ∈ c0 by (13), then D = (dn,k) ∈ (c0, c). This
implies that

sup
n

∞∑
k=1

|dn,k| = sup
n

n∑
k=1

∣∣∣∣∣∣∣∣
n∑

i=k

∞∑
j=1

bi, jz j

∣∣∣∣∣∣∣∣ < ∞,
by Theorem 2.8(iv). Thus we conclude

∑
∞

k=1 |Rk| < ∞. Furthermore (12) implies that limn→∞ Rn+1
∑
∞

k=1 an+1,kxk
exists for each x ∈ c0(A,∆). So by Lemma 3.11 we have (Rn) ∈ cN

0 (∆), which completes the proof.

Remark 3.13. If A = B = I, we have cβ0(∆) = {z = (zk) ∈ l1 : (Rk) ∈ l1 ∩ cN
0 (∆)} where Rk =

∑
∞

i=k zi, hence Lemma
3 from [8] is resulted.
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[1] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator ∆ on the sequence space lp, (0 < p < 1),
Commun. Math. Anal. 2:2 (2007) 1–11.
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