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Abstract.
In this paper we use the concept of numerical range to characterize best approximation points in

closed convex subsets of B(H). Finally by using this method we give also a useful characterization of best
approximation in closed convex subsets of a C∗-algebraA.

1. Introduction

The theory of best approximation by elements of convex sets in normed linear spaces, have been
studied by many investigators. Some results on existence and uniqueness of best approximation and co-
approximation in general Banach spaces can be found in [1, 4, 6, 8, 11, 14, 17, 19]. The Noncommutative
approximation and, in particular, approximation in the space of Hilbert operator has a long history (see
for example, [2, 9, 10, 12, 20]). This topic for the case of C∗-algebra A and its C∗-subalgebras in terms of
state functions of A∗ is done by Rieffel in [16], where A∗ is the dual space of A. These works are mainly
about the existence of best approximation and we can not found any matter for characterization of best
approximation.

In this paper, we give some results to characterize best approximation of convex sets in B(H). Finally
This characterization will be extend to convex subsets of C∗-algebras. Our main tools is using the concept
of numerical range and Gelfand-Naimark theorem.

2. Characterization of Approximation Points

In this section, first we give some definitions and lemmas which will be used later. Then we present
various characterizations of best approximation and co-approximation of elements of C∗-algebras.

Let f , 1 ∈ B(H). The numerical range of f relative to 1which is denoted by W(1∗ f ) is defined as follows:

W(1∗ f ) := {λ ∈ C : λ = lim
n→∞
〈 f (xn), 1(xn)〉, {xn} ∈ Z f }, (1)

where

Z f := {{xn} ∈ H : ‖xn‖ = 1, lim
n→∞
‖ f (xn)‖ = ‖ f ‖}. (2)

It is well Known that W(1∗ f ) is a compact convex subset of the complex plane [13]. An interesting special
case is when 1 be the identity operator, see[3, 18].
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We denote the directional derivative norm in point f along 1 by

τ2( f , 1) := lim sup
t→0+

‖ f + t1‖2 − ‖ f ‖2

2t
.

In the following, the relationship between the numerical range of f relative to 1 and its norm derivatives
will be investigated.

Lemma 2.1. Let f , 1 ∈ B(H). Then

−τ2( f ,−1) ≤ min ReW(1∗ f ) ≤ max ReW(1∗ f ) ≤ τ2( f , 1).

Proof. Suppose {xn} ∈ Z f , we get

‖ f + t1‖2 ≥ lim
n→∞
‖ f (xn) + t1(xn)‖2

= lim
n→∞

(‖ f (xn)‖2 + t2
‖1(xn)‖2 + 2tRe〈 f (xn), 1(xn)〉)

= ‖ f ‖2 + t2 lim
n→∞
‖1(xn)‖2 + 2t lim

n→∞
Re〈 f (xn), 1(xn),

hence
‖ f + t1‖2 − ‖ f ‖2

t
≥ t lim

n→∞
‖1(xn)‖2 + 2 lim

n→∞
Re〈 f (xn), 1(xn)〉,

setting t→ 0+, and taking lim sup then

τ2( f , 1) ≥ lim
n→∞

Re〈 f (xn), 1(xn)〉.

Thus τ2( f , 1) ≥ max ReW(1∗ f ). For the other inequality replace 1 by −1.

Let W be a nonempty subset of a normed vector space B(H) and f ∈ B(H). The set of all best approximation
to f from W is denoted by PW( f ). Thus

PW( f ) := {h ∈W| ‖ f − h‖ = inf
1∈W
‖ f − 1‖}. (3)

Theorem 2.2. Let U be a closed convex subset of B(H), f ∈ B(H) \U and 10 ∈ U. Then the following statements
are equivalent.

i) 10 ∈ PU( f ).

ii) For each h ∈ U,

max ReW((h − 10)∗( f − h)) ≤ 0. (4)

Proof. i→ ii. Since 10 ∈ PU( f ) for h ∈ U and t = 1 we have

‖ f − h + t(h − 10)‖2 − ‖ f − h‖2 ≤ 0.

As the functionϕdefined byϕ(t) =
‖ f+t1‖2−‖ f ‖2

2t is non-decreasing, setting t→ 0+, and taking lim sup therefore
τ2( f − h, h − 10) ≤ 0. Now by Lemma 2.1 we get (4).
ii → i. It is not restrictive to assume 10 = 0. Let inequality (4) holds but 10 < PU( f ), then there exist
h1 ∈ U \ {0}, such that ‖ f − h1‖ < ‖ f ‖. By applying (4) to hλ = λh1, for 0 < λ ≤ 1 we get

max ReW(h∗λ( f − hλ) = max ReW(λh∗1( f − λh1) ≤ 0.

Since 0 < λ, then
max ReW(h∗1( f − λh1) ≤ 0.
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and

max ReW(−h∗1( f − λh1)) ≥ min ReW(−h∗1( f − λh1))
= −max ReW(h∗1( f − λh1)) ≥ 0.

Now by Lemma 2.1 we get

τ2(( f − λh1),−h1) ≥ max ReW(−h∗1( f − λh1)) ≥ 0.

Since τ2 is upper semi-continuous in its arguments, we have

τ2( f ,−h1) ≥ lim sup
λ→o+

τ2(( f − λh1),−h1) ≥ 0.

This implies that there exist ε1 such that for t ∈ (0, ε1] we have ‖ f−th1‖
2
−‖ f ‖2

2t ≥ 0. Again since ϕ is non-
decreasing, we have ‖ f ‖ ≤ ‖ f − h1‖, which is a contradiction.

Lemma 2.3. Let 10, h and f ∈ B(H). If

max ReW((10 − h)∗( f − 10)) ≥ 0, (5)

then ‖ f − 10‖ ≤ ‖ f − h‖.

Proof. Let (5) be true and {xh
n}n∈N be a sequence of Z f−10 such that

lim
n→∞

Re〈( f − 10)(xh
n), (10 − h)(xh

n)〉 ≥ 0.

Therefore

‖ f − h‖ ≥ lim
n→∞
‖ f (xh

n) − h(xh
n)‖2 = lim

n→∞
‖ f (xh

n) − 10(xh
n) + 10(xh

n) − h(xh
n)‖2

= lim
n→∞

(‖ f (xh
n) − 10(xh

n)‖2 + ‖10(xh
n) − h(xh

n)‖2)

+ 2Re〈( f − 10)(xh
n), 10(xh

n) − h(xh
n))〉

≥ lim
n→∞
‖ f (xh

n) − 10(xh
n)‖2 = ‖ f − 10‖

2.

This completes the proof.

Lemma 2.4. Let U be a closed convex subset of B(H), f ∈ B(H) \U and 10 ∈ U, If max ReW((h− 10)∗( f − h)) ≥ 0
for each h ∈ U, then

max ReW((10 − h)∗( f − 10) ≥ 0, (h ∈ U).

Proof. Suppose, on the contrary, it is possible to find an element h ∈ U such that

max ReW((10 − h)∗( f − 10) = −δ < 0.

Since Re〈( f − 10)(x), (10 − h)(x)〉 is a continuous function on H, there exist an open set G ⊆ H such that
Z f−10 ⊆ G and

max
x∈G

Re〈( f − 10)(x), (10 − h)(x)〉 < −δ.

Then there exist 0 < ε0, such that for each ε ∈ (0, ε0] we have

X f−10 (ε) = {{xn}n∈N ∈ H : lim
n→∞
‖( f − 10)(xn)‖ ≥ ‖ f − 10‖ − ε} ⊆ G

and
max Re lim

n→∞
〈( f − 10)(xn), (10 − h)(xn)〉 < −

δ
2
, where {xn}n∈N ∈ X f−10 (ε).



M. Iranmanesh, F. Soleimany / Filomat 31:19 (2017), 6005–6013 6008

Put D = X f−10 (ε0), ε1 ≤
1
2ε0 and

ht = th + (1 − t)10, f or 0 < t < 1.

Since ht → 10 as t→ 0, there exist t0 > 0 such that for any 0 < t ≤ t0,

‖ht − 10‖ ≤ ε1. (6)

Now

Re lim
n→∞
〈( f − ht)(xn), (ht − 10)(xn)〉 = Re lim

n→∞
[〈( f − (th + (1 − t)10), (ht − 10)(xn)〉]

= Re lim
n→∞

[〈( f − 10)(xn), t(h − 10)(xn)〉

− t2
‖(h − 10)(xn)‖2]

> t
δ
2
− t2
‖h − 10‖

2,

then for sufficiently small t > 0, we have

Re lim
n→∞
〈( f − ht)(xn), (ht − 10)(xn)〉 > 0, f or {xn}n∈N ∈ D. (7)

On the other hand, by (6) for each {xn}n∈N ∈ Z f−ht ,

lim
n→∞
‖( f − 10)(xn)‖ = lim

n→∞
‖( f − ht)(xn) − (10 − ht)(xn)‖

≥ ‖ f − ht‖ − ‖10 − ht‖

≥ ‖ f − 10‖ − 2ε1

≥ ‖ f − 10‖ − ε0.

It follows that Z f−ht ⊆ D. Now by (7) we get

max ReW((ht − 10)∗( f − ht)) = max
{xn}n∈N∈Z f−ht

Re lim
n→∞
〈( f − ht)(xn), (ht − 10)(xn)〉

≥ min
{xn}n∈N∈Z f−ht

Re lim
n→∞
〈( f − ht)(xn), (ht − 10)(xn)〉

≥ min
x∈D

Re〈( f − ht)(x), (ht − 10)(x)〉 > 0.

This contradiction completes the proof.

Theorem 2.5. Let U be a closed convex subset of B(H), f ∈ B(H) \U and 10 ∈ U. Then the following statements
are equivalent.

i) 10 ∈ PU( f ).

ii) For each h ∈ U,

max ReW((10 − h)∗( f − 10)) ≥ 0. (8)

Proof. i→ ii. Since 10 ∈ PU( f ) by Theorem 2.2 for each h ∈ U, we have

max ReW((h − 10)∗( f − h)) ≤ 0.

Now by Lemma 2.4 we obtain (8).
ii→ i. It is a consequence of Lemma 2.3.

Corollary 2.6. Let U be a convex set of B(H), f ∈ B(H)\U and 10 ∈ U. Then the following statements are equivalent.

i) 10 ∈ PU( f ).

ii) For each h ∈ U,

max ReW((h − 10)∗( f − h)) ≤ max ReW((10 − h))∗( f − 10). (9)
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Proof. i→ ii. It is a direct consequence of Theorems 2.2 and Lemma 2.4.
ii → i. Suppose that (9) holds but 10 is not a best approximation to f from U. By Theorem 2.2 there exist
h1 ∈ U such that

max ReW((h1 − 10)∗( f − h1)) > 0. (10)

The latter relation with Lemma 2.1 implies that τ2( f − h1, h1 − 10) ≥ 0. Thus there exist sufficiently small t0

such that ‖ f−h1−t0(h1−10)‖2−‖ f−h1‖
2

2t0
≥ 0.

Since ϕ(t) =
‖ f−h1−t0(h1−10)‖2−‖ f−h1‖

2

2t is non-decreasing, for t = 1 we have

‖ f − h1‖ < ‖ f − 10‖. (11)

By (9) and (10) we get
max ReW((10 − h1)∗( f − 10)) > 0.

Now by Lemma 2.3, we get ‖ f − 10‖ < ‖ f − h1‖. This is a contradiction with (11).

Corollary 2.7. Let U be a subspace of B(H), f ∈ B(H) \U and 10 ∈ U. Then the following statements are equivalent.

i) 10 ∈ PU( f ).

ii) For each h ∈ U,

min ReW(h∗( f − 10)) ≤ 0 ≤ max ReW(h∗( f − 10)). (12)

Proof. It is a consequence of Theorem 2.5 and Corollary 2.6.

In the following we introduce existence and uniqueness of best approximation in B(H).

Theorem 2.8. Let U be a closed convex subset of B(H), f ∈ B(H) \U and 10 ∈ U. Then the following statements
are equivalent.

i) PU( f ) = {10}.

ii) For each h , 10 ∈ U,

max ReW((h − 10)∗( f − h)) < 0. (13)

Proof. i → ii. Since PU( f ) = {10} then ‖ f − h + t(h − 10)‖2 − ‖ f − h‖2 < 0 for h ∈ U. Dividing by t and let
t→ 0+ we obtain (13).
ii → i. By Theorem 2.2 we have 10 ∈ PU( f ). Now suppose 11 , 10 ∈ PU( f ) thus by Theorem 2.5 we obtain
max ReW((11 − h)∗( f − 11)) ≥ 0. But by applying (13) to 11 it is impossible. This shows that PU( f ) = {10}.

Recall for f ∈ B(H), σ( f ), r( f ), denote the spectrum and spectral radius of f and con(A) = convex hull of A.

Example 2.9. Let H = C2 and f : H → H defined by (x1, x2) → (−x2, x1) and U = co(I) where I is the identity
operator. Then PU( f ) = {0}.

Let 10 = λ0I ∈ PU( f ). Since for λ ∈ R, f − λI is normal operator we have

W((h − 10)∗( f − h)) = W(((λ − λ0)I)( f − λI))
= (λ − λ0)con(σ( f − λI))
= (λ − λ0)con({−λ ± i}).
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By Theorem 2.2, 10 = λ0I ∈ PU( f ) if and only if max ReW((h − 10)∗( f − h)) ≤ 0, holds for every λ . But this
inequality holds only if λ0 = 0. Then PU( f ) = {0}.
Also we can show this without applying Theorem 2.2. For λ ∈ R we have

‖ f − λI‖ ≥ r( f − λI) = sup{| − λ ± i|} ≥ 1.

Thus infλ∈[0,1] ‖ f − λI‖ ≥ 1, in the other hand ‖ f − 0‖ = 1 therefore PU( f ) = {0}.

Let U be a closed subset of B(H), f ∈ B(H) \ U and 10 ∈ U. For each h ∈ H put vh = (h − 10)∗( f − 10). The
following corollary follows immediately from Theorem 2.5.

Corollary 2.10. Let U be a convex set of B(H), f ∈ B(H) \ U and 10 ∈ U. If vh − t idH be an invertible element of
B(H) such that ‖(vh − t idH)−1

‖ ≤ t−1 for each t > 0 and h ∈ U, then 10 ∈ PU( f ).

Proof. Suppose that ‖(vh − tidH)−1
‖ ≤

1
t then t‖x‖ ≤ ‖(vh − tidH)(x)‖, for each x ∈ H. Consequently for

{xn} ∈ Z f−10 we have
t2 lim

n→∞
‖xn‖

2
≤ lim

n→∞
‖(vh − tidH)(xn)‖2,

hence
t2 lim

n→∞
‖xn‖

2
≤ lim

n→∞
[‖vh(xn)‖2 + t2

‖xn‖
2
− 2tRe〈vh(xn), xn〉],

or
lim
n→∞

Re〈vh(xn), xn〉 ≤
1
2t

lim
n→∞
‖vh(xn)‖2.

Now letting t→∞, we obtain limn→∞ Re〈vh(xn), xn〉 ≤ 0 which holds for all {xn} ∈ Z f−10 . Therefore we have
max ReW((h − 10)∗( f − 10)) ≤ 0. This implies

max ReW((10 − h)∗( f − 10)) ≥ 0.

By applying part (ii) Theorem 2.5, we get 10 ∈ PU( f ).

Definition 2.11. A subset U of B(H)is called semi-Chebyshev if every f ∈ B(H) has at most one best approximation
in U.

Corollary 2.12. The following statements are equivalent:

i) U is a semi-Chebyshev convex subset of B(H).

ii) for each f ∈ B(H) \U, 10 ∈ U is a best approximation to f from U if and only if for each h , 10 ∈ U,

max ReW((h − 10)∗( f − h)) < 0.

Proof. It is a consequence of Theorem 2.8.

Another kind of approximation from W has been introduced by Franchetti and Furi [7] who have
considered those elements (if any) w0 ∈W satisfying

‖w − w0‖ ≤ ‖x − w‖, ∀w ∈W. (14)

Such an element is called best coapproximant of x in W. The set of all such elements, satisfying above
inequality, is denoted by RG(x).

if x, y are elements of a normed linear space X, then x is orthogonal to y in the Birkhoff-james sense, in
short x⊥By, if ‖x‖ ≤ ‖x + λy‖, (λ ∈ R).
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Lemma 2.13. [7] Let G be a subspace of a normed linear space X, 10 ∈ G and x ∈ X. Then 10 ∈ RG(x) if and only if
G⊥Bx − 10.

Lemma 2.14. Let B be a closed subspace of B(H), f ∈ B(H) \ B and 10 ∈ B. If 10 ∈ RB( f ) then there exist a
sequence {xh

n}n∈N ∈ Zh−10 for h ∈ B such that

lim
n→∞
〈h(xh

n), ( f − 10)(xh
n)〉 = 0.

Proof. Suppose fails. Then there exist h1 ∈ B such that limn→∞〈h1(xh1
n ), ( f − 10)(xh1

n )〉 , 0 for {xh1
n }n∈N ∈ Zh1 .

Put A = W(( f − 10)∗h1). Since A is convex and 0 < A, then A is contained in the half-plane. By rotation, we
may suppose A is contained in the right half-plane, therefore there is a line which separates 0 from A. Thus
there exist c > 0 such that Re z ≥ c > 0 for z ∈ A. Let

S = {x ∈ H : ‖x‖ = 1,Re〈h1(x), ( f − 10)(x)〉 ≤
1
2

c}.

Let % = supt∈S ‖h1(t)‖ then % < ‖h1‖ otherwise let {xh1
n }n∈N ∈ Zh1 be a sequence of elements of S. We may

suppose that {〈h1(xh1
n ), ( f − 10)(xh1

n )〉} ,n ∈N. is a convergence sequence since it is bounded. If we set

λ0 = limn→∞〈h1(xh1
n ), ( f − 10)(xh1

n )〉,

then Re(λ0) ≤
1
2

c and, this is a contradiction.

Let µ = min{
c

‖ f − 10‖
2 ,
‖h1‖ − %

‖ f − 10‖
} and x be a unit vector in H. We consider two cases. First, if x ∈ S then

‖h1(x) − µ( f − 10)(x)‖ ≤ ‖h1(x)‖ + µ‖ f − 10‖ < % +
‖h1‖ − %

‖ f − 10‖
‖ f − 10‖ = ‖h1‖.

Next, if x < S, since µ2
‖( f − 10)(x)‖2 − cµ < 0, then

‖h1(x) − µ( f − 10)(x)‖2 = ‖h1(x)‖2 + µ2
‖( f − 10)(x)‖2 − 2Re〈h1(x), ( f − 10)(x)〉

≤ ‖h1(x)‖2 + µ2
‖( f − 10)(x)‖2 − cµ

< ‖h1‖
2.

Therefore we deduce that ‖h1 + µ( f − 10)‖ < ‖h1‖ which contradicts the hypothesis 10 ∈ RB( f ) because by Lemma 2.13,
we have ‖h‖ ≤ ‖h + λ( f − 10)‖ for all h ∈ B and λ ∈ R.

Theorem 2.15. Let W be a subspace of B(H), f ∈ B(H) \W and 10 ∈ W. Then the following statements are
equivalent.

i) 10 ∈ RW( f ).

ii) For each h ∈W,

min ReW(( f − 10)∗h) ≤ 0. (15)

Proof. ii)→ i) Let 1 be an arbitrary element of W and {x1−10
n } ∈ Z1−10

‖ f − 1‖2 ≥ ‖( f − 1)(x1−10
n )‖2

= ‖( f − 10)(x1−10
n )‖2) + ‖(1 − 10)(x1−10

n )‖2

− 2Re〈(1 − 10)(x1−10
n ), ( f − 10)(x1−10

n )〉

≥ ‖(1 − 10)((x1−10
n ))‖2 = ‖1 − 10‖

2.
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Therefore ‖ f − 1‖ ≥ ‖1 − 10‖, i,e. 10 ∈ RW( f ).
i)→ ii) Let 10 ∈ RW( f ) by Lemma 2.14 there is {xh

n}n∈N ∈ Zh such that

lim
n→∞
〈( f − 10)(xh

n), h(xh
n)〉 = 0.

Thus we have (15).

LetA be a C∗-algebra, thenAhas a faithful representation, i.e. A is isometrically isomorphic to a concrete
C∗-algebra of operators on a Hilbert space H. This result is called the ”Gelfand-Naimark Theorem”. (For
details about C∗-algebra we refer the reader to [5]).
LetA be a C∗-algebra, and (π,H) be a faithful representation forA. Let a, b ∈ A, the numerical range of a∗b
relative to a, which is denoted by WA(a∗b) is defined as follows

WA(a∗b) := {λ ∈ C : λ ∈W(π(a∗b)) = W(π(a)∗π(b))}. (16)

By using this concept we have the following Corollaries.

Corollary 2.16. Let B be a closed convex subset of a C∗-algebraA, a ∈ A \B and b0 ∈ B. Then b0 ∈ PB(a) if and
only if for each b ∈ B,

max ReWA((b − b0)∗(a − b)) ≤ max ReWA((b0 − b)∗(a − b0)). (17)

Proof. Since for each b ∈ B, we have the inequality (17), by Definition 16 for π(b) ∈ π(B) we have

max ReW(π(b − b0)∗π(a − b)) ≤ max ReW(π(b0 − b)∗π(a − b0)).

By Corollary 2.6, π(b0) ∈ Pπ(B)(π(a)) and thus b0 ∈ PB(a) since π is an isometrically isomorphism.

Now consider µ as a positive Boreal measure on compact space X, then the map π : L∞(X) → B(L2(µ))
defined by π( f ) = M f is a representation [5]. where

M f (h) = f oh, ∀h ∈ L2(µ).

Corollary 2.17. Let B be a closed convex subset of L∞(X), and f ∈ L∞(X)\B. Then 10 ∈ PB( f ) if and only if for
each 1 ∈ B,

max
hi∈ZM f−1

Re
∫

(( f − 1)ohi)(x)((1 − 10)ohi)(x)dµ ≤ 0.

Proof. It is a consequence of Corollary 2.16.

Corollary 2.18. Let B be a subspace ofA, a ∈ A \ B and b0 ∈ B. Then b0 ∈ RB(a) if and only if for each b ∈ B,

min ReWA((a − b0)∗b) ≤ 0. (18)

Proof. Its proof is similar to proof Corollary 2.16.

Corollary 2.19. Let B be a subspace of L∞(X), f ∈ X \ B and 1 ∈ B. Then b0 ∈ RB(a) if and only if for every
function 1 ∈ B,

min
hi∈ZM1

Re
∫

(1ohi(x))(( f − 10)ohi(x))dµ ≤ 0. (19)

Proof. It is a consequence of Corollary 2.18.
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