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Abstract. In this paper, we give a new concept which is a generalization of the concepts quasi-convexity
and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we
obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for
functions whose derivatives in absolute value at certain power are p-quasi-convex. Some applications to
special means of real numbers are also given.

1. Introduction

Let f : I ⊂ R→ R be a convex function defined on the interval I of real numbers and a, b ∈ I with a < b.
The following inequality

f
(

a + b
2

)
≤

1
b − a

b∫
a

f (x)dx ≤
f (a) + f (b)

2
(1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality
for convex functions. Note that some of the classical inequalities for means can be derived from (1) for
appropriate particular selections of the mapping f . Both inequalities hold in the reversed direction if f is
concave.

Following inequality is well known in the literature as Simpson inequality:

Theorem 1.1. Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b) and
∥∥∥ f (4)

∥∥∥
∞

=

sup
x∈(a,b)

∣∣∣ f (4)(x)
∣∣∣ < ∞. Then the following inequality holds:

∣∣∣∣∣∣∣∣13
[

f (a) + f (b)
2

+ 2 f
(

a + b
2

)]
−

1
b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ 1
2880

∥∥∥ f (4)
∥∥∥
∞

(b − a)4 .
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The notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a
function f : [a, b]→ R is said quasi-convex on [a, b] if

f
(
αx + (1 − α)y

)
≤ sup

{
f (x), f (y)

}
,

for any x, y ∈ [a, b] and α ∈ [0, 1] . Clearly, any convex function is a quasi-convex function. Furthermore,
there exist quasi-convex functions which are not convex (see [1]).

For some results which generalize, improve and extend the inequalities(1) related to quasi-convex
functions we refer the reader to see [1–4, 6, 10, 11, 15] and plenty of references therein.

In [5], the author gave the definition of harmonically convex function as follow and established Hermite-
Hadamard’s inequality for harmonically convex functions.

Definition 1.2. Let I ⊆ R\ {0} be a real interval. A function f : I→ R is said to be harmonically convex, if

f
(

xy
tx + (1 − t)y

)
≤ t f (y) + (1 − t) f (x) (2)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (2) is reversed, then f is said to be harmonically concave.

In [15], Zhang et al. defined the harmonically quasi-convex function and supplied several properties of
this kind of functions.

Definition 1.3. A function f : I ⊆ (0,∞)→ [0,∞) is said to be harmonically convex, if

f
(

xy
tx + (1 − t)y

)
≤ sup

{
f (x), f (y)

}
for all x, y ∈ I and t ∈ [0, 1].

We would like to point out that any harmonically convex function on I ⊆ (0,∞) is a harmonically
quasi-convex function, but not conversely. For example, the function

f (x) =

1, x ∈ (0, 1];
(x − 2)2, x ∈ [1, 4].

is harmonically quasi-convex on (0, 4], but it is not harmonically convex on (0, 4].
In [9], Zhang and Wan gave definition of p-convex function as follow:

Definition 1.4. Let I be a p-convex set. A function f : I→ R is said to be a p-convex function or belongs to the class
PC(I), if

f
([
αxp + (1 − α)yp]1/p

)
≤ α f (x) + (1 − α) f (y)

for all x, y ∈ I and α ∈ [0, 1].

Remark 1.5 ([9]). An interval I is said to be a p-convex set if
[
αxp + (1 − α)yp]1/p

∈ I for all x, y ∈ I and α ∈ [0, 1],
where p = 2k + 1 or p = n/m, n = 2r + 1, m = 2t + 1 and k, r, t ∈N.

Remark 1.6 ([7]). If I ⊂ (0,∞) be a real interval and p ∈ R\ {0}, then[
αxp + (1 − α)yp]1/p

∈ I for all x, y ∈ I and α ∈ [0, 1].

According to Remark 1.6, we can give a different version of the definition of p-convex function as follow:
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Definition 1.7. Let I ⊂ (0,∞) be a real interval and p ∈ R\ {0} . A function f : I → R is said to be a p-convex
function, if

f
([
αxp + (1 − α)yp]1/p

)
≤ α f (x) + (1 − α) f (y)

for all x, y ∈ I and α ∈ [0, 1].

According to Definition 1.7, It can be easily seen that for p = 1 and p = −1, p-convexity reduces to
ordinary convexity and harmonically convexity of functions defined on I ⊂ (0,∞), respectively.

In [16, Theorem 5], if we take I ⊂ (0,∞), p ∈ R\ {0} and h(t) = t , then we have the following Theorem.

Theorem 1.8. Let f : I ⊂ (0,∞)→ R be a p-convex function, p ∈ R\ {0}, and a, b ∈ I with a < b. If f ∈ L[a, b] then
we have

f

[ap + bp

2

]1/p ≤ p
bp − ap

b∫
a

f (x)
x1−p dx ≤

f (a) + f (b)
2

. (3)

For some results related to p-convex functions and its generalizations, we refer the reader to see [7–
9, 12–14, 16].

2. Main Results

Definition 2.1. Let I ⊂ (0,∞) be a real interval and p ∈ R\ {0}. A function f : I → R is said to be p-quasi-convex,
if

f
([

txp + (1 − t)yp]1/p
)
≤ max

{
f (x), f (y)

}
(4)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (4) is reversed, then f is said to be p-quasi-concave.

It can be easily seen that for r = 1 and r = −1, p-quasi convexity reduces to ordinary quasi convexity
and harmonically quasi convexity of functions defined on I ⊂ (0,∞), respectively. Morever every p-convex
function is a p-quasi-convex function.

Example 2.2. Let f : (0,∞) → R, f (x) = xp, p ∈ R\ {0} , and 1 : (0,∞) → R, 1(x) = c, c ∈ R, then f and 1 are
p-quasi-convex functions.

Proposition 2.3. Let I ⊂ (0,∞) be a real interval, p ∈ R\ {0} and f : I→ R is a function, then ;

1. if p ≤ 1 and f is quasi-convex and nondecreasing function then f is p-quasi-convex.
2. if p ≥ 1 and f is p-quasi-convex and nondecreasing function then f is quasi-convex.
3. if p ≤ 1 and f is p-quasi-concave and nondecreasing function then f is quasi-concave.
4. if p ≥ 1 and f is quasi-concave and nondecreasing function then f is p-quasi-concave.
5. if p ≥ 1 and f is quasi-convex and nonincreasing function then f is p-quasi-convex.
6. if p ≤ 1 and f is p-quasi-convex and nonincreasing function then f is quasi-convex.
7. if p ≥ 1 and f is p-quasi-concave and nonincreasing function then f is quasi-concave.
8. if p ≤ 1 and f is quasi-concave and nonincreasing function then f is p-quasi-concave.

Proof. Since 1(x) = xp, p ∈ (−∞, 0) ∪ [1,∞) , is a convex function on (0,∞) and 1(x) = xp, p ∈ (0, 1] , is a
concave function on (0,∞) ,the proof is obvious from the following power mean inequalities[

txp + (1 − t)yp]1/p
≥ tx + (1 − t)y, p ≥ 1,

and [
txp + (1 − t)yp]1/p

≤ tx + (1 − t)y, p ≤ 1.
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The following proposition is obvious.

Proposition 2.4. If f : [a, b] ⊆ (0,∞) → R and if we consider the function 1 : [ap, bp] → R, defined by 1(t) =

f
(
t1/p

)
, p , 0, then f is p-quasi-convex on [a, b] if and only if 1 is quasi-convex on [ap, bp] .

In order to prove our main results we need the following lemma:

Lemma 2.5. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦ and a, b ∈ I with a < b. If f ′ ∈ L[a, b] and
p ∈ R\ {0}, then for λ ∈ [0, 1] we have the equality

(1 − λ) f
(
Mp

)
+ λ

(
f (a) + f (b)

2

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx =

bp
− ap

2p


1/2∫
0

λ − 2t

Mp−1
t,p

f ′
(
Mt,p

)
dt +

1∫
1/2

2 − λ − 2t

Mp−1
t,p

f ′
(
Mt,p

)
dt

 ,
where Mt,p = Mt,p(a, b) = [tap + (1 − t)bp]1/p and M1/2,p = Mp.

Proof. It suffices to note that

I1 =
bp
− ap

p

1/2∫
0

λ − 2t

Mp−1
t,p

f ′
(
Mt,p

)
dt

= (2t − λ) f
(
Mt,p

)∣∣∣∣1/2
0
− 2

1/2∫
0

f
(
Mt,p

)
dt

= (1 − λ) f
(
Mp

)
+ λ f (b) − 2

1/2∫
0

f
(
Mt,p

)
dt.

Setting xp = tap + (1 − t)bp and pxp−1dx = (ap
− bp) dt, which gives

I1 = (1 − λ) f
(
Mp

)
+ λ f (b) −

2p
bp − ap

b∫
Mp

f (x)
x1−p dx.

Similarly, we can show that

I2 =
bp
− ap

p

1∫
1/2

2 − λ − 2t

Mp−1
t,p

f ′
(
Mt,p

)
dt

= λ f (a) + (1 − λ) f
(
Mp

)
−

2p
bp − ap

Mp∫
a

f (x)
x1−p dx.

Thus,

I1 + I2

2
= (1 − λ) f

(
Mp

)
+ λ

(
f (a) + f (b)

2

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx

which is required.
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Theorem 2.6. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with a < b, and f ′ ∈ L[a, b]. If
∣∣∣ f ′∣∣∣q

is p-quasi-convex on [a, b] for q ≥ 1 and p ∈ R\ {0} then we have the following inequality for λ ∈ [0, 1]∣∣∣∣∣∣∣∣(1 − λ) f
(
Mp(a, b)

)
+ λ

(
f (a) + f (b)

2

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣ (5)

≤
bp
− ap

2p
(
C(λ; p; a, b) + C(λ; p; b, a)

) (
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q

where for p = −1

C(λ;−1; u, ϑ) =
1

(ϑ−1 − u−1)2

−2 ln

ϑM−1(u, ϑ)
M2

λ
2 ,−1

(u, ϑ)

 +
(
ϑ−1 + M−1

λ,−1(u, ϑ)
) (
ϑ + M−1(u, ϑ) − 2M λ

2 ,−1(u, ϑ)
) ,

and for p ∈ R\ {−1, 0}

C(λ; p; u, ϑ) =
p

(p + 1) (ϑp − up)2

[
2
(
ϑp+1 + Mp+1

p (u, ϑ) − 2Mp+1
λ
2 ,p

(u, ϑ)
)

−(p + 1)
(
ϑp + Mp

λ,p(u, ϑ)
) (
ϑ + Mp(u, ϑ) − 2M λ

2 ,p
(u, ϑ)

)]
, u, ϑ > 0,

and Mt,p(a, b) = [tap + (1 − t)bp]1/p and M1/2,p(a, b) = Mp(a, b).

Proof. From Lemma 2.5 and using the power mean integral inequality, we have∣∣∣∣∣∣∣∣(1 − λ) f
(
Mp(a, b)

)
+ λ

(
f (a) + f (b)

2

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣
≤

bp
− ap

2p


1/2∫
0

|λ − 2t|

Mp−1
t,p (a, b)

∣∣∣∣ f ′ (Mt,p(a, b)
)∣∣∣∣ dt +

1∫
1/2

|2 − λ − 2t|

Mp−1
t,p (a, b)

∣∣∣∣ f ′ (Mt,p(a, b)
)∣∣∣∣ dt


≤

bp
− ap

2p




1/2∫
0

|λ − 2t|

Mp−1
t,p (a, b)

dt


1− 1

q 
1/2∫
0

|λ − 2t|

Mp−1
t,p (a, b)

∣∣∣∣ f ′ (Mt,p(a, b)
)∣∣∣∣q dt


1
q

+


1∫

1/2

|2 − λ − 2t|

Mp−1
t,p (a, b)

dt


1− 1

q


1∫
1/2

|2 − λ − 2t|

Mp−1
t,p (a, b)

∣∣∣Mt,p(a, b)
∣∣∣q dt


1
q
 .

Hence, by p-quasi convexity of
∣∣∣ f ′∣∣∣q on [a, b], we have∣∣∣∣∣∣∣∣(1 − λ) f

(
Mp(a, b)

)
+ λ

(
f (a) + f (b)

2

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣ ≤ bp
− ap

2p

×




1/2∫
0

|λ − 2t|

Mp−1
t,p (a, b)

dt


1− 1

q 
1/2∫
0

|λ − 2t|max
{∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q}

Mp−1
t,p (a, b)

dt


1
q

+


1∫

1/2

|2 − λ − 2t|

Mp−1
t,p (a, b)

dt


1− 1

q


1∫
1/2

|2 − λ − 2t|max
{∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q}

Mp−1
t,p (a, b)

dt


1
q
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≤
bp
− ap

2p
(
C(λ; p; a, b) + C(λ; p; b, a)

) (
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q

It is easily check that

1/2∫
0

|λ − 2t|

Mp−1
t,p (a, b)

dt = C(λ; p; a, b)

and

1∫
1/2

|2 − λ − 2t|

Mp−1
t,p (a, b)

dt = C(λ; p; b, a).

This concludes the proof.

In Theorem 2.6, if we take p = 1, then we obtain the following result for quasi-convex functions.

Corollary 2.7. Under the assumptions Theorem 2.6 with p = 1, we have∣∣∣∣∣∣∣∣(1 − λ) f
(

a + b
2

)
+ λ

(
f (a) + f (b)

2

)
−

1
b − a

b∫
a

f (x) dx

∣∣∣∣∣∣∣∣
≤

b − a
2

(C(λ; 1; a, b) + C(λ; 1; b, a))
(
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q
.

In Theorem 2.6, if we take p = −1, then we obtain the following result for harmonically quasi-convex
functions.

Corollary 2.8. Under the assumptions Theorem 2.6 with p = −1, we have∣∣∣∣∣∣∣∣(1 − λ) f
(

2ab
a + b

)
+ λ

(
f (a) + f (b)

2

)
−

ab
b − a

b∫
a

f (x)
x2 dx

∣∣∣∣∣∣∣∣
≤

b − a
2ab

(C(λ;−1; a, b) + C(λ;−1; b, a))
(
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q
.

Corollary 2.9. Under the assumptions Theorem 2.6 with q = 1, we have∣∣∣∣∣∣∣∣(1 − λ) f
(
Mp(a, b)

)
+ λ

(
f (a) + f (b)

2

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣
≤

bp
− ap

2p
(
C(λ; p; a, b) + C(λ; p; b, a)

) (
max

{∣∣∣ f ′ (a)
∣∣∣ , ∣∣∣ f ′ (b)

∣∣∣}) . (6)

Corollary 2.10. Under the assumptions Theorem 2.6 with λ = 0, we have∣∣∣∣∣∣∣∣ f
(
Mp(a, b)

)
−

p
bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣ ≤ bp
− ap

2p
(
C(0; p; a, b) + C(0; p; b, a)

) (
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q
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where for p = −1

C(0;−1; u, ϑ) =
1

(ϑ−1 − u−1)2

[
−2 ln

(
M−1(u, ϑ)

ϑ

)
+ 2ϑ−1 (M−1(u, ϑ) − ϑ)

]
,

and for p ∈ R\ {−1, 0}

C(0; p; u, ϑ) =
p

(p + 1) (ϑp − up)2

[
2
(
Mp+1

p (u, ϑ) − ϑp+1
)
− 2(p + 1)ϑp

(
Mp(u, ϑ) − ϑ

)]
.

Corollary 2.11. Under the assumptions Theorem 2.6 with λ = 1, we have∣∣∣∣∣∣∣∣ f (a) + f (b)
2

−
p

bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣ ≤ bp
− ap

2p
(
C(1; p; a, b) + C(1; p; b, a)

) (
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q

where for p = −1

C(1;−1; u, ϑ) =
1

(ϑp − up)2

[
−2 ln

(
ϑ

M−1(u, ϑ)

)
+

(
ϑ−1 + M−1

λ,−1(u, ϑ)
)

(ϑ −M−1(u, ϑ))
]
,

and for p ∈ R\ {−1, 0}

C(1; p; u, ϑ) =
p

(p + 1) (ϑp − up)2

[
2
(
ϑp+1

−Mp+1
p (u, ϑ)

)
− (p + 1)

(
ϑp + Mp

λ,p(u, ϑ)
) (
ϑ −Mp(u, ϑ)

)]
.

Corollary 2.12. Under the assumptions Theorem 2.6 with λ = 1/3, we have∣∣∣∣∣∣∣∣13
[

f (a) + f (b)
2

+ 2 f
(
Mp(a, b)

)]
−

p
bp − ap

b∫
a

f (x)
x1−p dx

∣∣∣∣∣∣∣∣
≤

bp
− ap

2p
(
C(1/3; p; a, b) + C(1/3; p; b, a)

) (
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣ f ′ (b)

∣∣∣q})1/q

wherewhere for p = −1

C(1/3;−1; u, ϑ) =
1

(ϑ−1 − u−1)2

−2 ln

ϑM−1(u, ϑ)
M2

1
6 ,−1

(u, ϑ)

 +
(
ϑ−1 + M−1

1
3 ,−1

(u, ϑ)
) (
ϑ + M−1(u, ϑ) − 2M 1

6 ,−1(u, ϑ)
) ,

and for p ∈ R\ {−1, 0}

C(1/3; p; u, ϑ) =
p

(p + 1) (ϑp − up)2

[
2
(
ϑp+1 + Mp+1

p (u, ϑ) − 2Mp+1
1
6 ,p

(u, ϑ)
)

−(p + 1)
(
ϑp + Mp

1
3 ,p

(u, ϑ)
) (
ϑ + Mp(u, ϑ) − 2M 1

6 ,p
(u, ϑ)

)]
.

3. Some Applications for Special Means

Let us recall the following special means of two nonnegative number a, b with b > a :

1. The arithmetic mean

A = A (a, b) :=
a + b

2
.
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2. The geometric mean

G = G (a, b) :=
√

ab.

3. The harmonic mean

H = H (a, b) :=
2ab

a + b
.

4. The Logarithmic mean

L = L (a, b) :=
b − a

ln b − ln a
.

5. The p-Logarithmic mean

Lp = Lp (a, b) :=
(

bp+1
− ap+1

(p + 1)(b − a)

) 1
p

, p ∈ R\ {−1, 0} .

6. The Identric mean

I = I (a, b) =
1
e

(
bb

aa

) 1
b−a

.

7. The power mean

Mp = Mp (a, b) =

(
ap + bp

2

)1/p

, p ∈ R\ {0} .

These means are often used in numerical approximation and in other areas. However, the following
simple relationships are known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and L−1 = L.

Proposition 3.1. Let 0 < a < b, p ∈ R\ {−1,−1/2, 0} and λ ∈ [0, 1]. Then we have the following inequality∣∣∣∣(1 − λ) Mp+1
p + λMp+1

p+1 − L2p
2pL1−p

p−1

∣∣∣∣ ≤ (
p + 1

)
(bp
− ap)

2p
(
C(λ; p; a, b) + C(λ; p; b, a)

)
(max {ap, bp

}) ,

where C(λ; p; a, b) is defined as in Theorem 2.6.

Proof. The assertion follows from the inequality (6) in Corollary 2.9, for f : (0,∞)→ R, f (x) = xp+1/p+1.

Proposition 3.2. Let 0 < a < b and λ ∈ [0, 1]. Then we have the following inequality

|(1 − λ) ln A + λ ln G − ln I| ≤
b − a

2a
(C(λ; 1; a, b) + C(λ; 1; b, a)) ,

where C(λ; p; a, b) is defined as in Theorem 2.6.

Proof. The assertion follows from the inequality (6) in Corollary 2.9, for p = 1 and f : (0,∞) → R, f (x) =
ln x.
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