# Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable $p$-quasi-convex Functions 

İmdat İşcan ${ }^{\text {a }}$, Sercan Turhan ${ }^{\text {b }}$, Selahattin Maden ${ }^{\text {c }}$<br>${ }^{a}$ Giresun University, Department of Mathematics, Faculty of Arts and Sciences, 28100, Giresun, Turkey.<br>${ }^{b}$ Giresun University, Dereli Vocational School, 28100, Giresun, Turkey.<br>${ }^{c}$ Ordu University, Department of Mathematics, Faculty of Arts and Sciences, 52000, Ordu, Turkey.


#### Abstract

In this paper, we give a new concept which is a generalization of the concepts quasi-convexity and harmonically quasi-convexity and establish a new identity. A consequence of the identity is that we obtain some new general inequalities containing all of the Hermite-Hadamard and Simpson-like type for functions whose derivatives in absolute value at certain power are $p$-quasi-convex. Some applications to special means of real numbers are also given.


## 1. Introduction

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function defined on the interval $I$ of real numbers and $a, b \in I$ with $a<b$. The following inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions. Note that some of the classical inequalities for means can be derived from (1) for appropriate particular selections of the mapping $f$. Both inequalities hold in the reversed direction if $f$ is concave.

Following inequality is well known in the literature as Simpson inequality:
Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a four times continuously differentiable mapping on $(a, b)$ and $\left\|f^{(4)}\right\|_{\infty}=$ $\sup _{x \in(a, b)}\left|f^{(4)}(x)\right|<\infty$. Then the following inequality holds:

$$
\left|\frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2 f\left(\frac{a+b}{2}\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{1}{2880}\left\|f^{(4)}\right\|_{\infty}(b-a)^{4}
$$

[^0]The notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function $f:[a, b] \rightarrow \mathbb{R}$ is said quasi-convex on $[a, b]$ if

$$
f(\alpha x+(1-\alpha) y) \leq \sup \{f(x), f(y)\}
$$

for any $x, y \in[a, b]$ and $\alpha \in[0,1]$. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex (see [1]).

For some results which generalize, improve and extend the inequalities(1) related to quasi-convex functions we refer the reader to see $[1-4,6,10,11,15]$ and plenty of references therein.

In [5], the author gave the definition of harmonically convex function as follow and established HermiteHadamard's inequality for harmonically convex functions.

Definition 1.2. Let $I \subseteq \mathbb{R} \backslash\{0\}$ be a real interval. A function $f: I \rightarrow \mathbb{R}$ is said to be harmonically convex, if

$$
\begin{equation*}
f\left(\frac{x y}{t x+(1-t) y}\right) \leq t f(y)+(1-t) f(x) \tag{2}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$. If the inequality in (2) is reversed, then $f$ is said to be harmonically concave.
In [15], Zhang et al. defined the harmonically quasi-convex function and supplied several properties of this kind of functions.

Definition 1.3. A function $f: I \subseteq(0, \infty) \rightarrow[0, \infty)$ is said to be harmonically convex, if

$$
f\left(\frac{x y}{t x+(1-t) y}\right) \leq \sup \{f(x), f(y)\}
$$

for all $x, y \in I$ and $t \in[0,1]$.
We would like to point out that any harmonically convex function on $I \subseteq(0, \infty)$ is a harmonically quasi-convex function, but not conversely. For example, the function

$$
f(x)= \begin{cases}1, & x \in(0,1] \\ (x-2)^{2}, & x \in[1,4]\end{cases}
$$

is harmonically quasi-convex on $(0,4]$, but it is not harmonically convex on $(0,4]$.
In [9], Zhang and Wan gave definition of $p$-convex function as follow:
Definition 1.4. Let I be a p-convex set. A function $f: I \rightarrow \mathbb{R}$ is said to be a p-convex function or belongs to the class $P C(I)$, if

$$
f\left(\left[\alpha x^{p}+(1-\alpha) y^{p}\right]^{1 / p}\right) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all $x, y \in I$ and $\alpha \in[0,1]$.
Remark 1.5 ([9]). An interval $I$ is said to be a $p$-convex set if $\left[\alpha x^{p}+(1-\alpha) y^{p}\right]^{1 / p} \in I$ for all $x, y \in I$ and $\alpha \in[0,1]$, where $p=2 k+1$ or $p=n / m, n=2 r+1, m=2 t+1$ and $k, r, t \in \mathbb{N}$.

Remark 1.6 ([7]). If $I \subset(0, \infty)$ be a real interval and $p \in \mathbb{R} \backslash\{0\}$, then
$\left[\alpha x^{p}+(1-\alpha) y^{p}\right]^{1 / p} \in I$ for all $x, y \in I$ and $\alpha \in[0,1]$.
According to Remark 1.6, we can give a different version of the definition of $p$-convex function as follow:

Definition 1.7. Let $I \subset(0, \infty)$ be a real interval and $p \in \mathbb{R} \backslash\{0\}$. A function $f: I \rightarrow \mathbb{R}$ is said to be a $p$-convex function, if

$$
f\left(\left[\alpha x^{p}+(1-\alpha) y^{p}\right]^{1 / p}\right) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all $x, y \in I$ and $\alpha \in[0,1]$.
According to Definition 1.7, It can be easily seen that for $p=1$ and $p=-1, p$-convexity reduces to ordinary convexity and harmonically convexity of functions defined on $I \subset(0, \infty)$, respectively.

In [16, Theorem 5], if we take $I \subset(0, \infty), p \in \mathbb{R} \backslash\{0\}$ and $h(t)=t$, then we have the following Theorem.
Theorem 1.8. Let $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ be a $p$-convex function, $p \in \mathbb{R} \backslash\{0\}$, and $a, b \in I$ with $a<b$. If $f \in L[a, b]$ then we have

$$
\begin{equation*}
f\left(\left[\frac{a^{p}+b^{p}}{2}\right]^{1 / p}\right) \leq \frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x \leq \frac{f(a)+f(b)}{2} \tag{3}
\end{equation*}
$$

For some results related to $p$-convex functions and its generalizations, we refer the reader to see [79, 12-14, 16].

## 2. Main Results

Definition 2.1. Let $I \subset(0, \infty)$ be a real interval and $p \in \mathbb{R} \backslash\{0\}$. A function $f: I \rightarrow \mathbb{R}$ is said to be $p$-quasi-convex, if

$$
\begin{equation*}
f\left(\left[t x^{p}+(1-t) y^{p}\right]^{1 / p}\right) \leq \max \{f(x), f(y)\} \tag{4}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$. If the inequality in (4) is reversed, then $f$ is said to be $p$-quasi-concave.
It can be easily seen that for $r=1$ and $r=-1, p$-quasi convexity reduces to ordinary quasi convexity and harmonically quasi convexity of functions defined on $I \subset(0, \infty)$, respectively. Morever every $p$-convex function is a $p$-quasi-convex function.
Example 2.2. Let $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=x^{p}, p \in \mathbb{R} \backslash\{0\}$, and $g:(0, \infty) \rightarrow \mathbb{R}, g(x)=c, c \in \mathbb{R}$, then $f$ and $g$ are p-quasi-convex functions.
Proposition 2.3. Let $I \subset(0, \infty)$ be a real interval, $p \in \mathbb{R} \backslash\{0\}$ and $f: I \rightarrow \mathbb{R}$ is a function, then;

1. if $p \leq 1$ and $f$ is quasi-convex and nondecreasing function then $f$ is $p$-quasi-convex.
2. if $p \geq 1$ and $f$ is $p$-quasi-convex and nondecreasing function then $f$ is quasi-convex.
3. if $p \leq 1$ and $f$ is $p$-quasi-concave and nondecreasing function then $f$ is quasi-concave.
4. if $p \geq 1$ and $f$ is quasi-concave and nondecreasing function then $f$ is $p$-quasi-concave.
5. if $p \geq 1$ and $f$ is quasi-convex and nonincreasing function then $f$ is $p$-quasi-convex.
6. if $p \leq 1$ and $f$ is $p$-quasi-convex and nonincreasing function then $f$ is quasi-convex.
7. if $p \geq 1$ and $f$ is $p$-quasi-concave and nonincreasing function then $f$ is quasi-concave.
8. if $p \leq 1$ and f is quasi-concave and nonincreasing function then $f$ is $p$-quasi-concave.

Proof. Since $g(x)=x^{p}, p \in(-\infty, 0) \cup[1, \infty)$, is a convex function on $(0, \infty)$ and $g(x)=x^{p}, p \in(0,1]$, is a concave function on $(0, \infty)$, the proof is obvious from the following power mean inequalities

$$
\left[t x^{p}+(1-t) y^{p}\right]^{1 / p} \geq t x+(1-t) y, p \geq 1
$$

and

$$
\left[t x^{p}+(1-t) y^{p}\right]^{1 / p} \leq t x+(1-t) y, p \leq 1
$$

The following proposition is obvious.
Proposition 2.4. If $f:[a, b] \subseteq(0, \infty) \rightarrow \mathbb{R}$ and if we consider the function $g:\left[a^{p}, b^{p}\right] \rightarrow \mathbb{R}$, defined by $g(t)=$ $f\left(t^{1 / p}\right), p \neq 0$, then $f$ is $p$-quasi-convex on $[a, b]$ if and only if $g$ is quasi-convex on $\left[a^{p}, b^{p}\right]$.

In order to prove our main results we need the following lemma:
Lemma 2.5. Let $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function on $I^{\circ}$ and $a, b \in I$ with $a<b$. If $f^{\prime} \in L[a, b]$ and $p \in \mathbb{R} \backslash\{0\}$, then for $\lambda \in[0,1]$ we have the equality
$(1-\lambda) f\left(M_{p}\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x=\frac{b^{p}-a^{p}}{2 p}\left[\int_{0}^{1 / 2} \frac{\lambda-2 t}{M_{t, p}^{p-1}} f^{\prime}\left(M_{t, p}\right) d t+\int_{1 / 2}^{1} \frac{2-\lambda-2 t}{M_{t, p}^{p-1}} f^{\prime}\left(M_{t, p}\right) d t\right]$,
where $M_{t, p}=M_{t, p}(a, b)=\left[t a^{p}+(1-t) b^{p}\right]^{1 / p}$ and $M_{1 / 2, p}=M_{p}$.
Proof. It suffices to note that

$$
\begin{aligned}
I_{1} & =\frac{b^{p}-a^{p}}{p} \int_{0}^{1 / 2} \frac{\lambda-2 t}{M_{t, p}^{p-1}} f^{\prime}\left(M_{t, p}\right) d t \\
& =\left.(2 t-\lambda) f\left(M_{t, p}\right)\right|_{0} ^{1 / 2}-2 \int_{0}^{1 / 2} f\left(M_{t, p}\right) d t \\
& =(1-\lambda) f\left(M_{p}\right)+\lambda f(b)-2 \int_{0}^{1 / 2} f\left(M_{t, p}\right) d t
\end{aligned}
$$

Setting $x^{p}=t a^{p}+(1-t) b^{p}$ and $p x^{p-1} d x=\left(a^{p}-b^{p}\right) d t$, which gives

$$
I_{1}=(1-\lambda) f\left(M_{p}\right)+\lambda f(b)-\frac{2 p}{b^{p}-a^{p}} \int_{M_{p}}^{b} \frac{f(x)}{x^{1-p}} d x
$$

Similarly, we can show that

$$
\begin{aligned}
I_{2} & =\frac{b^{p}-a^{p}}{p} \int_{1 / 2}^{1} \frac{2-\lambda-2 t}{M_{t, p}^{p-1}} f^{\prime}\left(M_{t, p}\right) d t \\
& =\lambda f(a)+(1-\lambda) f\left(M_{p}\right)-\frac{2 p}{b^{p}-a^{p}} \int_{a}^{M_{p}} \frac{f(x)}{x^{1-p}} d x .
\end{aligned}
$$

Thus,

$$
\frac{I_{1}+I_{2}}{2}=(1-\lambda) f\left(M_{p}\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x
$$

which is required.

Theorem 2.6. Let $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function on $I^{\circ}, a, b \in I$ with $a<b$, and $f^{\prime} \in L[a, b]$. If $\left|f^{\prime}\right|^{q}$ is $p$-quasi-convex on $[a, b]$ for $q \geq 1$ and $p \in \mathbb{R} \backslash\{0\}$ then we have the following inequality for $\lambda \in[0,1]$

$$
\begin{align*}
& \left|(1-\lambda) f\left(M_{p}(a, b)\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x\right|  \tag{5}\\
& \leq \frac{b^{p}-a^{p}}{2 p}(C(\lambda ; p ; a, b)+C(\lambda ; p ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q}
\end{align*}
$$

where for $p=-1$

$$
C(\lambda ;-1 ; u, \vartheta)=\frac{1}{\left(\vartheta^{-1}-u^{-1}\right)^{2}}\left[-2 \ln \left(\frac{\vartheta M_{-1}(u, \vartheta)}{M_{\frac{\lambda}{2},-1}^{2}(u, \vartheta)}\right)+\left(\vartheta^{-1}+M_{\lambda,-1}^{-1}(u, \vartheta)\right)\left(\vartheta+M_{-1}(u, \vartheta)-2 M_{\frac{\lambda}{2},-1}(u, \vartheta)\right)\right]
$$

and for $p \in \mathbb{R} \backslash\{-1,0\}$

$$
\begin{aligned}
C(\lambda ; p ; u, \vartheta)= & \frac{p}{(p+1)\left(\vartheta^{p}-u^{p}\right)^{2}}\left[2\left(\vartheta^{p+1}+M_{p}^{p+1}(u, \vartheta)-2 M_{\frac{\lambda}{2}, p}^{p+1}(u, \vartheta)\right)\right. \\
& \left.-(p+1)\left(\vartheta^{p}+M_{\lambda, p}^{p}(u, \vartheta)\right)\left(\vartheta+M_{p}(u, \vartheta)-2 M_{\frac{\lambda}{2}, p}(u, \vartheta)\right)\right], u, \vartheta>0,
\end{aligned}
$$

and $M_{t, p}(a, b)=\left[t a^{p}+(1-t) b^{p}\right]^{1 / p}$ and $M_{1 / 2, p}(a, b)=M_{p}(a, b)$.
Proof. From Lemma 2.5 and using the power mean integral inequality, we have

$$
\begin{aligned}
& \left|(1-\lambda) f\left(M_{p}(a, b)\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x\right| \\
& \leq \frac{b^{p}-a^{p}}{2 p}\left[\int_{0}^{1 / 2} \frac{|\lambda-2 t|}{M_{t, p}^{p-1}(a, b)}\left|f^{\prime}\left(M_{t, p}(a, b)\right)\right| d t+\int_{1 / 2}^{1} \frac{|2-\lambda-2 t|}{M_{t, p}^{p-1}(a, b)}\left|f^{\prime}\left(M_{t, p}(a, b)\right)\right| d t\right] \\
& \leq \frac{b^{p}-a^{p}}{2 p}\left\{\left(\int_{0}^{1 / 2} \frac{|\lambda-2 t|}{M_{t, p}^{p-1}(a, b)} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1 / 2} \frac{|\lambda-2 t|}{M_{t, p}^{p-1}(a, b)}\left|f^{\prime}\left(M_{t, p}(a, b)\right)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& \left.\quad+\left(\int_{1 / 2}^{1} \frac{|2-\lambda-2 t|}{M_{t, p}^{p-1}(a, b)} d t\right)^{1-\frac{1}{q}}\left(\int_{1 / 2}^{1} \frac{|2-\lambda-2 t|}{M_{t, p}^{p-1}(a, b)}\left|M_{t, p}(a, b)\right|^{q} d t\right)^{\frac{1}{q}}\right)
\end{aligned}
$$

Hence, by $p$-quasi convexity of $\left|f^{\prime}\right|^{q}$ on $[a, b]$, we have

$$
\begin{aligned}
& \left.(1-\lambda) f\left(M_{p}(a, b)\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x \right\rvert\, \leq \frac{b^{p}-a^{p}}{2 p} \\
& \times\left\{\left(\int_{0}^{1 / 2} \frac{|\lambda-2 t|}{M_{t, p}^{p-1}(a, b)} d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1 / 2} \frac{|\lambda-2 t| \max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}}{M_{t, p}^{p-1}(a, b)} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{1 / 2}^{1} \frac{|2-\lambda-2 t|}{M_{t, p}^{p-1}(a, b)} d t\right)^{1-\frac{1}{q}}\left(\int_{1 / 2}^{1} \frac{|2-\lambda-2 t| \max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}}{M_{t, p}^{p-1}(a, b)} d t\right)^{\frac{1}{q}}\right\}
\end{aligned}
$$

$$
\leq \frac{b^{p}-a^{p}}{2 p}(C(\lambda ; p ; a, b)+C(\lambda ; p ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q}
$$

It is easily check that

$$
\int_{0}^{1 / 2} \frac{|\lambda-2 t|}{M_{t, p}^{p-1}(a, b)} d t=C(\lambda ; p ; a, b)
$$

and

$$
\int_{1 / 2}^{1} \frac{|2-\lambda-2 t|}{M_{t, p}^{p-1}(a, b)} d t=C(\lambda ; p ; b, a)
$$

This concludes the proof.
In Theorem 2.6, if we take $p=1$, then we obtain the following result for quasi-convex functions.
Corollary 2.7. Under the assumptions Theorem 2.6 with $p=1$, we have

$$
\begin{aligned}
& \left|(1-\lambda) f\left(\frac{a+b}{2}\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \leq \frac{b-a}{2}(C(\lambda ; 1 ; a, b)+C(\lambda ; 1 ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q}
\end{aligned}
$$

In Theorem 2.6, if we take $p=-1$, then we obtain the following result for harmonically quasi-convex functions.

Corollary 2.8. Under the assumptions Theorem 2.6 with $p=-1$, we have

$$
\begin{aligned}
& \left|(1-\lambda) f\left(\frac{2 a b}{a+b}\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{a b}{b-a} \int_{a}^{b} \frac{f(x)}{x^{2}} d x\right| \\
& \leq \frac{b-a}{2 a b}(C(\lambda ;-1 ; a, b)+C(\lambda ;-1 ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q} .
\end{aligned}
$$

Corollary 2.9. Under the assumptions Theorem 2.6 with $q=1$, we have

$$
\begin{align*}
& \left|(1-\lambda) f\left(M_{p}(a, b)\right)+\lambda\left(\frac{f(a)+f(b)}{2}\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x\right| \\
& \leq \frac{b^{p}-a^{p}}{2 p}(C(\lambda ; p ; a, b)+C(\lambda ; p ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}\right) . \tag{6}
\end{align*}
$$

Corollary 2.10. Under the assumptions Theorem 2.6 with $\lambda=0$, we have

$$
\left|f\left(M_{p}(a, b)\right)-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x\right| \leq \frac{b^{p}-a^{p}}{2 p}(C(0 ; p ; a, b)+C(0 ; p ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q}
$$

where for $p=-1$

$$
C(0 ;-1 ; u, \vartheta)=\frac{1}{\left(\vartheta^{-1}-u^{-1}\right)^{2}}\left[-2 \ln \left(\frac{M_{-1}(u, \vartheta)}{\vartheta}\right)+2 \vartheta^{-1}\left(M_{-1}(u, \vartheta)-\vartheta\right)\right]
$$

and for $p \in \mathbb{R} \backslash\{-1,0\}$

$$
C(0 ; p ; u, \vartheta)=\frac{p}{(p+1)\left(\vartheta^{p}-u^{p}\right)^{2}}\left[2\left(M_{p}^{p+1}(u, \vartheta)-\vartheta^{p+1}\right)-2(p+1) \vartheta^{p}\left(M_{p}(u, \vartheta)-\vartheta\right)\right]
$$

Corollary 2.11. Under the assumptions Theorem 2.6 with $\lambda=1$, we have

$$
\left|\frac{f(a)+f(b)}{2}-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x\right| \leq \frac{b^{p}-a^{p}}{2 p}(C(1 ; p ; a, b)+C(1 ; p ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q}
$$

where for $p=-1$

$$
C(1 ;-1 ; u, \vartheta)=\frac{1}{\left(\vartheta^{p}-u^{p}\right)^{2}}\left[-2 \ln \left(\frac{\vartheta}{M_{-1}(u, \vartheta)}\right)+\left(\vartheta^{-1}+M_{\lambda,-1}^{-1}(u, \vartheta)\right)\left(\vartheta-M_{-1}(u, \vartheta)\right)\right]
$$

and for $p \in \mathbb{R} \backslash\{-1,0\}$

$$
C(1 ; p ; u, \vartheta)=\frac{p}{(p+1)\left(\vartheta^{p}-u^{p}\right)^{2}}\left[2\left(\vartheta^{p+1}-M_{p}^{p+1}(u, \vartheta)\right)-(p+1)\left(\vartheta^{p}+M_{\lambda, p}^{p}(u, \vartheta)\right)\left(\vartheta-M_{p}(u, \vartheta)\right)\right]
$$

Corollary 2.12. Under the assumptions Theorem 2.6 with $\lambda=1 / 3$, we have

$$
\begin{aligned}
& \left|\frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2 f\left(M_{p}(a, b)\right)\right]-\frac{p}{b^{p}-a^{p}} \int_{a}^{b} \frac{f(x)}{x^{1-p}} d x\right| \\
& \leq \frac{b^{p}-a^{p}}{2 p}(C(1 / 3 ; p ; a, b)+C(1 / 3 ; p ; b, a))\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{1 / q}
\end{aligned}
$$

wherewhere for $p=-1$
$C(1 / 3 ;-1 ; u, \vartheta)=\frac{1}{\left(\vartheta^{-1}-u^{-1}\right)^{2}}\left[-2 \ln \left(\frac{\vartheta M_{-1}(u, \vartheta)}{M_{\frac{1}{6},-1}^{2}(u, \vartheta)}\right)+\left(\vartheta^{-1}+M_{\frac{1}{3},-1}^{-1}(u, \vartheta)\right)\left(\vartheta+M_{-1}(u, \vartheta)-2 M_{\frac{1}{6},-1}(u, \vartheta)\right)\right]$, and for $p \in \mathbb{R} \backslash\{-1,0\}$

$$
\begin{aligned}
C(1 / 3 ; p ; u, \vartheta)= & \frac{p}{(p+1)\left(\vartheta^{p}-u^{p}\right)^{2}}\left[2\left(\vartheta^{p+1}+M_{p}^{p+1}(u, \vartheta)-2 M_{\frac{1}{6}, p}^{p+1}(u, \vartheta)\right)\right. \\
& \left.-(p+1)\left(\vartheta^{p}+M_{\frac{1}{3}, p}^{p}(u, \vartheta)\right)\left(\vartheta+M_{p}(u, \vartheta)-2 M_{\frac{1}{6}, p}(u, \vartheta)\right)\right] .
\end{aligned}
$$

## 3. Some Applications for Special Means

Let us recall the following special means of two nonnegative number $a, b$ with $b>a$ :

1. The arithmetic mean

$$
A=A(a, b):=\frac{a+b}{2}
$$

2. The geometric mean

$$
G=G(a, b):=\sqrt{a b} .
$$

3. The harmonic mean

$$
H=H(a, b):=\frac{2 a b}{a+b}
$$

4. The Logarithmic mean

$$
L=L(a, b):=\frac{b-a}{\ln b-\ln a}
$$

5. The p-Logarithmic mean

$$
L_{p}=L_{p}(a, b):=\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}, p \in \mathbb{R} \backslash\{-1,0\}
$$

6. The Identric mean

$$
I=I(a, b)=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} .
$$

7. The power mean

$$
M_{p}=M_{p}(a, b)=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}, p \in \mathbb{R} \backslash\{0\}
$$

These means are often used in numerical approximation and in other areas. However, the following simple relationships are known in the literature:

$$
H \leq G \leq L \leq I \leq A
$$

It is also known that $L_{p}$ is monotonically increasing over $p \in \mathbb{R}$, denoting $L_{0}=I$ and $L_{-1}=L$.
Proposition 3.1. Let $0<a<b, p \in \mathbb{R} \backslash\{-1,-1 / 2,0\}$ and $\lambda \in[0,1]$. Then we have the following inequality

$$
\left|(1-\lambda) M_{p}^{p+1}+\lambda M_{p+1}^{p+1}-L_{2 p}^{2 p} L_{p-1}^{1-p}\right| \leq \frac{(p+1)\left(b^{p}-a^{p}\right)}{2 p}(C(\lambda ; p ; a, b)+C(\lambda ; p ; b, a))\left(\max \left\{a^{p}, b^{p}\right\}\right),
$$

where $C(\lambda ; p ; a, b)$ is defined as in Theorem 2.6.
Proof. The assertion follows from the inequality (6) in Corollary 2.9, for $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=x^{p+1} / p+1$.
Proposition 3.2. Let $0<a<b$ and $\lambda \in[0,1]$. Then we have the following inequality

$$
|(1-\lambda) \ln A+\lambda \ln G-\ln I| \leq \frac{b-a}{2 a}(C(\lambda ; 1 ; a, b)+C(\lambda ; 1 ; b, a))
$$

where $C(\lambda ; p ; a, b)$ is defined as in Theorem 2.6.
Proof. The assertion follows from the inequality (6) in Corollary 2.9, for $p=1$ and $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=$ $\ln x$.

## 4. Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

## References

[1] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007), 82-87.
[2] İ. İşcan, Generalization of different type integral inequalities via fractional integrals for functions whose second derivatives absolute values are quasi-convex, Konuralp journal of Mathematics, 1 (2) (2013) 67-79.
[3] İ. İşcan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Inequalities and Applications, 2013 (491) (2013), 15 pages.
[4] İ. İșcan, On generalization of some integral inequalities for quasi-convex functions and their applications, International Journal of Engineering and Applied sciences (EAAS), 3(1) (2013), 37-42.
[5] İ. İșcan, Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat., 43 (6) (2014), 935-942.
[6] İ. İşcan and S. Numan, Ostrowski type inequalities for harmonically quasi-convex functions, Electronic Journal of Mathematical Analysis and Applications, 2 (2) July 2014, pp. 189-198.
[7] İ. İşcan, Ostrowski type inequalities for $p$-convex functions, Researchgate doi: 10.13140/RG.2.1.1028.5209. Available online at https://www.researchgate.net/publication/299593487.
[8] İ. İşcan, Hermite-Hadamard type inequalities for $p$-convex functions, Researchgate doi: 10.13140/RG.2.1.2339.2404. Available online at https://www.researchgate.net/publication/299594155.
[9] K. S. Zhang, J.P. Wan, p-convex functions and their properties. Pure Appl. Math. 23(1) (2007), 130-133.
[10] M. W. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Computers and Mathematics with Applications, 59 (2010), 225-232.
[11] M. Alomari, S. Hussain, Two inequalities of Simpson type for quasi-convex functions and applications, Applied Mathematics E-Notes, 11 (2011), 110-117
[12] M. A. Noor, K. I. Noor, M. V. Mihai and M. U. Awan, Hermite-Hadamard inequalities for differentiable p-convex functions using hypergeometric functions, Publications De L' Institut Mathématique Nouvelle Série, tome 100(114)) (2016), 251257.
[13] M. V. Mihai, M. A. Noor, K. I. Noor, and M. U. Awan, New estimates for trapezoidal like inequalities via differentiable ( $p, h$ )-convex functions, Researchgate doi: 10.13140/RG.2.1.5106.5046. Available online at https://www.researchgate.net/publication/282912293.
[14] M. A. Noor, K. I. Noor, and S. Iftikhar, Nonconvex Functions and Integral Inequalities, Punjab University Journal of Mathematics, 47 (2) (2015), 19-27.
[15] T.-Y. Zhang, A.-P. Ji, and F. Qi, Integral inequalities of Hermite-Hadamard type for harmonically quasi-convex functions. Proc. Jangjeon Math. Soc, 16(3) (2013), 399-407.
[16] Z. B. Fang and R. Shi, On the ( $p, h$ )-convex function and some integral inequalities, J. Inequal. Appl., 2014 (45) (2014), 16 pages.


[^0]:    2010 Mathematics Subject Classification. Primary 26A51; Secondary 26D15
    Keywords. p-quasi-convex functions, Hermite-Hadamard type inequality, Simpson inequality
    Received: 15 September 2016; Accepted: 28 July 2017
    Communicated by Marko D. Petković
    Email addresses: imdati@yahoo.com, imdat.iscan@giresun.edu.tr (İmdat İşcan), sercanturhan28@gmail.com, sercan.turhan@giresun.edu.tr (Sercan Turhan), maden55@mynet.com (Selahattin Maden)

