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Abstract. In this paper, we establish atomic decompositions for the martingale Hardy-Lorentz spaces.
As an application, with the help of atomic decomposition, some interpolation theorems with a function
parameter for these spaces are proved.

1. introduction and preliminaries

The main result of this paper is the atomic decompositions of martingale Hardy-Lorentz spaces which
is a martingale function spaces built on the “classical” Lorentz spaces. The martingale Hardy type spaces is
a main topic for theory of martingale function spaces. There are several generalizations obtained recently
such as the martingale Hardy-Orlicz spaces [15], martingale Hardy-Morrey spaces [9] and martingale Hardy
spaces with variable exponents [12]. Therefore, the martingale function spaces introduced in this article
gives further generalizations on this topic.

Atomic decomposition plays a fundamental role in the classical martingale theory and harmonic analy-
sis. For instance, atomic decomposition is a powerful tool for dealing with duality theorems, interpolation
theorems and some fundamental inequalities both in martingale theory and harmonic analysis. In [3]
Coifman used the Fefferman-Stein theory of HP spaces [5] to decompose the functions of these spaces into
basic building blocks (atoms). Coifman and Weiss have provided a comprehensive treatment of these ideas
and many applications to harmonic analysis in [4]. In [11], Jiao et al. proved that the Lorentz martingales
spaces also have an atomic decomposition. Hou and Ren [10] considered weak atomic decomposition of
weak martingale Hardy spaces. Recently, Ho introduced the martingale Hardy-Lorentz-Karamata spaces
and proved atomic decomposition of these martingale function spaces [7]. In this article, the atomic de-
composition for the martingale Hardy-Lorentz spaces is established in section 2 which is the main result
of this paper. By using these decompositions, we obtain the interpolation of the the martingale Hardy-
Lorentz spaces by using the interpolation functor with function parameter. Notice that the interpolation
functor used in this paper is a special case of a general family of interpolation functors appeared in [8]. To
achieve our goal we first fix our notations and terminology. Let us denote the set of integers and the set of
non–negative integers, by Z and N, respectively.

2010 Mathematics Subject Classification. Primary 60G46; Secondary 46E30, 46B70
Keywords. Atomic decompositions, martingale Hardy–Lorentz spaces, interpolation
Received: 24 September 2016; Accepted: 29 April 2017
Communicated by Dragan S. Djordjević
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Let (Ω,F ,P) be a probability space. A filtration (Fn)n∈N is a non-decreasing sequence of sub-σ-algebras
of F such that F = σ(∪n∈NFn). We denote by E and En the expectation and the conditional expectation
operators with respect to (Fn)n∈N. For simplicity, we assume that En f = 0 if n = 0.

For a martingale f = ( fn,n ∈ N) relative to (Ω,F ,P), denote the martingale differences by dn f := fn− fn−1
with convention d0 f = 0. For an arbitrary stopping time ν and a martingale f , f ν = ( f νn ,n ∈ N) is defined by

f νn :=
n∑

m=0

χ(ν ≥ m)dm f .

The conditional square function of f is defined by

sm( f ) :=

∑
n≤m

En−1 | dn f |2
1/2

, s( f ) :=

∑
n∈N

En−1 | dn f |2


1/2

.

Let us recall briefly the construction of Lorentz spaces and the real interpolation method. For measurable
function f , we define a distribution function m(s, f ) by setting m(s, f ) = P({w ∈ Ω : | f (w)| > s}). The function

f ∗(t) = inf{s > 0 : m(s, f ) ≤ t}, (t ≥ 0),

is called the decreasing rearrangement of f .
we say that a nonnegative function is a weight, if it is locally integrable. Let ϕ be a weight. The classical

Lorentz spaces Λq(ϕ) is defined to be the collection of all measurable functions f for which the quantity

‖ f ‖Λq(ϕ) :=


(∫
∞

0

(
f ∗(t)ϕ(t)

)q dt
t

) 1
q (0 < q < ∞),

supt f ∗(t)ϕ(t) (q = ∞),

is finite. Recall that for 0 < q ≤ ∞, ‖.‖Λq(ϕ) is only a quasi-norm. Also Λq(ϕ) is a quasi–Banach space with
the quasi-norm

‖ f ‖q
Λq(ϕ) = q

∫
∞

0
yq−1wq (m(y, f )

)
dy, (0 < q < ∞),

where w(t) =
(∫ t

0 ϕ
q(s) ds

s

) 1
q is a non-decreasing weight and satisfies the ∆2-condition, w(2t) ≤ Cw(t), for some

C > 0 (see [2]).
For q = ∞we have

‖ f ‖Λ∞(ϕ) = sup
s

sw(m(s, f )).

For 0 < q ≤ ∞, martingale Hardy-Lorentz spaces Λs
q(ϕ) is defined by:

Λs
q(ϕ) =

{
f = ( fn)n∈N : ‖ f ‖Λs

q(ϕ) := ‖s( f )‖Λq(ϕ) < ∞
}
.

Note that if ϕ(t) = t
1
p , then Λq(ϕ) = Lp,q and Λs

q(ϕ) = Hs
p,q. In particular, if ϕ(t) = t

1
q , then Λq(ϕ) = Lq and

Λs
q(ϕ) = Hs

q.
Let (A0,A1) be a quasi–Banach couple, that is, two quasi-Banach spaces A0,A1 which are continuously

embedded in a Hausdorff topological vector space A. The K–functional is defined by

K(t, f ,A0,A1) = K(t, f ) := inf
f0+ f1= f

{
‖ f0‖A0 + t‖ f1‖A1

}
for t > 0 and f ∈ A0 + A1, where fi ∈ Ai, i = 0, 1.
For 0 < q ≤ ∞ and each measurable function %, the real interpolation space (A0,A1)%,q consists of all elements
of f ∈ A0 + A1 such that the quantity

‖ f ‖(A0,A1)%,q :=


(∫
∞

0

(K(t, f )
%(t)

)q dt
t

) 1
q

(0 < q < ∞),

supt>0
K(t, f )
%(t) (q = ∞),
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is finite. Let a and b be real numbers such that a < b. Following Persson’s convention [16], we adopt
the following notations. The notation ϕ(t) ∈ Q[a, b] means that ϕ(t)t−a is non–decreasing and ϕ(t)t−b is
non-increasing for all t > 0. Moreover, we say that ϕ(t) ∈ Q(a, b), wherever ϕ(t) ∈ Q[a + ε, b − ε] for some
ε > 0. The notation ϕ(t) ∈ Q(a,−) (or ϕ(t) ∈ Q(−, b)) means that ϕ(t) ∈ Q(a, c) (or ϕ(t) ∈ Q(c, b)) for some real
number c and by ϕ(t) ∈ Q(−,−), we mean that ϕ(t) ∈ Q(c, c′) for some real numbers c, c′ such that c < c′. In
this paper we shall consider the interpolation spaces (A0,A1)%,q with a parameter function % = %(t) ∈ Q(0, 1)
where A0 and A1 are the martingale spaces.

It is easy to see that %(t) = tθ(0 < θ < 1) belongs to Q(0, 1), so by replacing measurable function % = %(t)
with tθ we obtain (A0,A1)θ,q.

Let 0 < p < ∞, 0 < q ≤ ∞ and % ∈ Q(0, 1). It was proved by Persson [16, Lemma 6.1] that

(Lp,L∞)%,q = Λq(t
1
p /%(t

1
p )). (1)

We shall need the following well-known result due to T. Aoki and S. Rolewicz, which states that every
quasi-normed vector space can be equipped with an equivalent r–norm [13].

Theorem 1.1. (Aoki-Rolewicz). Let X be a quasi-normed vector space. Then there is a C > 0 and 0 < r ≤ 1 such
that for any x1, ..., xn ∈ X, ∥∥∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥∥∥
X

≤ C

 n∑
i=1

‖xi‖
r
X


1
r

.

In what follows, a . b means that a ≤ Cb for some positive constant C independent of the quantities a and b.
If both a . b and b . a are satisfied (with possibly different constants), we write a ≈ b. We use C to denote a
constant, which may be different in different places. Throughout this article, by w we mean

w(t) =

(∫ t

0
ϕq(s)

ds
s

) 1
q

, (q < ∞),

for a given weight ϕ in Λs
q(ϕ), and w ∈ ∆2.

2. Atomic Decomposition

In this section, we provide an atomic decomposition for the martingale Hardy-Lorentz spaces Λs
p(ϕ),

which is an extension of the atomic decomposition of the martingale Hardy spaces Hs
p that was proved by

Weisz [18].

Definition 2.1. A measurable function a is called a (p,∞) atom if there exists a stopping time ν such that

1. an := Ena = 0 if ν ≥ n.
2. ‖ s(a) ‖∞≤ P(ν , ∞)−1/p.

Theorem 2.2. If f = ( fn,n ∈ N) ∈ Λs
q(ϕ) (0 < q ≤ ∞), then there exists a sequence {(ak, νk)}k∈Z of (p,∞) atoms

(0 < p < ∞) such that
∞∑

k=−∞

µkEnak = fn

where µk = 2k3P(νk , ∞)1/p and
‖{2kw(P(νk , ∞))}k∈Z‖lq . ‖ f ‖Λs

q(ϕ).

Moreover, if 0 < q ≤ 1, then
‖ f ‖Λs

q(ϕ) ≈ inf ‖{2kw(P(νk , ∞))}k∈Z‖lq

where the infimum is taken over all the preceding decompositions of f .
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Proof. Let f = ( fn,n ∈ N) ∈ Λs
q(ϕ). For any k ∈ Z, define

νk := inf
{
n ∈ N : sn+1( f ) > 2k

}
.

Then νk is a stopping time and non–decreasing with respect to k and νk →∞ when k→∞. It is easy to see
that ∑

k∈Z

(
f νk+1
n − f νk

n
)

=
∑
k∈Z

 n∑
m=0

(
χ(νk+1 ≥ m)dm f − χ(νk ≥ m)dm f

)
=

n∑
m=0

∑
k∈Z

χ(νk < m ≤ νk+1)dm f

 = fn.

Now let

ak
n =

f νk+1
n − f νk

n

µk
.

We assume that ak
n = 0 if µk = 0. It is clear that for a fixed k ∈ Z, (ak

n,n ∈ N) is a martingale. Since
s( f νk

n ) = sνk ( fn) ≤ 2k, then

s(ak
n) ≤

s( f νk+1
n ) + s( f νk

n )
µk

≤ P(νk , ∞)−1/p, (n ∈ N).

Consequently, (ak
n) is L2–bounded and so there exists ak

∈ L2 such that Enak = ak
n. If n ≤ νk, then ak

n = 0 and
‖ s(a) ‖∞≤ P(ν , ∞)−1/p. Therefore, ak is a (p,∞) atom and

fn =
∑
k∈Z

(
f νk+1
n − f νk

n
)

=
∑
k∈Z

µkak
n =

∑
k∈Z

µkEnak.

Let 0 < q < ∞. It follows from {νk , ∞} = {s( f ) > 2k
} for any k ∈ Z, that∑

k∈Z

2kqwq(P(νk , ∞)) =
∑
k∈Z

2kqwq(P(s( f ) > 2k))

.
∑
k∈Z

∫ 2k

2k−1
yq−1dywq(P(s( f ) > 2k))

.
∑
k∈Z

∫ 2k

2k−1
yq−1wq(P(s( f ) > y))dy

.

∫
∞

0
yq−1wq(P(s( f ) > y))dy

=
1
q
‖ f ‖q

Λs
q(ϕ).

For q = ∞we have

2kw(P(νk , ∞)) = 2kw(P(s( f ) > 2k)) .‖ s( f ) ‖Λ∞(ϕ)=: ‖ f ‖Λs
∞(ϕ)

which implies supk∈Z 2kw(P(νk , ∞)) . ‖ f ‖Λs
∞(ϕ).

Now we prove the last part of the theorem. Since ak
n = Enak = 0 on the set {νk ≥ n},

χ(νk ≥ n)En−1 | dna |2= En−1χ(νk ≥ n) | dna |2= 0.

Hence, s(ak) = 0 on the set {νk = ∞}.
So, we have

P(s(ak) > y) ≤ P(s(ak) , 0) ≤ P(νk , ∞). (2)
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It follows from ‖s(ak)‖∞ < P(νk , ∞)−1/p and (2) that

‖ak
‖

q
Λs

q(ϕ) = q
∫
∞

0
yq−1wq(P(s(ak) > y))dy

= q
∫ P(νk,∞)−1/p

0
yq−1wq(P(s(ak) > y))dy

≤ qwq(P(νk , ∞))
∫ P(νk,∞)−1/p

0
yq−1dy

≤ wq(P(νk , ∞))P(νk , ∞)−q/p.

Finally, since for 0 < q ≤ 1 by Theorem 1.1, the quasi-normed ‖.‖Λs
p(ϕ) is equivalent to a q–norm,

‖ f ‖q
Λs

q(ϕ) ≤

∥∥∥∥∥∥∥∑k∈Z µks(ak)

∥∥∥∥∥∥∥
q

Λq(ϕ)

.
∑
k∈Z

µq
k

∥∥∥s(ak)
∥∥∥q

Λq(ϕ)

≤

∑
k∈Z

µq
kwq(P(νk , ∞))P(νk , ∞)−q/p .

∑
k∈Z

2kqwq(P(νk , ∞)).

The proof is complete.

3. Interpolation

As an application of atomic decomposition, the interpolation spaces with a function parameter between
the martingale Hardy-Lorentz spaces are identified.

Theorem 3.1. Let 0 < p ≤ 1, 0 < q ≤ ∞ and % ∈ Q(0, 1) be a parameter function. Then

(Hs
p,H

s
∞)%,q = Λs

q(t
1
p /%(t

1
p )).

In order to prove the theorem 3.1, the authors of paper [17] used a standard method: their method needs a
decreasing rearrangement function inequality. Our approach differs from their method: we will use atomic
decomposition method. To prove Theorem 3.1, we need the following lemmata.

Lemma 3.2. Let f ∈ Λs
q(ϕ), 0 < q ≤ ∞, y > 0 and fix 0 < p ≤ 1. Then f can be decomposed into the sum of two

martingales 1 and h such that

‖1‖Hs
∞
≤ 6y

and

‖h‖Hs
p .

(∫
{s( f )>y}

s( f )pdP
) 1

p

.

Proof. Let f ∈ Λs
q(ϕ). For any fixed y > 0, choose j ∈ Z such that 2 j−1

≤ y < 2 j and let

f =
∑
k∈Z

µkak =

j−1∑
k=−∞

µkak +

∞∑
k= j

µkak = 1 + h,

where stopping times νk, atoms ak and numbers µk(k ∈ Z) are as in Theorem 2.2. Now we have

‖1‖Hs
∞
≤

∥∥∥∥∥∥∥
j−1∑

k=−∞

µks(ak)

∥∥∥∥∥∥∥
∞

≤

j−1∑
k=−∞

µk‖s(ak)‖∞

≤

j−1∑
k=−∞

µkP(νk , ∞)−1/p
≤

j−1∑
k=−∞

2k3 ≤ 2 j3 ≤ 6y.
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Since s(ak) = 0 on the set {νk = ∞} and ‖s(ak)‖∞ < P(νk , ∞)−1/p, then

‖h‖pHs
p
≤

∫
Ω

 ∞∑
k= j

µks(ak)


p

dP

.
∞∑

k= j

µp
k

∫
Ω

(
s(ak)

)p
dP

≤

∞∑
k= j

µp
k

∫
{νk,∞}

‖s(ak)‖p∞dP

≤

∞∑
k= j

µp
kP(νk , ∞)−1P(νk , ∞)

= 3p
∞∑

k= j

2kp.P(νk , ∞)

= 3p
∞∑

k= j

2kp.P(s( f ) > 2k)

.

∫
{s( f )>2 j}

s( f )pdP, (by Abel rearrangement)

.

∫
{s( f )>y}

s( f )pdP.

Lemma 3.3. [16] Let 0 < q ≤ ∞, 0 < p < ∞ and ψ(t) ∈ Q(−,−). Let h(t) be a positive and non-increasing function
on (0,∞).

1. If ϕ(t) ∈ Q(−, 0), then∫ ∞

0
(ϕ(t))q

(∫ t

0

(
h(u)ψ(u)

)p du
u

) q
p dt

t


1
q

≤ C
(∫

∞

0

(
ϕ(t)h(t)ψ(t)

)q dt
t

) 1
q

.

2. If ϕ(t) ∈ Q(0,−), then∫ ∞

0
(ϕ(t))q

(∫
∞

t

(
h(u)ψ(u)

)p du
u

) q
p dt

t


1
q

≤ C
(∫

∞

0

(
ϕ(t)h(t)ψ(t)

)q dt
t

) 1
q

.

(C depends only on q and the constants involved in the definition of ϕ and ψ.)

Proof of Theorem 3.1. Let f be a function in Λs
q(ϕ) and s∗ be the non-increasing rearrangement of s( f ) and

choose y in Lemma 3.2 such that y = s∗(tp). First we prove that

K(t, f ,Hs
p,H

s
∞) ≤ C

(∫ tp

0
s∗(x)pdx

) 1
p

, (t > 0). (3)

For a fixed t > 0 set E = {s( f ) > s∗(tp)}. Using the inequality m( f ∗(s), f ) ≤ s we obtain P(E) =
m

(
s∗(tp), s( f )

)
≤ tp and since s∗ is constant on [P(E), tp], henceforth∫

E
s( f )pdP =

∫ P(E)

0
s∗(x)pdx ≤

∫ tp

0
s∗(x)pdx. (4)
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Using inequality (4) and Lemma 3.2, we get

K(t, f ,Hs
p,H

s
∞) ≤ ‖h‖Hs

p + t‖1‖Hs
∞

≤ C

(∫
{s( f )>y}

s( f )pdP
) 1

p

+ ts∗(tp)


≤ C


(∫
{s( f )>s∗(tp)}

s( f )pdP
) 1

p

+

(∫ tp

0
s∗(x)pdx

) 1
p
 , (by (4))

≤ C
(∫ tp

0
s∗(x)pdx

) 1
p

.

Let 0 < q < ∞. It is easy to see that 1/%(t
1
p ) ∈ Q(− 1

p , 0) [16, Lemma 1.1]. So we have

‖ f ‖q(Hs
p,Hs

∞)%,q
=

∫
∞

0

(K(t, f ,Hs
p,Hs

∞)

%(t)

)q
dt
t

≤ C
∫
∞

0

(
1
%(t)

)q (∫ tp

0
s∗(x)pdx

) q
p dt

t
, (by (3))

≤ C
∫
∞

0

 1

%(t
1
p )


q (∫ t

0
s∗(x)pdx

) q
p dt

t

≤ C
∫
∞

0

 1

%(t
1
p )


q

t
q
p s∗(t)p dt

t
, (by Lemma 3.3)

= C‖s( f )‖q
Λq(t

1
p /%(t

1
p ))

=: C‖ f ‖q
Λs

q(t
1
p /%(t

1
p ))
.

To prove the converse, we consider the operator T : f 7→ s( f ). The sublinear operators T : Hs
∞ → L∞ and

T : Hs
p → Lp are bounded. By [16, Theprem 2.2] , the operator

T :
(
Hs

p,H
s
∞

)
%,q
→

(
Lp,L∞

)
%,q

= Λq(t
1
p /%(t

1
p ))

is bounded in which the equality follows from (1). So we have

‖ f ‖
Λs

q(t
1
p /%(t

1
p ))

:= ‖s( f )‖
Λq(t

1
p /%(t

1
p ))
≤ C‖ f ‖(Hs

p,Hs
∞)%,q .

The proof is complete for 0 < q < ∞. Let q = ∞. Since % ∈ Q(0, 1), then %(t)t−ε is non–decreasing for some
ε > 0. So we have

‖ f ‖(Hs
p,Hs

∞)%,∞ = sup
t>0

K(t, f ,Hs
p,Hs

∞)

%(t)

≤ C sup
t>0

(∫ tp

0 s∗(x)pdx
) 1

p

%(t)
, (by (3))

≤ C sup
t>0

(∫ t

0
(s∗(xp))p xp−1dx

) 1
p

%(t)

≤ C sup
x>0

xs∗(xp)
%(x)

. sup
t>0

%(t)t−ε(
∫ t

0 xpε−1dx)
1
p

%(t)
≤ C‖ f ‖

Λs
∞(t

1
p /%(t

1
p ))
.
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To prove the converse, we consider the operator T : f 7→ s( f ). The sublinear operators T : Hs
∞ → L∞ and

T : Hs
p → Lp are bounded. By [16, Theprem 2.2] , the operator

T :
(
Hs

p,H
s
∞

)
%,∞
→

(
Lp,L∞

)
%,∞

= Λ∞(t
1
p /%(t

1
p ))

is bounded in which the equality follows from (1). Hence

‖ f ‖
Λs
∞(t

1
p /%(t

1
p ))

:= ‖s( f )‖
Λ∞(t

1
p /%(t

1
p ))
≤ C‖ f ‖(Hs

p,Hs
∞)%,∞ .

The proof is complete.
If we take %(t) = tθ in Theorem 3.1, then we get the following result, which has proved by Weisz [18].

Corollary 3.4. If 0 < θ < 1, 0 < p0 ≤ 1 and 0 < q ≤ ∞, then

(Hs
p0
,Hs
∞)θ,q = Hs

p,q,
1
p

=
1 − θ

p0
.

Applying the Theorem 3.1 we get the next theorem.

Theorem 3.5. Let ϕi(t) ∈ Q(0,−), i = 0, 1, 0 < q0, q1, q ≤ ∞ and % ∈ Q(0, 1). If ϕ0(t)/ϕ1(t) ∈ Q(0,−) or
ϕ0(t)/ϕ1(t) ∈ Q(−, 0), then (

Λs
q0

(ϕ0),Λs
q1

(ϕ1)
)
%,q

= Λs
q(ϕ),

where ϕ(t) = ϕ0(t)/ρ(ϕ0(t)/ϕ1(t)).

Proof. Put %i(t) = t/ϕi(tp) and choose p so small that %i(t) ∈ Q(0, 1), i = 0, 1. According to [16, Corollary 4.4]
and Theorem 3.1 we get(

Λs
q0

(ϕ0),Λs
q1

(ϕ1)
)
%.q

=
(
(Hs

p,H
s
∞)%0,q0 , (H

s
p,H

s
∞)%1,q1

)
%,q

=
(
Hs

p,H
s
∞

)
%0%(%1/%0),q

= Λs
q(ϕ),

where ϕ(t) = ϕ0(t)/ρ(ϕ0(t)/ϕ1(t)).

The following result is a simple application of Theorem 3.5, if we take ϕi(t) = t
1
pi , i = 0, 1.

Corollary 3.6. Let 0 < pi < ∞, 0 < qi, q ≤ ∞, i = 0, 1 and % ∈ Q(0, 1). If p0 , p1, then(
Hs

p0,q0
,Hs

p1,q1

)
%,q

= Λs
q(t

1
p0 /%(t

1
p0
−

1
p1 ))

and (
Hs

p0
,Hs

p1

)
%,q

= Λs
q(t

1
p0 /%(t

1
p0
−

1
p1 )).

In particular, if %(t) = tθ, then (
Hs

p0
,Hs

p1

)
θ,q

= Hs
p,q,

1
p

=
1 − θ

p0
+
θ
p1
.

According to Theorem 3.5 we have the following corollary.

Corollary 3.7. Under the hypothesis of Theorem 3.5, we have(
Λs

q0
(ϕ0),Λs

q1
(ϕ1)

)
θ,q

= Λs
q(ϕ1−θ

0 ϕθ1 ).
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