Atomic Decompositions of Martingale Hardy-Lorentz Spaces and Interpolation

Maryam Mohsenipour ${ }^{\text {a }}$, Ghadir Sadeghi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. box 397, Sabzevar, Iran

Abstract

In this paper, we establish atomic decompositions for the martingale Hardy-Lorentz spaces. As an application, with the help of atomic decomposition, some interpolation theorems with a function parameter for these spaces are proved.

1. introduction and preliminaries

The main result of this paper is the atomic decompositions of martingale Hardy-Lorentz spaces which is a martingale function spaces built on the "classical" Lorentz spaces. The martingale Hardy type spaces is a main topic for theory of martingale function spaces. There are several generalizations obtained recently such as the martingale Hardy-Orlicz spaces [15], martingale Hardy-Morrey spaces [9] and martingale Hardy spaces with variable exponents [12]. Therefore, the martingale function spaces introduced in this article gives further generalizations on this topic.

Atomic decomposition plays a fundamental role in the classical martingale theory and harmonic analysis. For instance, atomic decomposition is a powerful tool for dealing with duality theorems, interpolation theorems and some fundamental inequalities both in martingale theory and harmonic analysis. In [3] Coifman used the Fefferman-Stein theory of H^{P} spaces [5] to decompose the functions of these spaces into basic building blocks (atoms). Coifman and Weiss have provided a comprehensive treatment of these ideas and many applications to harmonic analysis in [4]. In [11], Jiao et al. proved that the Lorentz martingales spaces also have an atomic decomposition. Hou and Ren [10] considered weak atomic decomposition of weak martingale Hardy spaces. Recently, Ho introduced the martingale Hardy-Lorentz-Karamata spaces and proved atomic decomposition of these martingale function spaces [7]. In this article, the atomic decomposition for the martingale Hardy-Lorentz spaces is established in section 2 which is the main result of this paper. By using these decompositions, we obtain the interpolation of the the martingale HardyLorentz spaces by using the interpolation functor with function parameter. Notice that the interpolation functor used in this paper is a special case of a general family of interpolation functors appeared in [8]. To achieve our goal we first fix our notations and terminology. Let us denote the set of integers and the set of non-negative integers, by \mathbf{Z} and \mathbf{N}, respectively.

[^0]Let (Ω, \mathcal{F}, P) be a probability space. A filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbf{N}}$ is a non-decreasing sequence of sub- σ-algebras of \mathcal{F} such that $\mathcal{F}=\sigma\left(\cup_{n \in \mathbf{N}} \mathcal{F}_{n}\right)$. We denote by E and E_{n} the expectation and the conditional expectation operators with respect to $\left(\mathcal{F}_{n}\right)_{n \in \mathbf{N}}$. For simplicity, we assume that $E_{n} f=0$ if $n=0$.

For a martingale $f=\left(f_{n}, n \in \mathbf{N}\right)$ relative to (Ω, \mathcal{F}, P), denote the martingale differences by $d_{n} f:=f_{n}-f_{n-1}$ with convention $d_{0} f=0$. For an arbitrary stopping time v and a martingale $f, f^{v}=\left(f_{n}^{v}, n \in \mathbf{N}\right)$ is defined by

$$
f_{n}^{v}:=\sum_{m=0}^{n} \chi(v \geq m) d_{m} f
$$

The conditional square function of f is defined by

$$
s_{m}(f):=\left(\sum_{n \leq m} E_{n-1}\left|d_{n} f\right|^{2}\right)^{1 / 2}, \quad s(f):=\left(\sum_{n \in \mathbf{N}} E_{n-1}\left|d_{n} f\right|^{2}\right)^{1 / 2}
$$

Let us recall briefly the construction of Lorentz spaces and the real interpolation method. For measurable function f, we define a distribution function $m(s, f)$ by setting $m(s, f)=P(\{w \in \Omega:|f(w)|>s\})$. The function

$$
f^{*}(t)=\inf \{s>0: m(s, f) \leq t\}, \quad(t \geq 0)
$$

is called the decreasing rearrangement of f.
we say that a nonnegative function is a weight, if it is locally integrable. Let φ be a weight. The classical Lorentz spaces $\Lambda_{q}(\varphi)$ is defined to be the collection of all measurable functions f for which the quantity

$$
\|f\|_{\Lambda_{q}(\varphi)}:=\left\{\begin{array}{cc}
\left(\int_{0}^{\infty}\left(f^{*}(t) \varphi(t)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}} & (0<q<\infty) \\
\sup _{t} f^{*}(t) \varphi(t) & (q=\infty)
\end{array}\right.
$$

is finite. Recall that for $0<q \leq \infty,\|\cdot\|_{\Lambda_{q}(\varphi)}$ is only a quasi-norm. Also $\Lambda_{q}(\varphi)$ is a quasi-Banach space with the quasi-norm

$$
\|f\|_{\Lambda_{q}(\varphi)}^{q}=q \int_{0}^{\infty} y^{q-1} w^{q}(m(y, f)) d y, \quad(0<q<\infty)
$$

where $w(t)=\left(\int_{0}^{t} \varphi^{q}(s) \frac{d s}{s}\right)^{\frac{1}{q}}$ is a non-decreasing weight and satisfies the Δ_{2}-condition, $w(2 t) \leq C w(t)$, for some $C>0$ (see [2]).
For $q=\infty$ we have

$$
\|f\|_{\Lambda_{\infty}(\varphi)}=\sup _{s} s w(m(s, f)) .
$$

For $0<q \leq \infty$, martingale Hardy-Lorentz spaces $\Lambda_{q}^{s}(\varphi)$ is defined by:

$$
\Lambda_{q}^{s}(\varphi)=\left\{f=\left(f_{n}\right)_{n \in \mathbf{N}}:\|f\|_{\Lambda_{q}^{s}(\varphi)}:=\|s(f)\|_{\Lambda_{q}(\varphi)}<\infty\right\} .
$$

Note that if $\varphi(t)=t^{\frac{1}{p}}$, then $\Lambda_{q}(\varphi)=L_{p, q}$ and $\Lambda_{q}^{s}(\varphi)=H_{p, q}^{s}$. In particular, if $\varphi(t)=t^{\frac{1}{q}}$, then $\Lambda_{q}(\varphi)=L_{q}$ and $\Lambda_{q}^{s}(\varphi)=H_{q}^{s}$.

Let $\left(A_{0}, A_{1}\right)$ be a quasi-Banach couple, that is, two quasi-Banach spaces A_{0}, A_{1} which are continuously embedded in a Hausdorff topological vector space A. The K-functional is defined by

$$
K\left(t, f, A_{0}, A_{1}\right)=K(t, f):=\inf _{f_{0}+f_{1}=f}\left\{\left\|f_{0}\right\|_{A_{0}}+t\left\|f_{1}\right\|_{A_{1}}\right\}
$$

for $t>0$ and $f \in A_{0}+A_{1}$, where $f_{i} \in A_{i}, i=0,1$.
For $0<q \leq \infty$ and each measurable function ϱ, the real interpolation space $\left(A_{0}, A_{1}\right)_{\varrho, q}$ consists of all elements of $f \in A_{0}+A_{1}$ such that the quantity

$$
\|f\|_{\left(A_{0}, A_{1}\right)_{\varrho, q}}:=\left\{\begin{array}{cc}
\left(\int_{0}^{\infty}\left(\frac{K(t, f)}{\varrho(t)}\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}} & (0<q<\infty) \\
\sup _{t>0} \frac{K(t, t)}{\varrho(t)} & (q=\infty)
\end{array}\right.
$$

is finite. Let a and b be real numbers such that $a<b$. Following Persson's convention [16], we adopt the following notations. The notation $\varphi(t) \in Q[a, b]$ means that $\varphi(t) t^{-a}$ is non-decreasing and $\varphi(t) t^{-b}$ is non-increasing for all $t>0$. Moreover, we say that $\varphi(t) \in Q(a, b)$, wherever $\varphi(t) \in Q[a+\epsilon, b-\epsilon]$ for some $\epsilon>0$. The notation $\varphi(t) \in Q(a,-)$ (or $\varphi(t) \in Q(-, b))$ means that $\varphi(t) \in Q(a, c)$ (or $\varphi(t) \in Q(c, b))$ for some real number c and by $\varphi(t) \in Q(-,-)$, we mean that $\varphi(t) \in Q\left(c, c^{\prime}\right)$ for some real numbers c, c^{\prime} such that $c<c^{\prime}$. In this paper we shall consider the interpolation spaces $\left(A_{0}, A_{1}\right)_{\varrho, q}$ with a parameter function $\varrho=\varrho(t) \in Q(0,1)$ where A_{0} and A_{1} are the martingale spaces.

It is easy to see that $\varrho(t)=t^{\theta}(0<\theta<1)$ belongs to $Q(0,1)$, so by replacing measurable function $\varrho=\varrho(t)$ with t^{θ} we obtain $\left(A_{0}, A_{1}\right)_{\theta, q}$.

Let $0<p<\infty, 0<q \leq \infty$ and $\varrho \in Q(0,1)$. It was proved by Persson [16, Lemma 6.1] that

$$
\begin{equation*}
\left(L_{p}, L_{\infty}\right)_{\varrho, q}=\Lambda_{q}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right) \tag{1}
\end{equation*}
$$

We shall need the following well-known result due to T. Aoki and S. Rolewicz, which states that every quasi-normed vector space can be equipped with an equivalent r-norm [13].

Theorem 1.1. (Aoki-Rolewicz). Let X be a quasi-normed vector space. Then there is a $C>0$ and $0<r \leq 1$ such that for any $x_{1}, \ldots, x_{n} \in X$,

$$
\left\|\sum_{i=1}^{n} x_{i}\right\|_{X} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|_{X}^{r}\right)^{\frac{1}{r}}
$$

In what follows, $a \lesssim b$ means that $a \leq C b$ for some positive constant C independent of the quantities a and b. If both $a \lesssim b$ and $b \lesssim a$ are satisfied (with possibly different constants), we write $a \approx b$. We use C to denote a constant, which may be different in different places. Throughout this article, by w we mean

$$
w(t)=\left(\int_{0}^{t} \varphi^{q}(s) \frac{d s}{s}\right)^{\frac{1}{q}}, \quad(q<\infty)
$$

for a given weight φ in $\Lambda_{q}^{s}(\varphi)$, and $w \in \Delta_{2}$.

2. Atomic Decomposition

In this section, we provide an atomic decomposition for the martingale Hardy-Lorentz spaces $\Lambda_{p}^{s}(\varphi)$, which is an extension of the atomic decomposition of the martingale Hardy spaces H_{p}^{s} that was proved by Weisz [18].

Definition 2.1. A measurable function a is called $a(p, \infty)$ atom if there exists a stopping time v such that

1. $a_{n}:=E_{n} a=0$ if $v \geq n$.
2. $\|s(a)\|_{\infty} \leq P(v \neq \infty)^{-1 / p}$.

Theorem 2.2. If $f=\left(f_{n}, n \in \mathbf{N}\right) \in \Lambda_{q}^{s}(\varphi)(0<q \leq \infty)$, then there exists a sequence $\left\{\left(a^{k}, v_{k}\right)\right\}_{k \in \mathbf{Z}}$ of (p, ∞) atoms $(0<p<\infty)$ such that

$$
\sum_{k=-\infty}^{\infty} \mu_{k} E_{n} a^{k}=f_{n}
$$

where $\mu_{k}=2^{k} 3 P\left(v_{k} \neq \infty\right)^{1 / p}$ and

$$
\left\|\left\{2^{k} w\left(P\left(v_{k} \neq \infty\right)\right)\right\}_{k \in \mathbf{Z}}\right\|_{l_{q}} \lesssim\|f\|_{\Lambda_{q}^{s}(\varphi)} .
$$

Moreover, if $0<q \leq 1$, then

$$
\|f\|_{\Lambda_{q}^{s}(\varphi)} \approx \inf \left\|\left\{2^{k} w\left(P\left(v_{k} \neq \infty\right)\right)\right\}_{k \in \mathbf{Z}}\right\|_{l_{q}}
$$

where the infimum is taken over all the preceding decompositions of f.

Proof. Let $f=\left(f_{n}, n \in \mathbf{N}\right) \in \Lambda_{q}^{s}(\varphi)$. For any $k \in \mathbf{Z}$, define

$$
v_{k}:=\inf \left\{n \in \mathbf{N}: s_{n+1}(f)>2^{k}\right\} .
$$

Then v_{k} is a stopping time and non-decreasing with respect to k and $v_{k} \rightarrow \infty$ when $k \rightarrow \infty$. It is easy to see that

$$
\begin{aligned}
\sum_{k \in \mathbf{Z}}\left(f_{n}^{v_{k+1}}-f_{n}^{v_{k}}\right) & =\sum_{k \in \mathbf{Z}}\left(\sum_{m=0}^{n}\left(\chi\left(v_{k+1} \geq m\right) d_{m} f-\chi\left(v_{k} \geq m\right) d_{m} f\right)\right) \\
& =\sum_{m=0}^{n}\left(\sum_{k \in \mathbf{Z}} \chi\left(v_{k}<m \leq v_{k+1}\right) d_{m} f\right)=f_{n}
\end{aligned}
$$

Now let

$$
a_{n}^{k}=\frac{f_{n}^{v_{k+1}}-f_{n}^{v_{k}}}{\mu_{k}}
$$

We assume that $a_{n}^{k}=0$ if $\mu_{k}=0$. It is clear that for a fixed $k \in \mathbf{Z},\left(a_{n}^{k}, n \in \mathbf{N}\right)$ is a martingale. Since $s\left(f_{n}^{v_{k}}\right)=s_{v_{k}}\left(f_{n}\right) \leq 2^{k}$, then

$$
s\left(a_{n}^{k}\right) \leq \frac{s\left(f_{n}^{v_{k+1}}\right)+s\left(f_{n}^{v_{k}}\right)}{\mu_{k}} \leq P\left(v_{k} \neq \infty\right)^{-1 / p}, \quad(n \in \mathbf{N})
$$

Consequently, $\left(a_{n}^{k}\right)$ is L_{2}-bounded and so there exists $a^{k} \in L_{2}$ such that $E_{n} a^{k}=a_{n}^{k}$. If $n \leq v_{k}$, then $a_{n}^{k}=0$ and $\|s(a)\|_{\infty} \leq P(v \neq \infty)^{-1 / p}$. Therefore, a^{k} is a (p, ∞) atom and

$$
f_{n}=\sum_{k \in \mathbf{Z}}\left(f_{n}^{v_{k+1}}-f_{n}^{v_{k}}\right)=\sum_{k \in \mathbf{Z}} \mu_{k} a_{n}^{k}=\sum_{k \in \mathbf{Z}} \mu_{k} E_{n} a^{k}
$$

Let $0<q<\infty$. It follows from $\left\{v_{k} \neq \infty\right\}=\left\{s(f)>2^{k}\right\}$ for any $k \in \mathbf{Z}$, that

$$
\begin{aligned}
\sum_{k \in \mathbf{Z}} 2^{k q} w^{q}\left(P\left(v_{k} \neq \infty\right)\right) & =\sum_{k \in \mathbf{Z}} 2^{k q} w^{q}\left(P\left(s(f)>2^{k}\right)\right) \\
& \lesssim \sum_{k \in \mathbf{Z}} \int_{2^{k-1}}^{2^{k}} y^{q-1} d y w^{q}\left(P\left(s(f)>2^{k}\right)\right) \\
& \lesssim \sum_{k \in \mathbf{Z}} \int_{2^{k-1}}^{2^{k}} y^{q-1} w^{q}(P(s(f)>y)) d y \\
& \lesssim \int_{0}^{\infty} y^{q-1} w^{q}(P(s(f)>y)) d y \\
& =\frac{1}{q}\|f\|_{\Lambda_{q}^{s}(p)}^{q}
\end{aligned}
$$

For $q=\infty$ we have

$$
2^{k} w\left(P\left(v_{k} \neq \infty\right)\right)=2^{k} w\left(P\left(s(f)>2^{k}\right)\right) \lesssim\|s(f)\|_{\Lambda_{\infty}(\varphi)}=:\|f\|_{\Lambda_{\infty}^{s}(\varphi)}
$$

which implies $\sup _{k \in \mathbf{Z}} 2^{k} w\left(P\left(v_{k} \neq \infty\right)\right) \lesssim\|f\|_{\Lambda_{\infty}^{s}(\varphi)}$.
Now we prove the last part of the theorem. Since $a_{n}^{k}=E_{n} a^{k}=0$ on the set $\left\{v_{k} \geq n\right\}$,

$$
\chi\left(v_{k} \geq n\right) E_{n-1}\left|d_{n} a\right|^{2}=E_{n-1} \chi\left(v_{k} \geq n\right)\left|d_{n} a\right|^{2}=0
$$

Hence, $s\left(a^{k}\right)=0$ on the set $\left\{v_{k}=\infty\right\}$.
So, we have

$$
\begin{equation*}
P\left(s\left(a^{k}\right)>y\right) \leq P\left(s\left(a^{k}\right) \neq 0\right) \leq P\left(v_{k} \neq \infty\right) . \tag{2}
\end{equation*}
$$

It follows from $\left\|s\left(a^{k}\right)\right\|_{\infty}<P\left(v_{k} \neq \infty\right)^{-1 / p}$ and (2) that

$$
\begin{aligned}
\left\|a^{k}\right\|_{\Lambda_{q}^{s}(\varphi)}^{q} & =q \int_{0}^{\infty} y^{q-1} w^{q}\left(P\left(s\left(a^{k}\right)>y\right)\right) d y \\
& =q \int_{0}^{P\left(v_{k} \neq \infty\right)^{-1 / p}} y^{q-1} w^{q}\left(P\left(s\left(a^{k}\right)>y\right)\right) d y \\
& \leq q w^{q}\left(P\left(v_{k} \neq \infty\right)\right) \int_{0}^{P\left(v_{k} \neq \infty\right)^{-1 / p}} y^{q-1} d y \\
& \leq w^{q}\left(P\left(v_{k} \neq \infty\right)\right) P\left(v_{k} \neq \infty\right)^{-q / p} .
\end{aligned}
$$

Finally, since for $0<q \leq 1$ by Theorem 1.1, the quasi-normed $\|.\|_{\Lambda_{p}^{s}(\varphi)}$ is equivalent to a q-norm,

$$
\begin{aligned}
\|f\|_{\Lambda_{q}^{s}(\varphi)}^{q} & \leq\left\|\sum_{k \in \mathbf{Z}} \mu_{k} s\left(a^{k}\right)\right\|_{\Lambda_{q}(\varphi)}^{q} \lesssim \sum_{k \in \mathbf{Z}} \mu_{k}^{q}\left\|s\left(a^{k}\right)\right\|_{\Lambda_{q}(\varphi)}^{q} \\
& \leq \sum_{k \in \mathbf{Z}} \mu_{k}^{q} w^{q}\left(P\left(v_{k} \neq \infty\right)\right) P\left(v_{k} \neq \infty\right)^{-q / p} \lesssim \sum_{k \in \mathbf{Z}} 2^{k q} w^{q}\left(P\left(v_{k} \neq \infty\right)\right) .
\end{aligned}
$$

The proof is complete.

3. Interpolation

As an application of atomic decomposition, the interpolation spaces with a function parameter between the martingale Hardy-Lorentz spaces are identified.
Theorem 3.1. Let $0<p \leq 1,0<q \leq \infty$ and $\varrho \in Q(0,1)$ be a parameter function. Then

$$
\left(H_{p}^{s}, H_{\infty}^{s}\right)_{\varrho, q}=\Lambda_{q}^{s}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)
$$

In order to prove the theorem 3.1, the authors of paper [17] used a standard method: their method needs a decreasing rearrangement function inequality. Our approach differs from their method: we will use atomic decomposition method. To prove Theorem 3.1, we need the following lemmata.

Lemma 3.2. Let $f \in \Lambda_{q}^{s}(\varphi), 0<q \leq \infty, y>0$ and fix $0<p \leq 1$. Then f can be decomposed into the sum of two martingales g and h such that

$$
\|g\|_{H_{\infty}^{s}} \leq 6 y
$$

and

$$
\|h\|_{H_{p}^{s}} \lesssim\left(\int_{\{s(f)>y\}} s(f)^{p} d P\right)^{\frac{1}{p}}
$$

Proof. Let $f \in \Lambda_{q}^{s}(\varphi)$. For any fixed $y>0$, choose $j \in \mathbf{Z}$ such that $2^{j-1} \leq y<2^{j}$ and let

$$
f=\sum_{k \in \mathbf{Z}} \mu_{k} a^{k}=\sum_{k=-\infty}^{j-1} \mu_{k} a^{k}+\sum_{k=j}^{\infty} \mu_{k} a^{k}=g+h,
$$

where stopping times v_{k}, atoms a^{k} and numbers $\mu_{k}(k \in \mathbf{Z})$ are as in Theorem 2.2. Now we have

$$
\begin{aligned}
\|g\|_{H_{\infty}^{s}} \leq\left\|\sum_{k=-\infty}^{j-1} \mu_{k} s\left(a^{k}\right)\right\|_{\infty} & \leq \sum_{k=-\infty}^{j-1} \mu_{k}\left\|s\left(a^{k}\right)\right\|_{\infty} \\
& \leq \sum_{k=-\infty}^{j-1} \mu_{k} P\left(v_{k} \neq \infty\right)^{-1 / p} \leq \sum_{k=-\infty}^{j-1} 2^{k} 3 \leq 2^{j} 3 \leq 6 y .
\end{aligned}
$$

Since $s\left(a^{k}\right)=0$ on the set $\left\{v_{k}=\infty\right\}$ and $\left\|s\left(a^{k}\right)\right\|_{\infty}<P\left(v_{k} \neq \infty\right)^{-1 / p}$, then

$$
\begin{aligned}
\|h\|_{H_{p}^{s}}^{p} & \leq \int_{\Omega}\left(\sum_{k=j}^{\infty} \mu_{k} s\left(a^{k}\right)\right)^{p} d P \\
& \lesssim \sum_{k=j}^{\infty} \mu_{k}^{p} \int_{\Omega}\left(s\left(a^{k}\right)\right)^{p} d P \\
& \leq \sum_{k=j}^{\infty} \mu_{k}^{p} \int_{\left\{v_{k} \neq \infty\right\}}\left\|s\left(a^{k}\right)\right\|_{\infty}^{p} d P \\
& \leq \sum_{k=j}^{\infty} \mu_{k}^{p} P\left(v_{k} \neq \infty\right)^{-1} P\left(v_{k} \neq \infty\right) \\
& =3^{p} \sum_{k=j}^{\infty} 2^{k p} \cdot P\left(v_{k} \neq \infty\right) \\
& =3^{p} \sum_{k=j}^{\infty} 2^{k p} \cdot P\left(s(f)>2^{k}\right) \\
& \lesssim \int_{\{s(f)>2 j\}} s(f)^{p} d P, \quad \text { (by Abel rearrangement) } \\
& \lesssim \int_{\{s(f)>y\}} s(f)^{p} d P .
\end{aligned}
$$

Lemma 3.3. [16] Let $0<q \leq \infty, 0<p<\infty$ and $\psi(t) \in Q(-,-)$. Let $h(t)$ be a positive and non-increasing function on $(0, \infty)$.

1. If $\varphi(t) \in Q(-, 0)$, then

$$
\left(\int_{0}^{\infty}(\varphi(t))^{q}\left(\int_{0}^{t}(h(u) \psi(u))^{p} \frac{d u}{u}\right)^{\frac{q}{p}} \frac{d t}{t}\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty}(\varphi(t) h(t) \psi(t))^{q} \frac{d t}{t}\right)^{\frac{1}{q}}
$$

2. If $\varphi(t) \in Q(0,-)$, then

$$
\left(\int_{0}^{\infty}(\varphi(t))^{q}\left(\int_{t}^{\infty}(h(u) \psi(u))^{p} \frac{d u}{u}\right)^{\frac{q}{p}} \frac{d t}{t}\right)^{\frac{1}{q}} \leq C\left(\int_{0}^{\infty}(\varphi(t) h(t) \psi(t))^{q} \frac{d t}{t}\right)^{\frac{1}{q}}
$$

(C depends only on q and the constants involved in the definition of φ and ψ.)
Proof of Theorem 3.1. Let f be a function in $\Lambda_{q}^{s}(\varphi)$ and s^{*} be the non-increasing rearrangement of $s(f)$ and choose y in Lemma 3.2 such that $y=s^{*}\left(t^{p}\right)$. First we prove that

$$
\begin{equation*}
K\left(t, f, H_{p}^{s}, H_{\infty}^{s}\right) \leq C\left(\int_{0}^{t^{p}} s^{*}(x)^{p} d x\right)^{\frac{1}{p}}, \quad(t>0) \tag{3}
\end{equation*}
$$

For a fixed $t>0$ set $E=\left\{s(f)>s^{*}\left(t^{p}\right)\right\}$. Using the inequality $m\left(f^{*}(s), f\right) \leq s$ we obtain $P(E)=$ $m\left(s^{*}\left(t^{p}\right), s(f)\right) \leq t^{p}$ and since s^{*} is constant on $\left[P(E), t^{p}\right]$, henceforth

$$
\begin{equation*}
\int_{E} s(f)^{p} d P=\int_{0}^{P(E)} s^{*}(x)^{p} d x \leq \int_{0}^{t^{p}} s^{*}(x)^{p} d x \tag{4}
\end{equation*}
$$

Using inequality (4) and Lemma 3.2, we get

$$
\begin{aligned}
K\left(t, f, H_{p}^{s}, H_{\infty}^{s}\right) & \leq\|h\|_{H_{p}^{s}}+t\|g\|_{H_{\infty}^{s}} \\
& \leq C\left(\left(\int_{\{s(f)>y\}} s(f)^{p} d P\right)^{\frac{1}{p}}+t s^{*}\left(t^{p}\right)\right) \\
& \leq C\left(\left(\int_{\left\{s(f)>s^{*}(t p)\right\}} s(f)^{p} d P\right)^{\frac{1}{p}}+\left(\int_{0}^{t^{p}} s^{*}(x)^{p} d x\right)^{\frac{1}{p}}\right), \quad(\text { by }(4)) \\
& \leq C\left(\int_{0}^{t^{p}} s^{*}(x)^{p} d x\right)^{\frac{1}{p}} .
\end{aligned}
$$

Let $0<q<\infty$. It is easy to see that $1 / \varrho\left(t^{\frac{1}{p}}\right) \in Q\left(-\frac{1}{p}, 0\right)$ [16, Lemma 1.1]. So we have

$$
\begin{aligned}
& \|f\|_{\left(H_{p}^{s}, H_{\infty}^{s}\right)_{e, n}}=\int_{0}^{\infty}\left(\frac{K\left(t, f, H_{p}^{s}, H_{\infty}^{s}\right)}{\varrho(t)}\right)^{q} \frac{d t}{t} \\
& \leq C \int_{0}^{\infty}\left(\frac{1}{\varrho(t)}\right)^{q}\left(\int_{0}^{t p} s^{*}(x)^{p} d x\right)^{\frac{q}{p}} \frac{d t}{t}, \quad \text { (by (3)) } \\
& \leq C \int_{0}^{\infty}\left(\frac{1}{\varrho\left(t^{\frac{1}{p}}\right)}\right)^{q}\left(\int_{0}^{t} s^{*}(x)^{p} d x\right)^{\frac{q}{p}} \frac{d t}{t} \\
& \leq C \int_{0}^{\infty}\left(\frac{1}{\varrho\left(t^{\frac{1}{p}}\right)}\right)^{q} t^{\frac{q}{p}} s^{*}(t)^{p} \frac{d t}{t}, \quad \text { (by Lemma 3.3) } \\
& =C\|s(f)\|_{\Lambda_{q}\left(t^{\frac{1}{p}} l\left(t^{\frac{1}{p}}\right)\right)}=: C\|f\|_{\Lambda_{q}^{s}\left(t^{\frac{1}{p}} l\left(e^{\frac{1}{p}} t^{\frac{1}{p}}\right)\right)} .
\end{aligned}
$$

To prove the converse, we consider the operator $T: f \mapsto s(f)$. The sublinear operators $T: H_{\infty}^{s} \rightarrow L_{\infty}$ and $T: H_{p}^{s} \rightarrow L_{p}$ are bounded. By [16, Theprem 2.2], the operator

$$
T:\left(H_{p}^{s}, H_{\infty}^{s}\right)_{\varrho, q} \rightarrow\left(L_{p}, L_{\infty}\right)_{\varrho, q}=\Lambda_{q}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)
$$

is bounded in which the equality follows from (1). So we have

$$
\|f\|_{\Lambda_{q}^{s}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)}:=\|s(f)\|_{\Lambda_{q}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)} \leq C\|f\|_{\left(H_{p}^{s}, H_{\infty}^{s}\right)_{q, q}}
$$

The proof is complete for $0<q<\infty$. Let $q=\infty$. Since $\varrho \in Q(0,1)$, then $\varrho(t) t^{-\epsilon}$ is non-decreasing for some $\epsilon>0$. So we have

$$
\begin{aligned}
\|f\|_{\left(H_{p,}^{s}, H_{\infty}^{s}\right)_{\varrho, \infty}} & =\sup _{t>0} \frac{K\left(t, f, H_{p}^{s}, H_{\infty}^{s}\right)}{\varrho(t)} \\
& \leq C \sup _{t>0} \frac{\left(\int_{0}^{t^{p}} s^{*}(x)^{p} d x\right)^{\frac{1}{p}}}{\varrho(t)}, \quad(\text { by }(3)) \\
& \leq C \sup _{t>0} \frac{\left(\int_{0}^{t}\left(s^{*}\left(x^{p}\right)\right)^{p} x^{p-1} d x\right)^{\frac{1}{p}}}{\varrho(t)} \\
& \leq C \sup _{x>0} \frac{x s^{*}\left(x^{p}\right)}{\varrho(x)} \cdot \sup _{t>0} \frac{\varrho(t) t^{-\epsilon}\left(\int_{0}^{t} x^{p \epsilon-1} d x\right)^{\frac{1}{p}}}{\varrho(t)} \\
& \leq C\|f\|_{\Lambda_{\infty}^{s}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)}
\end{aligned}
$$

To prove the converse, we consider the operator $T: f \mapsto s(f)$. The sublinear operators $T: H_{\infty}^{s} \rightarrow L_{\infty}$ and $T: H_{p}^{s} \rightarrow L_{p}$ are bounded. By [16, Theprem 2.2] , the operator

$$
T:\left(H_{p}^{s}, H_{\infty}^{s}\right)_{\varrho, \infty} \rightarrow\left(L_{p}, L_{\infty}\right)_{\varrho, \infty}=\Lambda_{\infty}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)
$$

is bounded in which the equality follows from (1). Hence

$$
\|f\|_{\Lambda_{\infty}^{s}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)}:=\|s(f)\|_{\Lambda_{\infty}\left(t^{\frac{1}{p}} / \varrho\left(t^{\frac{1}{p}}\right)\right)} \leq C\|f\|_{\left(H_{p}^{s}, H_{\infty}^{s}\right)_{0, \infty}} .
$$

The proof is complete.
If we take $\varrho(t)=t^{\theta}$ in Theorem 3.1, then we get the following result, which has proved by Weisz [18].
Corollary 3.4. If $0<\theta<1,0<p_{0} \leq 1$ and $0<q \leq \infty$, then

$$
\left(H_{p_{0}}^{s}, H_{\infty}^{s}\right)_{\theta, q}=H_{p, q}^{s}, \quad \frac{1}{p}=\frac{1-\theta}{p_{0}}
$$

Applying the Theorem 3.1 we get the next theorem.
Theorem 3.5. Let $\varphi_{i}(t) \in Q(0,-), i=0,1,0<q_{0}, q_{1}, q \leq \infty$ and $\varrho \in Q(0,1)$. If $\varphi_{0}(t) / \varphi_{1}(t) \in Q(0,-)$ or $\varphi_{0}(t) / \varphi_{1}(t) \in Q(-, 0)$, then

$$
\left(\Lambda_{q_{0}}^{s}\left(\varphi_{0}\right), \Lambda_{q_{1}}^{s}\left(\varphi_{1}\right)\right)_{\varrho, q}=\Lambda_{q}^{s}(\varphi)
$$

where $\varphi(t)=\varphi_{0}(t) / \rho\left(\varphi_{0}(t) / \varphi_{1}(t)\right)$.
Proof. Put $\varrho_{i}(t)=t / \varphi_{i}\left(t^{p}\right)$ and choose p so small that $\varrho_{i}(t) \in Q(0,1), i=0,1$. According to [16, Corollary 4.4] and Theorem 3.1 we get

$$
\begin{aligned}
\left(\Lambda_{q_{0}}^{s}\left(\varphi_{0}\right), \Lambda_{q_{1}}^{s}\left(\varphi_{1}\right)\right)_{\varrho . q} & =\left(\left(H_{p}^{s}, H_{\infty}^{s}\right)_{\varrho_{0}, q_{0}}\left(H_{p}^{s}, H_{\infty}^{s}\right)_{\varrho_{1}, q_{1}}\right)_{\varrho, q} \\
& =\left(H_{p}^{s}, H_{\infty}^{s}\right)_{\varrho_{0}\left(\varrho_{1} / \varrho_{0}\right), q} \\
& =\Lambda_{q}^{s}(\varphi),
\end{aligned}
$$

where $\varphi(t)=\varphi_{0}(t) / \rho\left(\varphi_{0}(t) / \varphi_{1}(t)\right)$.
The following result is a simple application of Theorem 3.5, if we take $\varphi_{i}(t)=t^{\frac{1}{p_{i}}}, i=0,1$.
Corollary 3.6. Let $0<p_{i}<\infty, 0<q_{i}, q \leq \infty, i=0,1$ and $\varrho \in Q(0,1)$. If $p_{0} \neq p_{1}$, then

$$
\left(H_{p_{0}, q_{0}}^{s}, H_{p_{1}, q_{1}}^{s}\right)_{\varrho, q}=\Lambda_{q}^{s}\left(t^{\frac{1}{p_{0}}} / \varrho\left(t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}\right)\right)
$$

and

$$
\left(H_{p_{0}}^{s}, H_{p_{1}}^{s}\right)_{\varrho, q}=\Lambda_{q}^{s}\left(t^{\frac{1}{p_{0}}} / \varrho\left(t^{\frac{1}{p_{0}}}-\frac{1}{p_{1}}\right)\right)
$$

In particular, if $\varrho(t)=t^{\theta}$, then

$$
\left(H_{p_{0}}^{s}, H_{p_{1}}^{s}\right)_{\theta, q}=H_{p, q}^{s}, \quad \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}
$$

According to Theorem 3.5 we have the following corollary.
Corollary 3.7. Under the hypothesis of Theorem 3.5, we have

$$
\left(\Lambda_{q_{0}}^{s}\left(\varphi_{0}\right), \Lambda_{q_{1}}^{s}\left(\varphi_{1}\right)\right)_{\theta, q}=\Lambda_{q}^{s}\left(\varphi_{0}^{1-\theta} \varphi_{1}^{\theta}\right)
$$

Acknowledgment. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] A. Bernard, B. Maisonneuve, Decomposition atomique de martingale de la class H^{1}, Lecture Notes in Math. 581 (1977) 303-323.
[2] M. J. Carro, J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993) 480-494.
[3] R. R. Coifman, A real variable characterization of H^{P}, Studia Math. 51 (1974) 269-274.
[4] R. R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977) 569-645.
[5] C. Fefferman, E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972) 137-193.
[6] C. Herz, H_{p} space of martingales $0<p<1$, Z. Wahrs. Verw. Geb. 28 (1974) 189-205.
[7] K. P. Ho, Atomic decomposition, dual spaces and interpolations of martingale Hardy-Lorentz-Karamata spaces, Quart. J. Math. 65 (2014) 985-1009.
[8] K. P. Ho, Fourier integrals and Sobolev embedding on rearrangement-invariant quasi-Banach function spaces, Ann. Acad. Sci. Fenn. Math. 41 (2016) 897-922.
[9] K. P. Ho, Atomic decompositions of martingale Hardy-Morrey spaces, Acta Math. Hungarica 149 (2016) 177-189.
[10] Y. L. Hou, Y. B. Ren, Weak martingale Hardy spaces and weak atomic decompositions, Sicence in China. 49A (2006) 1-10.
[11] Y. Jiao, L. Peng, P. D. Liu, Atomic decompositions of Lorentz martingale spaces and applications, J. Funct. Space Appl. 7 (2009) 153-166.
[12] Y. Jiao, D. Zhou, Z. Hao, W. Chen, Martingale Hardy spaces with variable exponents, Banach J. Math. Anal. 10 (2016) 750-770.
[13] N. J. Kalton, N. T. Peck, W. Roberts, An F-space sampler, Lecture Notes in Math. 891984.
[14] L. Fan, Y. Jiao, P. Liu, Lorentz martingale spaces and interpolation, Acta Math. Sci. Ser. B Engl. Ed. 30B(4) (2010) 1143-1153.
[15] M. Miyamoto, E. Nakai, G. Sadasue, Martingale Orlicz-Hardy spaces, Math. Nachr. 285 (2012) 670-686.
[16] L. E. Persson, Interpolation with a parameter function, Math. Scand. 59 (1986) 199-222.
[17] Y. B. Ren, T. X. Guo, Real interpolation between martingale Hardy and BMO spaces, Acta Math. Sin. (Engl. Ser.) 29 (2013) 65-74.
[18] F. Weisz, Martingale Hardy spaces and their application in Fourier-analysis, Lecture Notes in Math. 1568, 1994.

[^0]: 2010 Mathematics Subject Classification. Primary 60G46; Secondary 46E30, 46B70
 Keywords. Atomic decompositions, martingale Hardy-Lorentz spaces, interpolation
 Received: 24 September 2016; Accepted: 29 April 2017
 Communicated by Dragan S. Djordjević
 Email addresses: mi_mohseny89@yahoo.com (Maryam Mohsenipour), ghadir54@gmail.com; g.sadeghi@hsu.ac.ir (Ghadir Sadeghi)

