
Filomat 31:19 (2017), 5891–5908
https://doi.org/10.2298/FIL1719891A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We study the rate of convergence of a new synthetic algorithm for finding a common element of
the set of solutions of an equilibrium problem and the set of common fixed points of a pair of nonexpansive
mappings and two finite families of demicontractive mappings. We then provide some numerical examples
to illustrate our main result and the proposed algorithm.

1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by 〈., .〉 and ||.|| respectively.
Let C be a nonempty closed convex subset ofH , and let Υ be a bifunction of C × C into R. The equilibrium
problem for Υ : C × C → R is to find x ∈ C such that

Υ(x, y) ≥ 0, ∀y ∈ C. (1)

The set of solutions of (1) is denoted by EP(Υ). In 2005, Combettes and Hirstoaga [1] introduced an iterative
scheme for finding the best approximation to the initial data when EP(Υ) is nonempty, and proved a strong
convergence theorem. Let A : C → H be a nonlinear mapping. The classical variational inequality which
is denoted by VI(A,C) is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C.

Throughout this article, for a mapping T : C → Cwe write

Fix(T) = {x ∈ C : x = Tx}

to denote the fixed points of T.

Definition 1.1. A mapping T : C → C is said to be quasi-nonexpansive if

||T(x) − x∗|| ≤ ||x − x∗||, ∀x ∈ C, x∗ ∈ Fix(T).

If the strict inequality holds, then T is called strictly quasi-nonexpansive.
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Definition 1.2. ([2, 3]) A mapping T : C → C is said to be nonspreading if

2||T(x) − T(y)||2 ≤ ||T(x) − y||2 + 2〈x − T(x), y − T(y)〉, ∀x, y ∈ C.

In [4], Lemoto and Takahashi introduced an equivalence relation in order that a mapping T : C → C to be
nonspreading:

||T(x) − T(y)||2 ≤ ||x − y||2 + 2〈x − T(x), y − T(y)〉, ∀x, y ∈ C.

Definition 1.3. ([5, 6]) A mapping T : C → C is said to be demicontractive (or k-demicontractive) if there exists
k ∈ [0, 1) such that

||T(x) − x∗||2 ≤ ||x − x∗||2 + k||T(x) − x||2, ∀x ∈ C, x∗ ∈ Fix(T).

We note that the class of demicontractive mappings properly includes the class of quasi-nonexpansive
mappings.

Definition 1.4. ([7]) A mapping T with domain D(T) and range R(T) inH is called a k-strictly pseudo-contractive
mapping of Browder-Petryshyn type, if for all x, y ∈ D(T) there exists k ∈ [0, 1) such that

||T(x) − T(y)||2 ≤ ||x − y||2 + k||(x − T(x)) − (y − T(y))||2, ∀x, y ∈ D(T).

If this inequality holds for k = 1 then T is simply called pseudo-contractive. Note that the class of strictly
pseudo-contractive mappings includes the class of nonexpansive mappings as a subclass; it suffices to put
k = 0. Recently, Osilike and Isioguge in [8] introduced a new class of mappings in a Hilbert space which is
called the class of k-strictly pseudo-nonspreading mappings:

Definition 1.5. ([8]) A mapping T : C → C is said to be k-strictly pseudo-nonspreading, if there exists k ∈ [0, 1)
such that for all x, y ∈ C, the following inequality holds:

||T(x) − T(y)||2 ≤ ||x − y||2 + k||(x − T(x)) − (y − T(y))||2 + 2〈x − T(x), y − T(y)〉.

Kohsaka and Takahashi in [2] introduced a nonlinear mapping called nonspreading mapping. This class
was studied in Banach spaces, as well as in Hilbert spaces: see [4, 9, 10].

As for nonexpansive mappings, weak convergence theorems for two nonexpansive mappings Q and R
(with Lipschitz constants kQ and kR respectively equal to 1) of C to itself were discussed by Takahashi and
Tamura in [11]:x1 = x ∈ C, chosen arbitrary,

xn+1 = (1 − αn)xn + αnR{βnQ(xn) + (1 − βn)xn},
(2)

where {αn} and {βn} are sequences in [0, 1].
In this paper we want to modify this algorithm to incorporate the demi-contractive mappings. For this

reason we begin with the following definition.

Definition 1.6. An operator A is said to be a strongly positive bounded linear operator on a real Hilbert spaceH , if
there exists a constant $ > 0 such that

〈Ax, x〉 ≥ $||x||2, ∀x ∈ H .

One of the most important issues of equilibrium and optimization problems is the problem of minimizing
a quadratic function over the set of fixed points of a nonexpansive mapping on a real Hilbert spaceH :

min
x∈Fix(T)

1
2
〈Ax, x〉 − 〈x, b〉. (3)



A. Abkar, M. Shekarbaigi / Filomat 31:19 (2017), 5891–5908 5893

Moudafi in [12] introduced a viscosity approximation method for finding a fixed point of nonexpansive
mappings. Later on, inspired by [12], Xu in [13] and Marino and Xu in [14] introduced the following
iterative scheme:

xn+1 = anγ f (xn) + (I − anA)T(xn), ∀n ≥ 0, (4)

where f is a contraction and T is a nonexpansive mapping. They proved that under some appropriate
conditions on the parameters, the sequence given by (4) converges strongly to the unique solution of the
following VI(A,C) problem

〈(A − γ f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T),

which is the optimality condition for the minimization problem

min
x∈Fix(T)

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γ f (that is h′ (x) = γ f (x) for all x ∈ H).
Takahashi and Takahashi in [15] introduced a viscosity approximation method for finding a common

element of EP(Υ) and Fix(T). Afterward, Plibtieng and Punpaeng in [16] by combining the schemes (4) in
[13] and using the algorithm in [15] introduced the following algorithmΥ(un, y) +

1
rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = anγ f (xn) + (I − anA)T(xn), ∀n ≥ 0.
(5)

They proved that the sequences {xn} and {un} in this algorithm converge strongly to the unique solution z
of the VI(A,C):

〈(A − γ f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(T) ∩ EP(Υ),

which is the optimality condition for the minimization problem

min
x∈Fix(T)∩EP(Υ)

1
2
〈Ax, x〉 − h(x),

where h is a potential function for γ f .
In [8] Osilike and Isiogugu proved a strong convergence theorem somewhat related to a Halpern-type

iteration algorithm for a k-strictly pseudo-nonspreading mapping in Hilbert spaces.

Theorem 1.7. [8] Let C be a nonempty closed convex subset of H , and let T : C → C be a k-strictly pseudo-
nonspreading mapping with a nonempty fixed point set Fix(T). Let ζ ∈ [k, 1) and {αn} be a real sequence in [0, 1) such
that limn→∞ αn = 0 and

∑
∞

n=1 αn = ∞. Let u ∈ C and {zn} and {xn} be sequences in C generated from an arbitrary
x0 ∈ C byzn =

∑n−1
k=1 Tk

ζxn, ∀n ≥ 0,
xn+1 = αnu + (1 − αn)zn, ∀n ≥ 0,

(6)

where Tζ = ζI + (1 − ζ)T. Then {zn}, {xn} converge strongly to PFix(T)(u).

In this paper, we improve this result by combining the algorithms (2) and (5) with a particular combination
of two finite families of demicontractive mappings and a pair of nonexpansive mappings, and obtain a
new synthetic algorithm. Here, instead of using a Halpern-type algorithm, we shall develop a viscosity
algorithm; the advantage of the viscosity iterative scheme to the Halpern-type scheme is its higher rate of
convergence. There are important applications of these type of algorithms in physical sciences, optimization,
and economics. Moreover, it is known that fuzzy game problems are reduced to finding a solution of the
equilibrium problem, see for instance [17]. For more information on the development of the theory, we
refer the reader to [18–23].
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2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real numbers.
For a sequence {xn} in H , we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x, and
xn → x to indicate that the sequence {xn} converges strongly to x.

Definition 2.1. Let C be a nonempty closed convex subset of H , and T : C → C be a mapping, then I − T is said
to be demiclosed at zero if for any sequence {xn} in C, the conditions xn ⇀ x and limn→∞ ||xn − T(xn)|| = 0, imply
x = T(x).

In a Hilbert space, it is known that:

||αx + (1 − α)y||2 = α||x||2 + (1 − α)||y||2 − α(1 − α)||x − y||2, (7)

for all x, y ∈ H and α ∈ [0, 1].
Zegeye and Shahzad in [20] generalized the equation (7) and obtained the following result.

Lemma 2.2. [20]. For each x1, x2, · · · , xm ∈ H and α1, α2, · · · , αm ∈ [0, 1] with
∑m

i=1 αi = 1, we have

||α1x1 + · · · + αmxm||
2 =

m∑
i=1

αi||xi||
2
−

∑
1≤i≤ j≤m

αiα j||xi − x j||
2. (8)

Lemma 2.3. LetH be a real Hilbert space. Then we have

||x + y||2 ≤ ||x||2 + 2〈y, x + y〉, ∀x, y ∈ H .

Lemma 2.4. [14]. Assume that A is a strongly positive self-adjoint bounded linear operator on a Hilbert space H
with coefficient γ and 0 < ρ ≤ ||A||−1. Then ||I − ρA|| ≤ 1 − ργ.

Lemma 2.5. [13]. Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

1.
∑
∞

n=1 γn = ∞,
2. lim supn→∞ γn ≤ 0 or

∑
∞

n=1 |γnδn| < ∞.

Then limn→∞ an = 0.

Lemma 2.6. [24]. Let {un} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence {uni } of {un} such that uni ≤ uni+1 for all i ≥ 0. For every n ≥ n0, define an integer sequence {τ(n)}
as τ(n) = max{k ≤ n : uni < uni+1 }. Then τ(n)→∞ as n→∞, moreover for all n ≥ n0,

max{uτ(n),un} ≤ uτ(n)+1.

For solving the equilibrium problem, we shall make the following assumptions on the bifunction Υ :
C × C → R:

(C1) Υ(x, x) = 0 for all x ∈ C,

(C2) Υ is monotone, that is

Υ(x, y) + Υ(y, x) ≤ 0, ∀x, y ∈ C,

(C3) Υ is upper-hemicontinuous, that is

lim sup
h→0+

Υ(hz + (1 − h)x, y) ≤ Υ(x, y), ∀x, y, z ∈ C,



A. Abkar, M. Shekarbaigi / Filomat 31:19 (2017), 5891–5908 5895

(C4) Υ(x, 0) is convex and lower semicontinuous for each x ∈ C.

Lemma 2.7. [25]. LetC be a nonempty closed convex subset ofH , and let Υ be a bifunction ofC×C intoR satisfying
(C1) − (C4). Let r > 0 and x ∈ H . Then, there exists z ∈ C such that

Υ(un, y) +
1
rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.8. [1]. Assum that Υ : C×C → R satisfies (C1)− (C4). For r > 0 and x ∈ H define a set-valued mapping
Tr : H ⇒ C in the following way:

Tr(x) = {z ∈ C : Υ(z, y) +
1
rn
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then we have

1. Tr is single valued.
2. Tr is firmly nonexpansive, that is for any x, y, z ∈ H ,

||Tr(x) − Tr(y)||2 ≤ 〈Tr(x) − Tr(y), x − y〉,

3. Fix(Tr) = EP(Υ),
4. EP(Υ) is closed and convex.

Lemma 2.9. [8]. Let C be a nonempty closed convex subset of H , and let T : C → C be a k-strictly pseudo-
nonspreading mapping. Then I − T is demiclosed at zero.

Lemma 2.10. [26]. Let C be a nonempty closed convex subset of a real Hilbert space H , and let T : C → C be a
k-strictly pseudo-contractive mapping. Then I − T is demiclosed at zero.

Takahashi in [27] proved that if T : C → C is a nonexpansive mapping, then Fix(T) is closed and convex. In
the following, we prove that this claim is true for demi-contractive mappings.

Lemma 2.11. Let C be a nonempty closed convex subset of a real Hilbert space H , and let T : C → C be a
demicontractive mapping. If Fix(T) , ∅, then Fix(T) is closed and convex.

Proof. Let {xn} ⊂ Fix(T) be a sequence which converges to x ∈ C. We show that x ∈ Fix(T). Observe that

||T(x) − x|| = ||T(x) − xn + xn − x||
≤ ||T(x) − T(xn)|| + ||xn − x||. (9)

Since T is demicontractive and {xn} ⊂ Fix(T), there exists k ∈ [0, 1) such that

||T(x) − T(xn)||2 = ||T(x) − xn||
2

≤ ||xn − x||2 + k||x − T(x)||2

≤ (||xn − x|| +
√

k||x − T(x)||)2. (10)

By using (10) in (9), we obtain

0 ≤ ||T(x) − x|| ≤
[ 2

1 −
√

k

]
||xn − x|| → 0, as n→∞.

Hence x ∈ Fix(T). To prove the convexity, suppose that p1, p2 ∈ Fix(T) and λ ∈ [0, 1]; it is enough to show
that λp1 + (1 − λ)p2 ∈ Fix(T). Let z = λp1 + (1 − λ)p2, then

p1 − z = (1 − λ)(p1 − p2),
p2 − z = λ(p2 − p1).
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Now, by using (7) we conclude that

||z − T(z)||2 = ||λ(p1 − T(z)) + (1 − λ)(p2 − T(z))||2

= λ||p1 − T(z)||2 + (1 − λ)||p2 − T(z)||2 − λ(1 − λ)||p1 − p2||
2

≤ λ
[
||p1 − z||2 + k||z − T(z)||2

]
+ (1 − λ)

[
||p2 − z||2 + k||z − T(z)||2

]
− λ(1 − λ)||p1 − p2||

2

= k||z − T(z)||.

Thus (1 − k)||z − T(z)||2 = 0, or equivalently z ∈ Fix(T).

3. Main Results

By using the mappings Q and R, defined above, we begin this section with the following theorem on
demicontractive mappings.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let Υ : C × C → R be
a bifunction satisfying (C1) − (C4). Let for i = 1, 2, · · · ,m, Ti : C −→ C be a finite family of κ-demicontractive
mappings and Si : C −→ C be a finite family of ι-demicontractive mappings such that I−Ti and I− Si are demiclosed
at 0. Assume that

F :=

 m⋂
i=1

Fix(Ti)

 ∩
 m⋂

i=1

Fix(Si)

 ∩ Fix(Q) ∩ Fix(R) ∩ Ep(Υ) , ∅.

Let f be a contraction of C into itself with constant b ∈ (0, 1) and A be a strongly positive self-adjoint bounded linear
operator onH with coefficient γ such that 0 < γ < (1+γ)−kR

b . Let {xn} and {un} be sequences generated by x0 ∈ C and
Υ(un, y) + 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + βnxn +
∑m

i=1 γn,iTiun,

wn = Λn,0Q(yn) +
∑m

i=1 Λn,iSi(Qyn),
xn+1 = anγ f (R(wn)) + (I − anA)R(wn).

(11)

Suppose that the sequences {αn}, {βn}, {γn,i}, {Λn,i}, {rn} and {an} satisfy the following conditions:

1. αn + βn +
∑m

i=1 γn,i = 1 and Λn,0 +
∑m

i=1 Λn,i = 1,
2. {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
3. {rn} ⊂ (0,∞), lim infn→∞ rn > 0,
4. κ < αn < 1, ι < Λn,0 < 1 and lim infn→∞(Λn,0 − L)Λn,i > 0.

Then the sequences {xn} and {un} converge strongly to z ∈ F which solves the variational inequality

〈(A − γ f )z, x − z〉 ≥ 0, ∀x ∈ F. (12)

Proof. Step 1. It is easy to see that PF has a fixed point:

‖PF(I − A + γ f )(Rx) − PF(I − A + γ f )(Ry)‖ ≤
∥∥∥∥(I − A + γ f )(Rx) − (I − A + γ f )(Ry)

∥∥∥∥
≤ ‖(I − A)(Rx) − (I − A)(Ry)‖ + γ‖ f x − f y‖
≤ (kR − γ)‖x − y‖ + γb‖x − y‖
≤ (kR − (γ − γb))‖x − y‖.

This means that PF is a contraction of C into itself. Thus there exists a unique element q ∈ C such that
q = PF(I − A + γ f )q, or equivalently for all p ∈ F, we have 〈(I − A + γ f )q − p, q − p〉 > 0. Since limn→∞ an = 0,
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we may assume that 0 < an < ‖A‖−1, for all n > 0. By Lemma (2.4) we have ‖I − anA‖ 6 1 − anγ. Now take
p ∈ F, since un = Trn xn and p = Trn p, from Lemma (2.8) for any n > 0 we have

‖un − p‖ = ‖Trn xn − Trn p‖ 6 ‖xn − p‖.

In the following we show that {xn} is bounded. If we define k := max{ ki ; 1 ≤ i ≤ m}, then

‖yn − p‖2 = ‖αnun + βnxn +

m∑
i=1

γn,iTiun − p‖2

≤ αn‖un − p‖2 + βn‖xn − p‖2 +

m∑
i=1

γn,i‖Tiun − p‖2 − αnβn‖xn − un‖
2
− αnγn,i‖un − Tiun‖

2

≤ αn‖un − p‖2 + βn‖xn − p‖2 +

m∑
i=1

γn,i(‖un − p‖2 + k‖un − Tiun‖
2)

− αnβn‖xn − un‖
2
− αnγn,i‖un − Tiun‖

2

≤ ‖xn − p‖2 − αnβn‖xn − un‖
2
− (αn − k)

m∑
i=1

γn,i‖un − Tiun‖
2. (13)

By using Lemma (2.2) and a similar argument as before, and using the fact that k2
Q ≤ kQ, we can write

‖wn − p‖2 = ‖Λn,0Q(yn) +

m∑
i=1

Λn,iSi(Qyn) − p‖2

≤ Λn,◦‖Q(yn) − p‖2 +

m∑
i=1

Λn,i‖Si(Qyn) − p‖2 −Λn,0Λn,i‖Q(yn) − Si(Q(yn))‖2

= Λn,0‖Q(yn) −Q(p)‖2 +

m∑
i=1

Λn,i‖Si(Qyn) − Sip‖2 −Λn,0Λn,i‖Qyn − Si(Qyn)‖2

≤ kQΛn,0‖yn − p‖2 +

m∑
i=1

Λn,i(‖Qyn − p‖2 + ι‖Qyn − Si(Qyn)‖2) −Λn,0Λn,i‖Qyn − Si(Qyn)‖2

≤ kQΛn,0‖yn − p‖2 +

m∑
i=1

Λn,i(k2
Q‖yn − p‖2 + ι‖Qyn − Si(Qyn)‖2) −Λn,0Λn,i‖Qyn − Si(Qyn)‖2

= kQ‖yn − p‖2 − (Λn,0 − ι)
m∑

i=1

Λn,i‖Qyn − Si(Qyn)‖2

≤ kQ‖xn − p‖2 − (Λn,0 − ι)
m∑

i=1

Λn,i‖Qyn − Si(Qyn)‖2

− αnβn‖xn − un‖
2
− (αn − k)

m∑
i=1

γn,i‖un − Tiun‖
2. (14)

Thus ‖wn − p‖ ≤ ‖xn − p‖. Now, using Lemma (2.4) we obtain

‖xn+1 − p‖ = ‖an(γ f (R(wn) − Ap) + (I − anA)(R(wn) − p)‖
= ‖an(γ f (R(wn) − Ap) + (I − anA)(R(wn) − R(p))‖
≤ an‖γ f (R(wn) − Ap‖ + ‖I − anA‖‖R(wn) − R(p)‖
≤ anγ‖ f (R(wn) − f p‖ + an‖γ f p − Ap‖ + kR(1 − anγ)‖wn − p‖
= anγ‖ f (R(wn) − f (R(p))‖ + an‖γ f p − Ap‖ + kR(1 − anγ)‖wn − p‖
≤ anγ b‖Rwn − Rp‖ + an‖γ f p − Ap‖ + kR(1 − anγ)‖wn − p‖
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≤ kRanγ b‖wn − p‖ + an‖γ f p − Ap‖ + kR(1 − anγ)‖wn − p‖
≤ kR(1 − an(γ − γ b))‖xn − p‖ + an‖γ f p − Ap‖.

Finally, we use an induction argument on n ∈N to obtain

‖xn − p‖ ≤ max
{
‖x0 − p‖,

1
kR(γ − γ b)

‖γ f p − Ap‖
}
.

This means that {xn} is bounded. It now follows from (13) that {yn} is bounded too. Similarly, it can be
shown that {un}, {wn} and { f (R(wn)} are bounded sequences.
Step 2. We show that for i = 1, 2, · · · ,m

lim
n→∞
‖un − Tiun‖ = 0, lim ‖yn − Si(Qyn)‖ = 0.

By Lemma (2.4) and the inequality (14) we have

‖xn+1 − p‖2 = ‖anγ f (R(wn)) + (1 − anA)R(wn) − p‖2

= ‖an(γ f (R(wn)) − Ap) + (I − anA)(R(wn) − p)‖2

= ‖an(γ f (R(wn)) − Ap) + (I − anA)(R(wn) − R(p))‖2

≤ a2
n‖γ f (R(wn)) − Ap‖2 + (1 − anγ)2

‖(R(wn) − R(p))‖2

+ 2an(1 − anγ)‖γ f (R(wn)) − Ap‖‖(R(wn) − R(p))‖

≤ a2
n‖γ f (R(wn)) − Ap‖2 + k2

R(1 − anγ)2
‖wn − p‖2

+ 2kRan(1 − anγ)‖γ f (R(wn)) − Ap‖‖wn − p‖

≤ a2
n‖γ f (R(wn)) − Ap‖2 + k2

R(1 − anγ)2
‖xn − p‖2

+ 2kRan(1 − anγ)‖γ f (R(wn)) − Ap‖‖xn − p‖ − (1 − anγ)2αnβn‖xn − un‖
2

− (1 − anγ)2(Λn,0 − ι)Λn,i‖Qyn − SiQyn‖
2
− (1 − anγ)2(αn − k)γn,i‖un − Tiun‖

2.

The last inequality simplifies to

(1 − anγ)2(Λn,0 − ι)Λn,i‖Qyn − SiQyn‖
2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2kRan(1 − anγ)‖xn − p‖‖γ f (R(wn) − Ap‖

+ a2
n‖γ f (R(wn)) − Ap‖2. (15)

Step 3. We prove that xn → q as n→∞. To prove this, we consider two possible cases.
Case 1. Assume that {‖xn−q‖}n≥1 is a monotone sequence. In other words, for N0 large enough, {‖xn−q‖}n≥N0

is either nondecreasing or non-increasing. Since ‖xn−q‖ is bounded, we conclude that ‖xn−q‖ is convergent.
Since limn→∞ an = 0 and { f (Rwn)} and {xn} are bounded, we have

lim
n→∞

(1 − anγ)2(Λn,0 − ι)Λn,i‖Qyn − SiQyn‖
2 = 0.

From limn→∞ an = 0, we may assume that for some ς ∈ (0, 1), 0 < ς < (1 − anγ)2. By assumption that
lim infn→∞(Λn,0 − ι)Λn,i > 0, we obtain

lim
n→∞
‖Qyn − SiQyn‖ = 0, i = 1, 2, · · · ,m. (16)

With a similar reasoning as in the inequality (15), we conclude that

(1 − anγ)2(αn − k)γn,i‖un − Tiun‖
2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2kRan(1 − anγ)‖xn − p‖‖γ f (R(wn) − Ap‖

+ a2
n‖γ f (R(wn)) − Ap‖2, (17)
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and that

lim
n→∞
‖un − Tiun‖ = 0, i = 1, 2, · · · ,m. (18)

Also, we obtain

lim
n→∞
‖un − xn‖ = 0. (19)

By using the second equation in (11), we obtain

‖yn − un‖ 6 βn‖xn − un‖ +

m∑
i=1

γn,i‖Tiun − un‖,

this, together with (18) and (19) yields

lim
n→∞
‖yn − un‖ = 0.

In the following, we show that

lim sup
n→∞

〈(A − γ f )q, q − xn〉 ≤ 0,

where q = PF(I − A + γ f )q is the unique solution of the variational inequality (12). We can choose a
subsequence {xni } of {xn} such that

lim
i→∞
〈(A − γ f )q, q − xni〉 = lim sup〈(A − γ f )q, q − xn〉.

In the previous step, we observed that the sequence xni is bounded, therefore there exists a subsequence
xni j

of xni which converges weakly to ν. Without loss of generality, we can assume that xni → ν. We have
already proved that limn→∞ ‖un − xn‖ = 0, therefore uni → ν. To complete the proof, we need to show that
ν ∈ F. But, as a byproduct of Takahashi and Tamura’s argument in [11], we know that ν ∈ Fix(Q) ∩ Fix(R).
Now, we show that ν ∈ Ep(Υ). Since un = Trn xn, we have

Υ(un, y) +
1
rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C.

Since Υ is monotone, we can write

1
rn
〈y − un,un − xn〉 ≥ Υ(y,un),

therefore

〈y − uni ,
uni − xni

rni

〉 ≥ Υ(y,uni ).

But uni − xni → 0 and uni → ν, however, by using (C4) for all y ∈ C, we conclude that Υ(y, ν) ≤ 0. Now, for
t ∈ (0, 1] and y ∈ C, set zt = ty + (1− t)ν, since y, ν ∈ C and C is convex, we have zt ∈ C and hence Υ(zt, ν) ≤ 0.
So from (C1) and (C4) we have

0 = Υ(zt, zt) ≤ tΥ(zt, y) + (1 − t)Υ(zt, ν) ≤ tΥ(zt, y),

since t ∈ (0, 1]. Thus Υ(zt, y) ≥ 0, and from (C3) we conclude that

0 ≤ Υ(y, ν), ∀y ∈ C.
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This means that ν ∈ Ep(Υ). So far, we have proved that

ν ∈ Fix(Q) ∩ Fix(R) ∩ Ep(Υ).

It is easy to show that ν ∈
(⋂m

i=1 Fix(Ti)
)

and ν ∈
(⋂m

i=1 Fix(Si)
)
. Since Q is nonexpansive and limn→∞ ‖yn−un‖ =

0, we have

lim
n→∞
‖Q(yn) −Q(un)‖ = 0.

Due to (16) and our assumption that I − Si is demiclosed at 0, it follows that ν ∈
(⋂m

i=1 Fix(Si)
)
. In the same

way, we can prove that ν ∈
(⋂m

i=1 Fix(Ti)
)
, hence ν ∈ F. Since q = PF(I − A + γ f )q and ν ∈ F, we have

lim sup
n→∞

〈(A − γ f )q, q − xn〉 = lim
i→∞
〈(A − γ f )q, q − xni〉

= 〈(A − γ f )q, q − ν〉 ≤ 0.

Now by using the algorithm used in the definition of xn+1 and Lemma (2.3), we have

‖xn+1 − q‖2 ≤ ‖(I − anA)(R(wn) − q)‖2 + 2an〈γ f (R(wn)) − Aq, xn+1 − q〉

≤ (1 − anγ)2
‖R(wn) − q‖2 + 2anγ〈 f (R(wn)) − f q, xn+1 − q〉 + 2an〈γ f q − Aq, xn+1 − q〉

= (1 − anγ)2
‖R(wn) − R(q)‖2 + 2anγ〈 f (R(wn)) − f (Rq), xn+1 − q〉 + 2an〈γ f q − Aq, xn+1 − q〉

≤ k2
R(1 − anγ)2

‖wn − q‖2 + 2kRanbγ‖wn − q‖‖xn+1 − q‖ + 2an〈γ f q − Aq, xn+1 − q〉

≤ k2
R(1 − anγ)‖xn − q‖2 + 2kRanbγ‖xn − q‖‖xn+1 − q‖ + 2an〈γ f q − Aq, xn+1 − q〉

≤ k2
R(1 − anγ)2

‖xn − q‖2 + kRanbγ(‖xn − q‖2 + ‖xn+1 − q‖2) + 2an〈γ f q − Aq, xn+1 − q〉

=
(
k2

R(1 − anγ)2 + anbγkR

)
‖xn − q‖2 + kRanbγ‖xn+1 − q‖2 + 2an〈γ f q − Aq, xn+1 − q〉.

Arranging the above inequality, we have

‖xn+1 − q‖2 ≤
k2

R(1 − anγ)2 + anbγkR

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

=

k2
R − 2k2

Ranγ + k2
Ra2

nγ
2 + anbγkR

1 − kRanbγ

 ‖xn − q‖2 +
2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

=

(
k2

R − 2k2
Ranγ + anbγkR

1 − kRanbγ

)
‖xn − q‖2 +

k2
Ra2

nγ
2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

6

(
kR − 2k2

Ranγ + anbγkR + anbγk2
R − anbγk2

R

1 − kRanbγ

)
‖xn − q‖2

+
k2

Ra2
nγ

2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

=

(
kR(1 − kRanbγ) − 2k2

Ranγ + anbγkR + anbγk2
R

(1 − kRanbγ)

)
‖xn − q‖2

+
k2

Ra2
nγ

2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

6

(
kR +

−2k2
Ranγ + anbγkR + anbγk2

R

(1 − kRanbγ)

)
‖xn − q‖2

+
k2

Ra2
nγ

2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉
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6

(
kR +

−2k2
Ranγ + anbγkR + anbγkR

(1 − kRanbγ)

)
‖xn − q‖2

+
k2

Ra2
nγ

2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

=

(
kR −

2k2
Ranγ − 2kRanbγ
(1 − kRanbγ)

)
‖xn − q‖2 +

k2
Ra2

nγ
2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

6

(
1 −

2kRan(kRγ − bγ)
1 − kRanbγ

)
‖xn − q‖2 +

k2
Ra2

nγ
2

1 − kRanbγ
‖xn − q‖2 +

2an

1 − kRanbγ
〈γ f q − Aq, xn+1 − q〉

6
2kRan(kRγ − bγ)

1 − kRanbγ

 kRanγ
2M

2(kRγ − bγ)
+

1
kR(kRγ − bγ)

〈γ f q − Aq, xn+1 − q〉

 +

(
1 −

2kRan(kRγ − bγ)
1 − kRanbγ

)
‖xn − q‖2

= σnηn + (1 − σn)‖xn − q‖2,

where M = sup
{
‖xn − q‖2 : n ≥ 0

}
, σn =

2kRan(kRγ − bγ)
1 − kRanbγ

and

ηn =
kRanγ

2M
2(kRγ − bγ)

+
1

kR(kRγ − bγ)
〈γ f q − Aq, xn+1 − q〉.

It is easy to sea that σn → 0,
∑

n≥1 σn = ∞ and lim supn→∞ ηn ≤ 0. Hence, by Lemma (2.5) the sequence {xn}

converges strongly to q.
Case 2. If {‖xn − q‖}n≥1 is not a monotone sequence, then we can define an integer sequence {%(n)} for all
n ≥ n0 (for some n0 large enough):

%(n) := max{k ∈N; k ≤ n : ‖xk − q‖ < ‖xk+1 − q‖}.

Clearly, % is a nondecreasing sequence such that %(n)→ 0, as n→∞ and for all n ≥ n0, we can write

‖x%(n) − q‖ < ‖x%(n)+1 − q‖.

From (17) we conclude that

lim
n→∞
‖u%(n) − Tiu%(n)‖ = 0, lim

n→∞
‖u%(n) − x%(n)‖ = 0.

Using a similar argument as in Case 1, we have

‖x%(n)+1 − q‖2 ≤ (1 − σ%(n))‖x%(n) − q‖2 + σ%(n)η%(n),

where σ%(n) → 0,
∑

n≥1 σ%(n) = ∞ and lim supn→∞ η%(n) ≤ 0. Hence, by Lemma (2.5), we obtain

lim
n→∞
‖x%(n)+1 − q‖ = 0, lim

n→∞
‖x%(n) − q‖ = 0.

Therefore, by Lemma (2.6) we conclude that

0 ≤ ‖xn − q‖ ≤ max
{
‖x%(n) − q‖, ‖xn − q‖; n ≥ 0

}
≤ ‖x%(n)+1 − q‖.

So, the sequence {xn} converges strongly to q.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let Υ : C × C → R be
a bifunction satisfying (C1) − (C4). Let for i = 1, 2, · · · ,m, Ti : C −→ C be a finite family of κ-stricly pseudo-
nonspreading mappings and Si : C −→ C be a finite family of ι-stricly pseudo-nonspreading mappings such that
I − Ti and I − Si are demiclosed at 0. Assume that

F :=

 m⋂
i=1

Fix(Ti)

 ∩
 m⋂

i=1

Fix(Si)

 ∩ Fix(Q) ∩ Fix(R) ∩ Ep(Υ) , ∅.
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Let f be a contraction of C into itself with constant b ∈ (0, 1) and A be a strongly positive self-adjoint bounded linear
operator onH with coefficient γ such that 0 < γ < (1+γ)−kR

b . Let {xn} and {un} be sequences generated by x0 ∈ C and
Υ(un, y) + 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + βnxn +
∑m

i=1 γn,iTiun,

wn = Λn,0Q(yn) +
∑m

i=1 Λn,iSi(Qyn),
xn+1 = anγ f (R(wn)) + (I − anA)R(wn).

Suppose that the sequences {αn}, {βn}, {γn,i}, {Λn,i}, {rn} and {an} satisfy the following conditions:

1. αn + βn +
∑m

i=1 γn,i = 1 and Λn,0 +
∑m

i=1 Λn,i = 1,
2. {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
3. {rn} ⊂ (0,∞), lim infn→∞ rn > 0,
4. κ < αn < 1, ι < Λn,0 < 1 and lim infn→∞(Λn,0 − L)Λn,i > 0.

Then the sequences {xn} and {un} converge strongly to z ∈ F which solves the variational inequality

〈(A − γ f )z, x − z〉 ≥ 0, ∀x ∈ F.

Proof. First, we claim that every κ-strictly pseudo-nonspreading mapping Ti is demicontractive. To prove
this, let x∗ ∈ Fix(Ti) and x ∈ C. Then we have

||Ti(x) − x∗||2 = ||Ti(x) − Ti(x∗)||2

≤ ||x − x∗||2 + κ||(x − Ti(x)) − (x∗ − Ti(x∗))||2 + 2〈x − Ti(x), x∗ − Ti(x∗)〉

= ||x − x∗||2 + κ||x − Ti(x)||2.

According to Lemma (2.9), for every κ-strictly pseudo-nonspreading mapping Ti, I − Ti is demiclosed at 0.
By the way, the same conclusion holds for each Si. Therefore, the result follows from Theorem (3.1).

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let Υ : C × C → R be
a bifunction satisfying (C1) − (C4). Let for i = 1, 2, · · · ,m, Ti : C −→ C be a finite family of κ-strictly pseudo-
contractive mappings and Si : C −→ C be a finite family of ι-strictly pseudo-contractive mappings such that I − Ti
and I − Si are demiclosed at 0. Assume that

F :=

 m⋂
i=1

Fix(Ti)

 ∩
 m⋂

i=1

Fix(Si)

 ∩ Fix(Q) ∩ Fix(R) ∩ Ep(Υ) , ∅.

Let f be a contraction of C into itself with constant b ∈ (0, 1) and A be a strongly positive self-adjoint bounded linear
operator onH with coefficient γ such that 0 < γ < (1+γ)−kR

b . Let {xn} and {un} be sequences generated by x0 ∈ C and
Υ(un, y) + 1

rn
〈y − un,un − xn〉 ≥ 0, ∀y ∈ C,

yn = αnun + βnxn +
∑m

i=1 γn,iTiun,

wn = Λn,0Q(yn) +
∑m

i=1 Λn,iSi(Qyn),
xn+1 = anγ f (R(wn)) + (I − anA)R(wn).

Suppose that the sequences {αn}, {βn}, {γn,i}, {Λn,i}, {rn} and {an} satisfy the following conditions:

1. αn + βn +
∑m

i=1 γn,i = 1 and Λn,0 +
∑m

i=1 Λn,i = 1,
2. {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
3. {rn} ⊂ (0,∞), lim infn→∞ rn > 0,
4. κ < αn < 1, ι < Λn,0 < 1 and lim infn→∞(Λn,0 − L)Λn,i > 0.
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Then the sequences {xn} and {un} converge strongly to z ∈ F which solves the variational inequality

〈(A − γ f )z, x − z〉 ≥ 0, ∀x ∈ F.

Proof. First, we claim that every κ-strictly pseudo-contractive mapping Ti is demicontractive. To prove this,
let x∗ ∈ Fix(Ti) and x ∈ C. Then we have

||Ti(x) − x∗||2 = ||Ti(x) − Ti(x∗)||2

≤ ||x − x∗||2 + κ||(x − Ti(x)) − (x∗ − Ti(x∗))||2

= ||x − x∗||2 + κ||x − Ti(x)||2.

According to Lemma (2.10), for every κ-strictly pseudo-contractive mapping Ti, I − Ti is demiclosed at 0.
By the way, the same conclusion holds for each Si. Therefore, the result follows from Theorem (3.1).

4. Application

In the following, we provide some numerical examples to illustrate the rate of convergence of our

algorithm (11). Let C = [
−1
π
,

1
π

] which is a nonempty closed convex subset of the real Hilbert space R. For
i = 1, 2 define the mappings Ti : C −→ C by

Ti(x) =


x x ∈ [

−1
π
, 0],

x
i + 1
| sin

1
x
|, x ∈ (0,

1
π

],

and Si : C −→ C by Si(x) =
i

i + 1
x. Clearly, zero is the only fixed point of the mappings Ti (see Figure 1).

Figure 1: For i = 1, 2.

It is easy to see that each Ti is demicontractive for x ∈ [
−1
π
, 0]. For x ∈ (0,

1
π

] we have

‖Tix − 0‖2 = ‖Tix‖2 = ‖
x

i + 1
| sin

1
x
|‖

2
≤ ‖

x
i + 1
‖

2
≤ ‖x − 0‖2 + κ‖Tix − x‖2,
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for some κ < 1. Thus, Ti is demicontractive. Similarly, we can show that each Si is demicontractive. Now,
we define the bifunction Υ by

Υ : C × C −→ R
Υ(x, y) = y2 + xy − 2x2.

It is easy to see that Υ satisfies the conditions (C1) − (C4). To have a better understanding of this issue, we
sketch the graph of Υ in three-dimensional space (see Figure 2).

Figure 2: 0 ∈ Ep(Υ), since Υ(0, y) = y2
≥ 0, for all y ∈ C.

In [28], Singthong and Suantai obtained the following sequence for rn = 1, un = Trn (xn) =
xn

3rn + 1
=

xn

4
.

For i = 1, · · · ,m we define θ0 := LCM(1, 2, · · · ,m), where LCM(1, 2, · · · ,m) is the lowest common multiple of

the integers 1, 2, · · · ,m. Now, we set γ = 1, an =
1

n + 1
, αn = βn = γn,1 = γn,2 =

1
4

, and Λn,0 = Λn,1 = Λn,2 =
1
3
.

Note that when we run this algorithm, the parameter θ0 helps us in running faster and leads to better
answers.

We set R(x) = Q(x) = f (x) =
x
θ0

and A = I. Now for any x0 ∈ [
−1
π
,

1
π

], our algorithm is the following:



yn =
xn

16
+

xn

4
+

1
4

T1(
xn

4
) +

1
4

T2(
xn

4
),

wn =
yn

4θ0
+

1
4

S1(
yn

θ0
) +

1
4

S2(
yn

θ0
) =

yn

4θ0
+

1
4

(
1
2

yn

θ0
) +

1
4

(
2yn

3θ0
)

=
yn

4θ0
+

yn

8θ0
+

yn

6θ0
=

yn

4θ0
+

yn

6θ0
+

yn

8θ0
=

13
24θ0

yn,

xn+1 =
wn

(n + 1)θ2
0

+
n

n + 1
wn

θ0
=

1 + nθ0

(n + 1)θ2
0

wn.

(20)
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Let x0 =
1

2π
, then for all n ≥ 0, the algorithm (20) becomes



yn =
xn

16
+

xn

4
+

1
4

xn

8
| sin

4
xn
| +

1
4

+
xn

12
| sin

4
xn
| =

5xn

16
(1 +

1
6
| sin

4
xn
|),

wn =
65xn

384θ0
(1 +

1
6
| sin

4
xn
|),

xn+1 =
1 + nθ0

(n + 1)θ2
0

65xn

384θ0
(1 +

1
6
| sin

4
xn
|) =

65(1 + nθ0)
384(n + 1)θ3

0

(1 +
1
6
| sin

4
xn
|)xn.

Due to the fact that (1 +
1
6
| sin

4
xn
|) ≥ 0, we conclude that xn converges to zero. On the other hand

F =

 2⋂
i=1

Fix(Ti)

 ∩
 2⋂

i=1

Fix(Si)

 ∩ Fix(Q) ∩ Fix(R) ∩ Ep(Υ) = {0}.

Here comes the table of numerical results for the first step x0 =
1

2π
(see Table 1):

Iteration steps Values of xn Iteration steps Values of xn

0 0.159155 26 2.08640 × 10−37

1 0.00336754 27 9.62894 × 10−39

2 0.000111973 28 4.03356 × 10−40

3 4.14052 × 10−6 29 1.72747 × 10−41

4 1.65488 × 10−7 30 7.94206 × 10−43

5 7.24066 × 10−9 31 3.65726 × 10−44

6 3.11706 × 10−10 32 1.71492 × 10−45

7 1.36314 × 10−11 33 8.21766 × 10−47

8 5.40835 × 10−13 34 3.67328 × 10−48

9 2.20260 × 10−14 35 1.53926 × 10−49

10 9.37587 × 10−16 36 6.49615 × 10−51

11 3.97624 × 10−17 37 2.87259 × 10−52

12 1.62365 × 10−18 38 1.39661 × 10−53

13 6.72121 × 10−20 39 5.88287 × 10−55

14 3.15619 × 10−21 40 2.85415 × 10−56

15 1.38941 × 10−22 41 1.33051 × 10−57

16 5.76668 × 10−24 42 6.40133 × 10−59

17 2.44475 × 10−25 43 3.00585 × 10−60

18 1.09982 × 10−26 44 1.30438 × 10−61

19 5.21019 × 10−28 45 6.27974 × 10−63

20 2.37627 × 10−29 46 2.81458 × 10−64

21 1.01053 × 10−30 47 1.36055 × 10−65

22 4.84174 × 10−32 48 5.79889 × 10−67

23 2.23985 × 10−33 49 2.74276 × 10−68

24 9.45789 × 10−35 50 1.24763 × 10−69

25 4.51880 × 10−36

Table 1: Numerical results correspondent to x0 =
1

2π
for 50 steps.
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Let x0 = −
1

2π
, then for all n ≥ 0, the algorithm (20) becomes

yn =
xn

16
+

xn

4
+

1
4

T1(
xn

4
) +

1
4

T2(
xn

4
) =

xn

16
+

xn

4
+

xn

16
+

xn

16
=

7xn

16
,

wn =
13

24θ0
yn =

91
384θ0

xn,

xn+1 =
1 + nθ0

(n + 1)θ3
0

91
384

xn.

Again we provide the table of numerical results for the first step x0 = −
1

2π
(see Table 2).

Iteration steps Values of xn Iteration steps Values of xn

0 −0.159155 26 −2.15068 × 10−34

1 −0.00471455 27 −1.25057 × 10−35

2 −0.000209484 28 −7.27667 × 10−37

3 −0.0000103424 29 −4.23672 × 10−38

4 −5.36141 × 10−7 30 −2.46820 × 10−39

5 −2.85872 × 10−8 31 −1.43869 × 10−40

6 −1.55251 × 10−9 32 −8.39034 × 10−42

7 −8.54080 × 10−11 33 −4.89552 × 10−43

8 −4.74373 × 10−12 34 −2.85769 × 10−44

9 −2.65428 × 10−13 35 −1.66885 × 10−45

10 −1.49390 × 10−14 36 −9.74973 × 10−47

11 −8.44826 × 10−16 37 −5.69815 × 10−48

12 −4.79661 × 10−17 38 −3.33144 × 10−49

13 −2.73244 × 10−18 39 −1.94840 × 10−50

14 −1.56101 × 10−19 40 −1.13990 × 10−51

15 −8.93992 × 10−21 41 −6.67093 × 10−53

16 −5.13092 × 10−22 42 −3.90513 × 10−54

17 −2.95040 × 10−23 43 −2.28668 × 10−55

18 −1.69940 × 10−24 44 −1.33935 × 10−56

19 −9.80313 × 10−26 45 −7.84676 × 10−58

20 −5.66265 × 10−27 46 −4.59827 × 10−59

21 −3.27495 × 10−28 47 −2.69525 × 10−60

22 −1.89614 × 10−29 48 −1.58016 × 10−61

23 −1.09894 × 10−30 49 −9.26612 × 10−63

24 −6.37503 × 10−32 50 −5.43480 × 10−64

25 −3.70133 × 10−33

Table 2: Numerical results corresponding to x0 = −
1

2π
for 50 steps.

In this case, xn converges to zero too. Thus, in general, the sequence {xn}n≥1 is convergent to zero.
In the following we show the list plot of our algorithm (see Figure 3, which shows the list plot of Table

1 and Table 2).
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Figure 3: List plot of our algorithm for Table 1 and Table 2
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