New fractional integral operators of order $\alpha \in \mathbb{R}_+$ are introduced. These operators are defined as the composition of the left and right (or the right and left) Riemann-Liouville fractional order integrals. Some of their properties are studied. Analytical results of fractional integrals of several functions are presented. For a numerical calculation of fractional order integrals, two numerical procedures are given. In the final part of this paper, examples of numerical evaluations of these operators of three different functions are shown in plots and the comparison of the numerical accuracy was analyzed in tables.