Filomat 31:18 (2017), 5525–5537 https://doi.org/10.2298/FIL1718525K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Multidecomposition of Cartesian Product of Some Graphs into Even Cycles and Matchings

P. Kandan^a

^aDepartment of Mathematics, Annamalai University, Annamalainagar 608 002, India

Abstract. Let C_{2p} and pK_2 denote a cycle with 2p edges and p vertex-disjoint edges, respectively. For graphs G, H' and H'', a (H', H'')-multidecomposition of G is a partition of the edge set of G into copies of H' and copies of H'' with at least one copy of H' and at least one copy of H''. In this paper, we investigate (C_{2p}, pK_2) -multidecomposition of the Cartesian product of paths, cycles and complete graphs, for some values $p \ge 3$.

1. Introduction

All graphs considered here are finite undirected simple graphs only. For the discussions, some terminologies and notations are needed. Let P_n for the path on n vertices, C_n for the cycle on n vertices, K_n for the complete graph on n vertices, and pK_2 for p vertex-disjoint edges. Let $V(P_n) = V(C_n) = V(K_n) =$ $\{0, 1, 2, ..., n - 1\}, E(P_n) = \{\{i, i + 1\} : i \in \{0, 1, 2, ..., n - 2\}\}$ and $E(C_n) = E(P_n) \cup \{\{n - 1, 0\}\}.$

A *decomposition* of a graph *G* is a collection $\mathscr{G} = \{G_1, G_2, \ldots, G_s\}$ of nonempty subgraphs of *G* such that the sets $E(G_1), E(G_2), \ldots, E(G_s)$ form a partition of E(G), where $E(G_i)$ and E(G) are, respectively, the edge sets of G_i and G; denote this by $G = G_1 \oplus G_2 \oplus \cdots \oplus G_s$.

Consider a decomposition $\mathscr{G} = \{G_1, G_2, \dots, G_s\}$ of *G*. If, for every $i \in \{1, 2, \dots, s\}$, $G_i \cong H$, then say that *H divides G* and denote it by *H*|*G*, and the collection \mathscr{G} is called a *H-decomposition of G* or a *H-design of G*.

Consider a decomposition $\mathscr{G} = \{G_1, G_2, \ldots, G_s\}$ of $G; s \ge 2$. If there exists $\ell \in \{1, 2, \ldots, s - 1\}$ such that, for every $i \in \{1, 2, \ldots, \ell\}, G_i \cong H'$ and for every $i \in \{\ell + 1, \ell + 2, \ldots, s\}, G_i \cong H''$, and if $H' \not\cong H''$, then say that the graph-pair (H', H'') divides G, and the collection \mathscr{G} is called a (H', H'')-multidecomposition of G or a (H', H'')-multidesign of G.

The *Cartesian product* $H_1 \square H_2$ of two graphs H_1 and H_2 is the simple graph with $V(H_1) \times V(H_2)$ as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $H_1 \square H_2$ if and only if either $u_1 = u_2$ and v_1 is adjacent to v_2 in H_2 , or u_1 is adjacent to u_2 in H_1 and $v_1 = v_2$.

The study of the (G, H)-multidecomposition was introduced by Abueida and Daven in [2]. Abueida and Daven [4] investigated the problem of the (K_k, S_k) -multidecomposition of the complete graph K_n . In [5] Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of the (G_n, H_n) multidecomposition of λK_n where $G_n, H_n \in \{C_n, P_{n-1}, S_{n-1}\}$, where S_n denote the star on n + 1 vertices. The graph multidecomposition problems has been widely studied (see [6 – 10]). Abueida and Daven

²⁰¹⁰ Mathematics Subject Classification. Primary: 05C70, 05C38; Secondary: 05C51

Keywords. Multidecomposition, Cartesian Product, Path, Cycle, Complete graph.

Received: 08 October 2016; Accepted: 04 March 2017

Communicated by Francesco Belardo

Email address: kandan2k@gmail.com (P. Kandan)

[3] have recently established necessary and sufficient conditions for $(C_4, 2K_2)$ -multidecomposition of the Cartesian products $P_m \Box P_n$, $P_m \Box C_n$, $P_m \Box K_n$, $C_m \Box C_n$, $C_m \Box K_n$ and $K_m \Box K_n$. On this extension, we have consider (C_{2p}, pK_2) -multidecomposition of the above Cartesian products, for some values of $p \ge 3$.

2. Cartesian Product of Paths

In this section, we have proved that $P_m \Box P_n$ admits a (C_{2p} , pK_2)-multidecomposition, for some values of $p \ge 3$.

As $g.c.d.(|E(C_{2p})|, |E(pK_2)|) = g.c.d.(2p, p) = p$ and $|E(P_m \Box P_n)| = 2mn - m - n$. If $P_m \Box P_n$ admits a (C_{2p}, pK_2) multidecomposition, then p divides 2mn - m - n. Observe that, if either $m \equiv 0 \mod p \equiv n$ or $m \equiv 1 \mod p \equiv n$,
then p|(2mn - m - n). Note that, for p = 3, 3|(2mn - m - n) if and only if either $m \equiv 0 \mod 3 \equiv n$ or $m \equiv 1 \mod 3 \equiv n$. For p = 4, 4|(2mn - m - n) if and only if $(m \mod 4, n \mod 4) \in \{(0, 0), (1, 1), (2, 2), (3, 3)\}$. For p = 5, 5|(2mn - m - n) if and only if $(m \mod 5, n \mod 5) \in \{(0, 0), (1, 1), (2, 2), (4, 2)\}$.

Theorem 2.1. For integers $m, n \ge p$ and $(m, n) \ne (3, 3)$, either $m \equiv 0 \mod p \equiv n$ or $m \equiv 1 \mod p \equiv n$ then $P_m \Box P_n$ admits a $(C_{2\nu}, pK_2)$ -multidecomposition for all $p \ge 3$.

Theorem 2.2. For integers $m, n \ge 3$ and $(m, n) \ne (3, 3)$, $P_m \Box P_n$ admits a $(C_6, 3K_2)$ -multidecomposition if and only if $(m, n) \ne (3, 3)$ and either $m \equiv 0 \mod 3 \equiv n$ or $m \equiv 1 \mod 3 \equiv n$.

Theorem 2.3. For integers $m, n \ge 2$ and $(m, n) \ne (2, 2)$, $P_m \Box P_n$ admits a $(C_8, 4K_2)$ -multidecomposition if and only if $(m \mod 4, n \mod 4) \in \{(0, 0), (1, 1), (2, 2), (3, 3)\}$.

Theorem 2.4. For integers $m, n \ge 2$ and $(m, n) \ne (2, 2)$, $P_m \Box P_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition if and only if $(m \mod 5, n \mod 5) \in \{(0, 0), (1, 1), (2, 4), (4, 2)\}$.

Proof of Theorem 2.1 follows from Lemmas 2.5 to 2.9; proof of Theorem 2.2 follows from Theorem 2.1 and Lemma 2.10; proof of Theorem 2.3 follows from Theorem 2.1 and Lemmas 2.11 and 2.12; proof of Theorem 2.4 follows from Theorem 2.1 and Lemma 2.13.

Lemma 2.5. If $n \equiv 0 \mod p$, and if $(p, n) \neq (3, 3)$, then $P_p \Box P_n$ admits a (C_{2p}, pK_2) -multidecomposition.

Proof. Consider two cases.

Case 1. $n \equiv 0 \mod 2$. For $j \in \{0, 1, \dots, \frac{n-2}{2}\}$, the cycle $C_{2p}(j) = (0, 2j)(0, 2j + 1)(1, 2j + 1)(2, 2j + 1) \cdots (p - 1, 2j + 1)(p - 1, 2j)(p - 2, 2j)(p - 3, 2j) \cdots (1, 2j)(0, 2j)$ is isomorphic to C_{2p} . For $j \in \{0, 1, \dots, \frac{n-4}{2}\}$, the graph $M_p^1(j) = \bigoplus_{i=0}^{p-1} (i, 2j+1)(i, 2j+2)$ is isomorphic to pK_2 . For $j \in \{0, 1, \dots, \frac{n-2}{2}\}$, the graph $M_p^2(j) = \bigoplus_{i=1}^{p-2} (i, 2j)(i, 2j + 1)$ is a matching of cardinality p-2. Furthermore, $\bigcup_{j=0}^{\frac{n-2}{2}} M_p^2(j)$ is a matching of cardinality $\frac{n}{2}(p-2)$. If p is odd, then $n \equiv 0 \mod p$ and $n \equiv 0 \mod 2$ implies that $\frac{n}{2} \equiv 0 \mod p$ and therefore $\frac{n}{2}(p-2) \equiv 0 \mod p$. If p is even, then $n \equiv 0 \mod p$ implies that $\frac{n}{2} \equiv 0 \mod p$.

 $0 \mod \frac{p}{2}$; this together with $p - 2 \equiv 0 \mod 2$ implies that $\frac{n}{2}(p - 2) \equiv 0 \mod p$. In any case, $\frac{n}{2}(p - 2) \equiv 0 \mod p$. Consequently, $(pK_2)|(\bigcup_{j=0}^{\frac{n-2}{2}} M_p^2(j))$. Hence, $\{C_{2p}(j) : j \in \{0, 1, \dots, \frac{n-2}{2}\}\} \cup \{M_p^1(j) : j \in \{0, 1, \dots, \frac{n-4}{2}\}\} \cup \{\bigcup_{j=0}^{\frac{n-2}{2}} M_p^2(j)\}$ form a (C_{2p}, pK_2) -multidecomposition of $P_p \Box P_n$.

Case 2. $n \equiv 1 \mod 2$.

Subcase 2.1. $p \neq 3$.

For $j \in \{0, 1, \dots, \frac{n-3}{2}\}$, the cycle $C_{2p}(j) = (0, 2j)(0, 2j + 1)(1, 2j + 1)(2, 2j + 1) \cdots (p - 1, 2j + 1)(p - 1, 2j)(p - 2, 2j)(p - 3, 2j) \cdots (0, 2j)$ is isomorphic to C_{2p} . For $j \in \{0, 1, \dots, \frac{n-3}{2}\}$, the graph $M_p^1(j) = \bigoplus_{i=0}^{p-1} (i, 2j + 1)(i, 2j + 2)$ is

isomorphic to pK_2 . For $j \in \{0, 1, \dots, \frac{n-3}{2}\}$, the graph $M_p^2(j) = \bigoplus_{i=1}^{p-2} (i, 2j)(i, 2j+1)$ is a matching of cardinality p-2. For each $j \in \{0, 1, \dots, \frac{p-3}{2}\}$, $M_p^2(j) \cup \{(j, n-1)(j+1, n-1), (\frac{p-1}{2}+j, n-1)(\frac{p+1}{2}+j, n-1)\} = M_p^3(j)$ is isomorphic to pK_2 . Furthermore, $\bigcup_{j=\frac{p-1}{2}}^{\frac{n-3}{2}} M_p^2(j)$ is a matching of cardinality $\frac{n-p}{2}(p-2)$. $n \equiv 0 \mod p$ and $n \equiv 1 \mod 2$ implies

that $p \equiv 1 \mod 2$. Thus $\frac{n-p}{2} \equiv 0 \mod p$. Consequently, $(pK_2) | (\bigcup_{j=\frac{p-1}{2}}^{\frac{n-3}{2}} M_p^2(j))$. Hence, $\{C_{2p}(j) : j \in \{0, 1, \dots, \frac{n-3}{2}\}\} \cup$

$$\{M_p^1(j) : j \in \{0, 1, \dots, \frac{n-3}{2}\}\} \cup \{\bigcup_{j=\frac{p-1}{2}}^{\frac{n-3}{2}} M_p^2(j)\} \cup \{M_p^3(j) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \text{ form a } (C_{2p}, pK_2) \text{ multidecomposition}$$

of $P_p \Box P_n$.

Subcase 2.2. p = 3.

 $n \equiv 0 \mod 3$ and $n \equiv 1 \mod 2$ implies that $n \equiv 3 \mod 6$.

For $j \in \{0, 1, ..., \frac{n-3}{2}\}$, the cycle $\hat{C}_6(j) = (0, 2j)(0, 2j + 1)(1, 2j + 1)(2, 2j)(1, 2j)(0, 2j)$ is isomorphic to C_6 . For $j \in \{0, 1, ..., \frac{n-3}{2}\}$, the graph $M_3^1(j) = (0, 2j + 1)(0, 2j + 2) \oplus (1, 2j + 1)(1, 2j + 2) \cup (2, 2j + 1)(2, 2j + 2)$, the graph $M_3^2 = (0, n - 1)(1, n - 1) \oplus (1, n - 2)(1, n - 3) \oplus (1, n - 4)(1, n - 5)$, the graph $M_3^3 = (1, n - 1)(2, n - 1) \oplus (1, n - 6)(1, n - 7) \oplus (1, n - 8)(1, n - 9)$, and for $n \ge 15$ and $j \in \{0, 1, ..., \frac{n-15}{6}\}$, the graph $M_3^4(j) = (1, 6j)(1, 6j + 1) \oplus (1, 6j + 4)(1, 6j + 5)$ are all isomorphic to $3K_2$.

 $\{C_6(j): j \in \{0, 1, \dots, \frac{n-3}{2}\}\} \cup \{M_3^1(j): j \in \{0, 1, \dots, \frac{n-3}{2}\}\} \cup \{M_3^3\} \cup \{M_3^4(j): n \ge 15 \text{ and } j \in \{0, 1, \dots, \frac{n-15}{6}\}\}$ form a $(C_6, 3K_2)$ -multidecomposition of $P_3 \Box P_n$.

Lemma 2.6. If $m \equiv 0 \mod p \equiv n$ and if $(m, n) \neq (3, 3)$, then $P_m \Box P_n$ admits a (C_{2p}, pK_2) -multidecomposition.

Proof. As $(m,n) \neq (3,3)$, either $(p,n) \neq (3,3)$ or $(m,p) \neq (3,3)$. Without loss of generality assume that $(p,n) \neq (3,3)$. Observe that $P_m \Box P_n = \frac{m}{p}(P_p \Box P_n) \oplus \frac{m-p}{p}(nK_2)$. By Lemma 2.5, $P_p \Box P_n$ admits a (C_{2p}, pK_2) -multidecomposition. As $n \equiv 0 \mod p$, $(pK_2)|(nK_2)$ and hence, $(pK_2)|[\frac{m-p}{p}(nK_2)]$. Thus $P_m \Box P_n$ admits a (C_{2p}, pK_2) -multidecomposition.

Lemma 2.7. $P_4 \Box P_4$ admits a (C_6 , $3K_2$)-multidecomposition.

Proof. $P_4 \Box P_4 =$ the 6-cycle $(0,0)(0,1)(0,2)(1,2)(1,1)(1,0)(0,0) \oplus$ the 6-cycle $(2,1)(2,2)(2,3)(3,3)(3,2)(3,1)(2,1) \oplus$ the $3K_2 \{(0,1)(1,1), (0,2)(0,3), (1,2)(1,3)\} \oplus$ the $3K_2 \{(2,0)(2,1), (3,0)(3,1), (2,2)(3,2)\} \oplus$ the $3K_2 \{(0,3)(1,3), (1,2)(2,2), (2,0)(3,0)\} \oplus$ the $3K_2 \{(1,0)(2,0), (1,1)(2,1), (1,3)(2,3)\}$.

Lemma 2.8. If $k \equiv 1 \mod p$, and if $k \neq p + 1$, then $(pK_2)|P_k$.

Proof. For each $j \in \{0, 1, \dots, \frac{k-1-p}{p}\}$, consider $\bigcup_{i=0}^{p-1} \{i(\frac{k-1}{p}) + j, i(\frac{k-1}{p}) + 1 + j\}$. It is a matching of cardinality p. Hence $(pK_2)|P_k$.

Lemma 2.9. If $m \equiv 1 \mod p \equiv n$ with $m, n \geq 4$, then $P_m \Box P_n$ admits a (C_{2p}, pK_2) -multidecomposition for all $p \geq 3$.

Proof. If (m, n) = (4, 4), then p = 3 and hence the lemma follows by Lemma 2.7. Hence, assume that $(m, n) \neq (4, 4)$. Observe that $P_m \Box P_n = a$ path $(m-1, 0)(m-2, 0) \dots (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) \dots (0, n-2)(0, n-1)$ \oplus a matching $\{(i, 0)(i, 1) : i \in \{1, 2, \dots, m-1\}\} \oplus a$ matching $\{(0, j)(1, j) : j \in \{1, 2, \dots, n-1\}\} \oplus (P_{m-1} \Box P_{n-1})$.

Since $m - 1 \equiv 0 \mod p \equiv n - 1$, by Lemma 2.6, $P_{m-1} \square P_{n-1}$ admits a (C_{2p}, pK_2) -multidecomposition if $(m, n) \neq (4, 4)$. Again, since $m - 1 \equiv 0 \mod p \equiv n - 1$, the matchings $\{(i, 0)(i, 1) : i \in \{1, 2, ..., m - 1\}\}$ and $\{(0, j)(1, j) : j \in \{1, 2, ..., n - 1\}\}$ are each divisible by pK_2 . Finally, by Lemma 2.8, the path $(m - 1, 0)(m - 2, 0) \dots (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) \dots (0, n - 2)(0, n - 1)$ is divisible by pK_2 since its order $\equiv 1 \mod p$ and $\neq p + 1$.

Lemma 2.10. There is no $(C_6, 3K_2)$ -multidecomposition for $P_3 \square P_3$.

Proof. Suppose $P_3 \square P_3$ admits a (C_6 , $3K_2$)-multidecomposition. Then the removal of the edges of any C_6 from $P_3 \square P_3$ is a forest and it contains three mutually adjacent edges. These three mutually adjacent edges are edges of two $3K_2$'s in the multidecomposition, a contradiction.

Lemma 2.11. If $m \equiv 2 \mod 4 \equiv n, m, n \geq 2 \pmod{(m, n)} \neq (2, 2)$, then $P_m \Box P_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

Proof. If m = 2 and $n \ge 6$, then $P_2 \square P_n$ admits a ($C_8, 4K_2$) multidecomposition as follows. $P_2 \square P_n = a$ $\frac{n-6}{4}$

cycle $\bigoplus_{j=0}^{4} \{(0,4j+1)(0,4j+2)(0,4j+3)(0,4j+4)(1,4j+4)(1,4j+3)(1,4j+2)(1,4j+1)(0,4j+1)\} \oplus a \text{ matching} \}$

 $\{(0, 0)(1, 0), (0, 2)(1, 2), (0, 3)(1, 3), (0, n-1)(1, n-1)\} \oplus$ the remaining edges are form a matching with cardinality $\frac{n+2}{4}$ which is divisible by 4. Now for the remaining values of (m, n), observe that $P_m \Box P_n =$ a path $(m - 1, 1)(m - 1, 0)(m - 2, 0) \dots (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) \dots (0, n - 2)(0, n - 1)(1, n - 1) \oplus$ a matching $\{(i, 0)(i, 1) : i \in \{1, 2, \dots, m - 2\}\} \oplus$ a matching $\{(0, j)(1, j) : j \in \{1, 2, \dots, n - 2\}\} \oplus (P_{m-1} \Box P_{n-1})$.

Since $m - 1 \equiv 1 \mod 4 \equiv n - 1$, by Lemma 2.9, $P_{m-1} \Box P_{n-1}$ admits a $(C_8, 4K_2)$ -multidecomposition. Again, since $m - 2 \equiv 0 \mod 4 \equiv n - 2$, the matchings $\{(i, 0)(i, 1) : i \in \{1, 2, ..., m - 2\}\}$ and $\{(0, j)(1, j) : j \in \{1, 2, ..., n - 2\}\}$ are each divisible by $4K_2$. Finally, by Lemma 2.8, the path $(m - 1, 1)(m - 1, 0)(m - 2, 0) \dots (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) \dots (0, n - 2)(0, n - 1)(1, n - 1)$ is divisible by $4K_2$ since its order $\equiv 1 \mod 4$.

Lemma 2.12. If $m \equiv 3 \mod 4 \equiv n, m, n \geq 3 \pmod{(m, n)} \neq (3, 3)$, then $P_m \Box P_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

Proof. Observe that $P_m \Box P_n = a$ path $(m - 1, 0)(m - 2, 0) \ldots (2, 0)(1, 0)(0, 0) (0, 1)(0, 2) \ldots (0, n - 2)(0, n - 1) \oplus a$ matching $\{(i, 0)(i, 1) : i \in \{1, 2, \ldots, m - 3\}\} \oplus a$ matching $\{(i, 0)(i, 1) : i \in \{1, 2, \ldots, m - 3\}\} \cup \{(m - 1, 0)(m - 1, 1)\} \cup \{(m - 2, 0)(m - 2, 1)\}\} \oplus \{P_{m-1} \Box P_{n-1}\}$.

Since $m - 1 \equiv 2 \mod 4 \equiv n - 1$, by Lemma 2.11, $P_{m-1} \Box P_{n-1}$ admits a $(C_8, 4K_2)$ -multidecomposition. Again, since $m - 3 \equiv 0 \mod 4 \equiv n - 3$, the matchings $\{(i, 0)(i, 1) : i \in \{1, 2, ..., m - 3\}\}$ and $[\{(0, j)(1, j) : j \in \{1, 2, ..., n - 1\}\} \cup \{(m - 1, 0)(m - 1, 1)\} \cup \{(m - 2, 0)(m - 2, 1)\}\}$ are each divisible by $4K_2$. Finally, by Lemma 2.8, the path $(m - 1, 0)(m - 2, 0) \dots (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) \dots (0, n - 2)(0, n - 1)$ is divisible by $4K_2$ since its order $\equiv 1 \mod 4$.

Lemma 2.13. If $m \equiv 2 \mod 5$ and $n \equiv 4 \mod 5$, then $P_m \Box P_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

Proof. Observe that $P_m \square P_n = a$ path $(1, 0)(0, 0)(0, 1) \dots (0, n - 2)(0, n - 1)(1, n - 1) \oplus (2, 0)(1, 0)(1, 1) \dots (1, n - 2)(1, n - 1)(2, n - 1) \oplus the <math>2(\frac{m-2}{5})$ -cycle $\{(5i + 2, 2j)(5i + 2, 2j + 1)(5i + 3, 2j + 1)(5i + 4, 2j + 1)(5i + 5, 2j + 1)(5i + 6, 2j + 1)(5i + 6, 2j)(5i + 5, 2j)(5i + 4, 2j)(5i + 3, 2j)(5i + 2, 2j) : i \in \{0, 1, \dots, (\frac{m-2}{5}) - 1\}, j \in \{0, 1\}\} \oplus a$ matching $\{(i, j)(i + 1, j) : i \in \{0, 1\}, j \in \{1, 2, \dots, n - 2\}\} \cup \{(5i + k, 2j)(5i + k, 2j + 1) : i \in \{0, 1, \dots, (\frac{m-2}{5}) - 1\}, j \in \{0, 1\}\} \oplus a$ matching $\{(i, j)(i + 1, j) : i \in \{0, 1\}, j \in \{1, 2, \dots, n - 2\}\} \cup \{(5i + k, 2j)(5i + k, 2j + 1) : i \in \{0, 1, \dots, (\frac{m-2}{5}) - 1\}, j \in \{0, 1\}\} \oplus a$ matching $\{(i, 2j - 1)(i, 2j) : i \in \{2, 3, \dots, m - 1\}, j \in \{1, 2\}\} \oplus (P_{m-2} \square P_{n-4}).$

Since $m-2 \equiv 0 \mod 5$ and $n-4 \equiv 0 \mod 5$, by Lemma 2.9, $P_{m-2} \Box P_{n-4}$ admits a $(C_{10}, 5K_2)$ -multidecomposition. Again, since $2(m-2) \equiv 0 \mod 5$, the matchings $\{(i, 2j - 1)(i, 2j) : i \in \{2, 3, \dots, m-1\}, j \in \{1, 2\}\}$ and $(n-2) + 3(\frac{m-2}{5}) + 2((\frac{m-2}{5})-1) = (n-4) + (m-2) \equiv 0 \mod 5$, $\{(i, j)(i+1, j) : i \in \{0, 1\}, j \in \{1, 2, \dots, n-2\}\} \cup \{(5i+k, 2j)(5i+k, 2j)(5i+k, 2j)(5i+k, 2j)(5i+1, 2j)(5i+2, 2j+1) : i \in \{1, 2, \dots, (\frac{m-2}{5})-1\}, j \in \{0, 1\}, k \in \{3, 4, 5\}\} \cup \{(5i+1, 2j)(5i+2, 2j+1) : i \in \{1, 2, \dots, (\frac{m-2}{5})-1\}, j \in \{0, 1\}\}$ are each divisible by $5K_2$. Finally, by Lemma 2.8, the path $(1, 0)(0, 0)(0, 1) \dots (0, n-2)(0, n-1)(1, n-1)$ $(2, 0)(1, 0)(1, 1) \dots (1, n-2)(1, n-1)(2, n-1)$ is divisible by $5K_2$ since its order $\equiv 1 \mod 5$.

3. Cartesian Product of a Path and a Cycle

In this section, we have proved that $P_m \square C_n$ admits a (C_{2p}, pK_2) -multidecomposition, fpr some values of $p \ge 3$.

As $g.c.d.(|E(C_{2p})|, |E(pK_2)|) = g.c.d.(2p, p) = p$ and $|E(P_m \Box C_n)| = (2m - 1)n$. If $P_m \Box C_n$ admits a (C_{2p}, pK_2) multidecomposition, then p divides (2m - 1)n. Note that, if either $2m \equiv 1 \mod p$ or $n \equiv 0 \mod p$ then p|((2m - 1)n). For p = 3, 3|((2m - 1)n) if and only if either $m \equiv 2 \mod 3$ or $n \equiv 0 \mod 3$. For p = 4, 4|((2m - 1)n) if and only if $n \equiv 0 \mod 4$. For p = 5, 5|((2m - 1)n) if and only if either $m \equiv 3 \mod 5$ or $n \equiv 0 \mod 5$. **Theorem 3.1.** For integers $m \ge 2$, $n \ge 3$, and $p \ge 3$, if $n \equiv 0 \mod p$, then $P_m \Box C_n$ admits a (C_{2p}, pK_2) -multidecomposition.

Lemma 3.2. If $k \equiv 0 \mod p$, and if $k \neq p$ then $(pK_2)|C_k$.

Proof. Let k = pr, r is a positive integer. For each $j \in \{0, 1, ..., r-1\}$, consider $\bigcup_{i=0}^{p-1} \{ri + j, ri + j + 1\}$. It is a matching of cardinality p. Hence, $(pK_2)|C_k$.

Proof of Theorem 3.1. Let $m = \ell p + s$, where $s \in \{0, 1, ..., p - 1\}$. Decompose $P_m \square C_n$ as follows: (i) $P_{\ell p} \square P_n$ with vertex set $\{0, 1, ..., \ell p - 1\} \times \{0, 1, ..., n - 1\} \oplus$ (ii) a matching $\{(i, 0)(i, n - 1) : i \in \{0, 1, ..., \ell p - 1\}\}$ of cardinality $\ell p \oplus$ (iii) $\bigoplus_{i=\ell p-1}^{m-1}$ (a matching $\{(i, j)(i + 1, j) : j \in \{0, 1, ..., n - 1\}\}$ of cardinality $n \oplus (iv) \bigoplus_{i=\ell p}^{m-1}$ (a cycle $(i, 0)(i, 1)(i, 2) \dots (i, n - 1)(i, 0)$ of cardinality n). If $(\ell p, n) \neq (3, 3)$, i.e., $(\ell, p, n) \neq (1, 3, 3)$, then by Theorem 2.1 graph (i) admits a (C_{2p}, pK_2) -multidecomposition. Clearly, graph (ii) and each graph in (iii) admits a pK_2 -decomposition. By Lemma 3.2, if $n \neq p$, then each graph in (iv) admits a pK_2 -decomposition. Thus it is enough to consider the following two cases. *Case 1. n = p.*

Consider the following subcases

Subcase 1.1. For n = p, assume p and s are odd. Let $m = \ell p + s$, where $s \in \{0, 1, \dots, p-1\}$. Decompose $P_m \square C_n$ as follows: (i) $P_{\ell p} \square P_p$ with vertex set $\{0, 1, \dots, \ell p-1\} \times \{0, 1, \dots, p-1\}$, by Theorem 2.1 graph (i) admits a (C_{2p}, pK_2) -multidecomposition \oplus (ii) a matching $\{(\ell p, 2j)(\ell p, 2j+1) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \cup \{(\ell p-1, \ell p-1)(\ell p, \ell p-1)\} \cup \{(i, 0)(i, p-1) : i \in \{0, 1, \dots, \frac{p-3}{2}\}\}$ of cardinality $p \oplus$ (iii) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \cup \{(\ell p-1, 0)(\ell p, 0)\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{p-1}{2}, \frac{p+1}{2}, \dots, p-2\}\}$ of cardinality $p \oplus$ (iv) a matching $\{(\ell p-1, j)(\ell p, j) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p, 0)(\ell p, p-1), (p-1, 0)(p-1, p-1)\}$ of cardinality $p \oplus$ (v) the subgraphs $\frac{s-1}{2}$ times $P_2 \square C_p$, for each $t \in \{1, 2, \dots, \frac{s-1}{2}\}$, decompose $P_2 \square C_p$ into pK_2 as follows: (a) a matching $\{(\ell p+2t, 2j)(\ell p+2t+1, 2j+1) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \cup \{(\ell p+2t, \ell p-1)(\ell p+2t+1, \ell p-1)\} \oplus$ (b) a matching $\{(\ell p+2t, 2j+1)(\ell p+2t+1, 2j+2) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \cup \{(\ell p+2t, 2j+1)(\ell p+2t+1, 2j+2) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \cup \{(\ell p+2t, 0)(\ell p+2t+1, 0)\}$ of cardinality $p \oplus$ (c) a matching $\{(\ell p+2t, j)(\ell p+2t+1, 2j+2) : j \in \{0, 1, \dots, \frac{p-3}{2}\}\} \cup \{(\ell p+2t, 0)(\ell p+2t+1, 0)\}$ of cardinality $p \oplus$ (c) a matching $\{(\ell p+2t, j)(\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t, 0)(\ell p+2t+1, 0)\}$ of cardinality $p \oplus$ (c) a matching $\{(\ell p+2t, j)(\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t, 0)(\ell p+2t+1, 0)\}$ of cardinality $p \oplus$ (c) a matching $\{(\ell p+2t, j)(\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t, 0)(\ell p+2t, p-1), (\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t, 0)(\ell p+2t, p-1), (\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t, 0)(\ell p+2t, p-1), (\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t, 0)(\ell p+2t, p-1), (\ell p+2t+1, 2j+2) : j \in \{1, 2, \dots, p-2\}\}$ of $\ell = 2$.

2t + 1, 0 $(\ell p + 2t + 1, p - 1)$ of cardinality $p \oplus \bigoplus_{i=0}^{\frac{n-2}{2}}$ (a matching $\{(\ell + 2i + 1, j)(\ell + 2i + 2, j) : j \in \{0, 1, \dots, p - 1\}$) of cardinality n).

Now assume *p* is odd and *s* is even. Except the last decomposition of the above, the remaining are same, that is decomposition of $P_m \square C_n$ is (i) \oplus (ii) \oplus (iii) \oplus (iv) \oplus (v) the subgraphs $\frac{s}{2}$ times $P_2 \square C_p$, for each $t \in \{1, 2, \ldots, \frac{s}{2} - 1\}$, decompose $P_2 \square C_p$ into pK_2 as follows: (a) a matching $\{(\ell p + 2t, 2j)(\ell p + 2t, 2j + 1) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 1)(\ell p + 2t + 1, 2j + 1) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, \ell p - 1)(\ell p + 2t + 1, \ell p - 1)\} \oplus$ (b) a matching $\{(\ell p + 2t, 2j + 1)(\ell p + 2t, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 1, 2j + 1)(\ell p + 2t + 1, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 1, 2j + 1)(\ell p + 2t + 1, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 1, 2j + 1)(\ell p + 2t + 1, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 1, 2j + 1)(\ell p + 2t + 1, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 1, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 1, 2j + 2) : j \in \{0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 1)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 1)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 2)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 2)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 2)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 2)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\} \cup \{(\ell p + 2t, 2j + 2)(\ell p + 2t + 1, 2j + 2) : j \in (0, 1, \ldots, \frac{p-3}{2}\}\}$

$$\{1, 2, \dots, p-2\}\} \cup \{(\ell p + 2t, 0)(\ell p + 2t, p-1), (\ell p + 2t + 1, 0)(\ell p + 2t + 1, p-1)\} \text{ of cardinality } p \oplus \bigoplus_{i=1}^{n} (a \text{ matching } \{(\ell + 2i + 1, j)(\ell + 2i + 2, j) : j \in \{0, 1, \dots, p-1\}\} \text{ of cardinality } n\}.$$

Subcase 1.2. For n = p, assume p and s are even. Let $m = \ell p + s$, where $s \in \{0, 1, \dots, p-1\}$. Decompose $P_m \Box C_n$ as follows: (i) $P_{\ell p} \Box P_p$ with vertex set $\{0, 1, \dots, \ell p-1\} \times \{0, 1, \dots, p-1\}$, by Theorem 2.1 graph (i) admits a (C_{2p}, pK_2) -multidecomposition \oplus (ii) the subgraphs $\frac{s}{2}$ times $P_2 \Box C_p$, for each $t \in \{0, 1, \dots, \frac{s}{2} - 1\}$, decompose $P_2 \Box C_p$ into (C_{2p}, pK_2) as follows: (a) a matching $\{(\ell p + 2t, j)(\ell p + 2t + 1, j) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p + 2t, 0)(\ell p + 2t, p - 1), (\ell p + 2t + 1, 0)(\ell p + 2t + 1, p - 1)\}$ of cardinality $p \oplus$ (b) a cycle $(\ell p + 2t, 0)(\ell p + 2t, 2) \dots (\ell p + 2t, n - 1)(\ell p + 2t + 1, n - 1) \dots (\ell p + 2t + 1, 1)(\ell p + 2t + 1, 0)(\ell p + 2t, 0)$ of cardinality $2p \oplus$ (iii) for each $t \in \{0, 1, \dots, \frac{s}{2} - 1\}$, a matching $\{(\ell p + 2t - 1, j)(\ell p + 2t, j) : j \in \{0, 1, \dots, p - 1\}\}$ of cardinality $p \oplus (iv)$ a matching $\bigoplus_{i=0}^{\ell p-1} \{((i, 0)(i, p-1))\}$ of cardinality ℓp .

Now assume *p* is even and *s* is odd. Decompose $P_m \square C_n$ as follows: (i) $P_{\ell p} \square P_p$ with vertex set $\{0, 1, \dots, \ell p-1\}$ × $\{0, 1, \dots, p-1\}$, by Theorem 2.1 graph (i) admits a (C_{2p}, pK_2) -multidecomposition \oplus (ii) the subgraphs $\frac{s-1}{2}$ times $P_2 \square C_p$, for each $t \in \{1, 2, \dots, \frac{s-1}{2}\}$, decompose $P_2 \square C_p$ into (C_{2p}, pK_2) as follows: (a) a matching $\{(\ell p+2t-1, j)(\ell p+2t, j) : j \in \{1, 2, \dots, p-2\}\} \cup \{(\ell p+2t-1, 0)(\ell p+2t-1, p-1), (\ell p+2t, 0)(\ell p+2t, p-1)\}$ of cardinality $p \oplus$ (b) a cycle $(\ell p+2t-1, 0)(\ell p+2t-1, 2) \dots (\ell p+2t-1, p-1)(\ell p+2t, p-1) \dots (\ell p+2t, 1)(\ell p+2t, 0)(\ell p+2t-1, 0)$ of cardinality $2p \oplus$ (iii) for each $t \in \{1, 2, \dots, \frac{s-1}{2}\}$, a matching $\{(\ell p+2t-2, j)(\ell p+2t-1, j) : j \in \{0, 1, \dots, p-1\}\}$ of cardinality $p \oplus$ (iv) for each $t \in \{0, 1, \dots, \frac{s-3}{2}\}$, a matching $\{(\ell p+2t, j)(\ell p+2t+1, j) : j \in \{0, 1, \dots, p-1\}\}$ of cardinality $p \oplus$ (v) a matching $\{(\ell p, 2j)(\ell p, 2j + 1) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{lp}{2}, \frac{lp}{2} + 1, \dots, lp-1\}\}$ of cardinality $p \oplus$ (vi) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{lp}{2}, \frac{lp}{2} + 1, \dots, lp-1\}\}$ of cardinality $p \oplus$ (vi) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{lp}{2}, \frac{lp}{2} + 1, \dots, lp-1\}\}$ of cardinality $p \oplus$ (vi) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{lp}{2}, \frac{lp}{2} + 1, \dots, lp-1\}\}$ of cardinality $p \oplus$ (vi) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{lp}{2}, \frac{lp}{2} + 1, \dots, lp-1\}\}$ of cardinality $p \oplus$ (vi) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\} \cup \{(i, 0)(i, p-1) : i \in \{\frac{lp}{2}, \frac{lp}{2} + 1, \dots, lp-1\}\}$ of cardinality $p \oplus$ (vi) a matching $\{(\ell p, 2j+1)(\ell p, 2j+2) : j \in \{0, 1, \dots, \frac{p}{2} - 1\}\}$

Case 2. $(\ell, p, n) = (1, 3, 3)$. $P_{\ell p+s} \Box C_n = P_{3+s} \Box C_3$, if s = 0, $P_3 \Box C_3$, is decomposable into $(C_6, 3K_2)$ -multidecomposition as

(i) a cycle $(0, 0)(0, 1)(0, 2)(1, 2)(1, 1)(1, 0) \oplus$ (ii) a matching $\{(0, 0)(0, 2), (1, 2)(2, 2), (2, 0)(2, 1)\} \oplus$ (iii) a matching $\{(0, 1)(1, 1), (1, 0)(2, 0), (2, 1)(2, 2)\} \oplus$ (iv) a matching $\{(1, 0)(1, 2), (1, 1)(2, 1), (2, 0)(2, 2)\}$. Now assume that $s \ge 1$, consider the following two subcases.

Subcase 2.1. For *m* is even, $P_{3+s} \square C_3$, is decomposable into $(C_6, 3K_2)$ -multidecomposition as (i) $\bigoplus_{i=0}^{\frac{m-2}{2}}$ (a cycle (2i, 0)(2i, 1)(2i, 2)(2i + 1, 2)(2i + 1, 1)(2i + 1, 0) of cardinality 6) \oplus (ii) $\bigoplus_{i=0}^{\frac{m-2}{2}}$ (a matching $\{(2i, 0)(2i, 2), (2i, 1)(2i + 1, 1), (2i + 1, 0)(2i + 1, 2)\}$ of cardinality 3) \oplus (iii) $\bigoplus_{i=0}^{\frac{m-4}{2}}$ (a matching $\{(2i + 1, 0)(2i + 2, 0), (2i + 1, 1)(2i + 2, 1), (2i + 1, 2)(2i + 2, 2)\}$ of cardinality 3).

Subcase 2.2. For *m* is odd, $P_{3+s} \Box C_3$, is decomposable into $(C_6, 3K_2)$ -multidecomposition as (i) $\bigoplus_{i=0}^{\frac{m-3}{2}}$ (a cycle (2i, 0)(2i, 1)(2i, 2)(2i + 1, 2)(2i + 1, 1)(2i + 1, 0) of cardinality 6) \oplus (ii) $\bigoplus_{i=0}^{\frac{m-3}{2}}$ (a matching $\{(2i, 0)(2i, 2), (2i, 1)(2i + 1, 1)(2i + 2, 1), (2i + 1, 0)(2i + 1, 2)\}$ of cardinality 3) \oplus (iii) $\bigoplus_{i=0}^{\frac{m-7}{2}}$ (a matching $\{(2i + 1, 0)(2i + 2, 0), (2i + 1, 1)(2i + 2, 1), (2i + 2, 1), (2i + 2, 1), (2i + 2, 2), (2i + 1, 2)\}$ of cardinality 3) \oplus (iii) $\bigoplus_{i=0}^{\frac{m-7}{2}}$ (a matching $\{(2i + 1, 0)(2i + 2, 0), (2i + 1, 1)(2i + 2, 1), (2i + 2, 2), (2i + 2,$

1, 1), (2i + 1, 0)(2i + 1, 2)} of cardinality 3) \oplus (iii) $\bigoplus_{i=0}^{\infty}$ (a matching {(2i + 1, 0)(2i + 2, 0), (2i + 1, 1)(2i + 2, 1), (2i + 1, 2)(2i + 2, 2)} of cardinality 3) \oplus (iv) a matching {(m - 1, 0)(m - 1, 1), (m - 1, 2)(m - 2, 2), (m - 3, 2)(m - 4, 2)} of cardinality 3 \oplus (v) a matching {(m - 1, 1)(m - 1, 2), (m - 1, 0)(m - 2, 0), (m - 3, 0)(m - 4, 0)} of cardinality 3 \oplus (vi) a matching {(m - 1, 2), (m - 1, 2), (m - 3, 1)(m - 4, 1)} of cardinality 3.

Theorem 3.3. For integers $m \ge 5$ and $n \ge 4$, $P_m \Box C_n$ admits a $(C_6, 3K_2)$ -multidecomposition if and only if $m \equiv 2 \mod 3$ or $n \equiv 0 \mod 3$.

Theorem 3.4. For integers $m, n \ge 4$, $P_m \Box C_n$ admits a $(C_8, 4K_2)$ -multidecomposition if and only if $n \equiv 0 \mod 4$.

Theorem 3.5. For integers $m, n \ge 3$, $P_m \Box C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition if and only if $m \equiv 3 \mod 5$ or $n \equiv 0 \mod 5$.

Proof of Theorem 3.3. follows from Lemmas 3.6., 3.7., Theorem 3.1. and $P_2 \square C_6 = \text{the 6-cycle } (0,0)(0,1)(0,2)$ (0,3)(0,4)(0,5)(0,0) \oplus the 6-cycle (1,0)(1,1)(1,2)(1,3)(1,4)(1,5)(1,0) \oplus the 3 K_2 {(0,0)(1,0), (0,1)(1,1), (0,2)(1,2)} \oplus the 3 K_2 {(0,3)(1,3), (0,4)(1,4), (0,5)(1,5)}; proof of Theorem 3.4. follows from Theorem 3.1.; proof of Theorem 3.5. follows from Lemmas 3.8. to 3.11. and Theorem 3.1.. **Lemma 3.6.** If $m \equiv 2 \mod 3 \equiv n$, with $m, n \geq 6$ then $P_m \Box C_n$ admits a $(C_6, 3K_2)$ -multidecomposition.

Proof. As $m - 1 \equiv 1 \mod 3 \equiv n - 1$, by Theorem 2.1, $P_{m-1} \square P_{n-1}$ admits a $(C_6, 3K_2)$ -multidecomposition. The deletion of the edges of $P_{m-1} \square P_{n-1}$ from $P_m \square C_n$ results in the subgraph: a matching $\{(i, 0)(i, n - 1) : i \in \{0, 1, ..., m-1\}\} \cup \{(m-2, 1)(m-1, 1)\}$ of cardinality $m+1 \oplus a$ matching $\{(m-2, j)(m-1, j) : j \in \{0, 2, 3, ..., n-2\}$ of cardinality $n - 2 \oplus a$ matching $\{(i, n - 2)(i, n - 1) : i \in \{1, 2, ..., m - 2\}\}$ of cardinality $m - 2 \oplus a$ path $(0, n - 2)(0, n - 1)(1, n - 1)(2, n - 1) \dots (m - 2, n - 1)(m - 1, n - 1)(m - 1, n - 2)(m - 1, n - 3) \dots (m - 1, 1)(m - 1, 0)$ of length m + n - 1. All these matchings are divisible by $3K_2$ and by Lemma 2.8, the path is also divisible by $3K_2$. Thus $P_m \square C_n$ admits a $(C_6, 3K_2)$ -multidecomposition.

Lemma 3.7. If $m \equiv 2 \mod 3$ and if $n \equiv 1 \mod 3$, with $m \geq 5$, $n \geq 4$ then $P_m \Box C_n$ admits a $(C_6, 3K_2)$ multidecomposition.

Proof. For $(m, n) \neq (5, 4)$. As $m-1 \equiv 1 \mod 3 \equiv n$, by Theorem 2.1, $P_{m-1} \Box P_n$ admits a $(C_6, 3K_2)$ -multidecompos -ition. The deletion of the edges of $P_{m-1} \Box P_n$ from $P_m \Box C_n$ results in the subgraph: a matching $\{(i, 0)(i, n-1) : i \in \{0, 1, ..., m-1\}\} \cup \{(m-2, 1)(m-1, 1)\}$ of cardinality $m + 1 \oplus$ a matching $\{(m-2, j)(m-1, j) : j \in \{0, 2, 3, ..., n-1\}$ of cardinality $n-1 \oplus$ a path $(m-1, 0)(m-1, 1)(m-1, 2) \dots (m-1, n-2)(m-1, n-1)$ of length n-1. Both the matchings are divisible by $3K_2$ and by Lemma 2.8, the path is also divisible by $3K_2$. For m = 5 and n = 4. Since by Lemma 2.7, $P_4 \Box P_4$ admits a $(C_6, 3K_2)$ -multidecomposition. The deletion of the edges of $P_4 \Box P_4$ from $P_5 \Box C_4$ results in the subgraph: a matching $\{(4, 0)(4, 3), (4, 1)(4, 2), (3, 0)(3, 3)\}$ of cardinality $3 \oplus a$ matching $\{(4, 0)(4, 1), (4, 2), (3, 3)(4, 3)\}$ of cardinality 6. Thus $P_m \Box C_n$ admits a $(C_6, 3K_2)$ -multidecomposition.

Lemma 3.8. If $m \equiv 3 \mod 5$ and if $n \equiv 1 \mod 5$, then $P_m \Box C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

Proof. As $m - 3 \equiv 0 \mod 5 \equiv n - 1$, by Theorem 2.1, $P_{m-3} \square P_{n-1}$ admits a $(C_{10}, 5K_2)$ -multidecomposition. The deletion of the edges of $P_{m-3} \square P_{n-1}$ from $P_m \square C_n$ results in the subgraph: a matching $\{(i, 0)(i, n - 1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus a$ matching $\{(i, n-2)(i, n-1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus a$ matching $\{(i, n-2)(i, n-1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus a$ matching $\{(i, n-2)(i, n-1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus a$ path $(0, n-1)(1, n-1)(2, n-1) \dots (m - 4, n-1)(m - 3, n-1)(m - 3, 0)(m - 2, 0)(m - 2, n-1)(m - 1, n-1)(m - 1, 0)$ of length $m + 2 \equiv 0 \mod 5 \oplus a$ path $(m - 3, 0)(m - 3, 1) \dots (m - 3, n - 1)$ of length $n - 1 \equiv 0 \mod 5 \oplus a$ path $(m - 2, 0)(m - 2, 1) \dots (m - 2, n - 1)$ of length $n - 1 \equiv 0 \mod 5 \oplus a$ path $(m - 1, 0)(m - 1, 1) \dots (m - 1, n - 1)$ of length $n - 1 \equiv 0 \mod 5 \oplus a$ matching $\{(m - 4, j)(m - 3, j) : j \in \{0, 1, \dots, n - 2\}\}$ of cardinality $n - 1 \oplus a$ matching $\{(m - 3, j)(m - 2, j) : j \in \{0, 1, \dots, n - 2\}\}$ of cardinality $n - 1 \oplus a$ matching $\{(m - 3, j)(m - 2, j) : j \in \{0, 1, \dots, n - 2\}\}$ of cardinality n - 1 All the matchings are divisible by $5K_2$ and by Lemma 2.8, all the paths are divisible by $5K_2$. Thus $P_m \square C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

Lemma 3.9. If $m \equiv 3 \mod 5$ and if $n \equiv 2 \mod 5$, then $P_m \Box C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

Proof. As $m - 2 \equiv 1 \mod 5 \equiv n - 1$, by Theorem 2.1, $P_{m-2} \square P_{n-1}$ admits a $(C_{10}, 5K_2)$ -multidecomposition. The deletion of the edges of $P_{m-2} \square P_{n-1}$ from $P_m \square C_n$ results in the subgraph: a matching $\{(i, 0)(i, n - 1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus$ a matching $\{(i, n - 2)(i, n - 1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus$ a matching $\{(i, n - 2)(i, n - 1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus$ a matching $\{(i, n - 2)(i, n - 1) : i \in \{0, 1, \dots, m - 4\}$ of cardinality $m - 3 \oplus$ a path $(0, n - 1)(1, n - 1)(2, n - 1) \dots (m - 3, n - 1)(m - 3, 0)(m - 2, 0)(m - 2, n - 1)(m - 1, n - 1)(m - 1, 0)$ of length $m + 2 \equiv 0 \mod 5 \oplus$ a path $(m - 2, 0)(m - 2, 1) \dots (m - 2, n - 2)$ of length $n - 2 \equiv 0 \mod 5 \oplus$ a path $(m - 1, 0)(m - 1, 1) \dots (m - 1, n - 2)$ of length $n - 2 \equiv 0 \mod 5 \oplus$ a matching $\{(m - 3, 1)(m - 2, 1), (m - 2, 0)(m - 1, 0), (m - 3, n - 2)(m - 3, n - 1), (m - 2, n - 2)(m - 2, n - 1), (m - 1, n - 2)(m - 1, n - 1)\}$ of cardinality $5 \oplus$ a matching $\{(m - 3, j)(m - 2, j) : j \in \{2, 3, \dots, n - 1\}\}$ of cardinality $n - 2 \oplus$ a matching $\{(m - 2, j)(m - 1, j) : j \in \{1, 2, \dots, n - 2\}\}$ of cardinality n - 2. All the matchings are divisible by $5K_2$ and by Lemma 2.8, all the paths are divisible by $5K_2$. Thus $P_m \square C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

Lemma 3.10. If $m \equiv 3 \mod 5$ and if $n \equiv 3 \mod 5$, then $P_m \Box C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

Proof. As $m - 3 \equiv 0 \mod 5 \equiv n - 3$, by Theorem 2.1, $P_{m-3} \square P_{n-3}$ admits a $(C_{10}, 5K_2)$ -multidecomposition. The deletion of the edges of $P_{m-3} \square P_{n-3}$ from $P_m \square C_n$ results in the subgraph: a matching $\{(i, 0)(i, n - 1) : i \in \{0, 1, ..., m - 4\}\}$ of cardinality $m - 3 \oplus$ a matching $\{(i, n - 4)(i, n - 3) : i \in \{0, 1, ..., m - 4\}$ of cardinality m - 3

⊕ a matching {(*i*, *n* − 3)(*i*, *n* − 2) : *i* ∈ {2,3,...,*m* − 2} of cardinality *m* − 3 ⊕ a matching {(*i*, *n* − 2)(*i*, *n* − 1) : *i* ∈ {0,1,...,*m*−4} of cardinality *m* − 3 ⊕ a matching {(0, *n* − 3)(0, *n* − 2), (1, *n* − 3)(1, *n* − 2), (*m* − 3, *n* − 2)(*m* − 3, *n* − 1), (*m* − 2, *n* − 2)(*m* − 2, *n* − 1), (*m* − 1, *n* − 2)(*m* − 1, *n* − 1)} of cardinality 5 ⊕ a path (0, *n* − 3)(1, *n* − 3)(2, *n* − 3)...(*m*−1, *n*−3)(*m*−1, *n*−2)(*m*−2, *n*−2)(*m*−3, *n*−2)...(2, *n*−2)(1, *n*−2)(0, *n*−2) of length 2*m*−1 ≡ 0 mod 5 ⊕ a path (0, *n*−1)(1, *n*−1)(2, *n*−1)...(*m*−3, *n*−1)(*m*−3, 0)(*m*−2, *n*−1)(*m*−1, *n*−1)(*m*−1, 0) of length *m* + 2 ≡ 0 mod 5 ⊕ a path (*m*−3, 0)(*m*−3, 1)...(*m*−3, *n*−4)(*m*−3, *n*−3) of length *n*−3 ≡ 0 mod 5 ⊕ a path (*m*−2, 0)(*m*−2, 1)...(*m*−2, *n*−4)(*m*−2, *n*−3) of length *n*−3 ≡ 0 mod 5 ⊕ a path (*m*−1, *n*−4) of cardinality *n*−3 ⊕ a matching {(*m*−2, *j*)(*m*−2, *j*) : *j* ∈ {0, 1, ..., *n*−4} of cardinality *n*−3 ⊕ a matching {(*m*−2, *j*)(*m*−1, *j*) : *j* ∈ {0, 1, ..., *n*−4} of cardinality *n*−3 ⊕ a matching are divisible by 5*K*₂. Thus *P*_{*m*□C*n* admits a (*C*₁₀, 5*K*₂)-multidecomposition.}

Lemma 3.11. If $m \equiv 3 \mod 5$ and if $n \equiv 4 \mod 5$, then $P_m \Box C_n$ admits a $(C_{10}, 5K_2)$ -multidecomposition.

4. Cartesian Product of Cycles

In this section, we have proved that $C_m \square C_n$ admits a (C_{2p}, pK_2) -multidecomposition, for some values of $p \ge 3$.

If $C_m \Box C_n$ admits a (C_{2p}, pK_2) -multidecomposition, then p divides $|E(C_m \Box C_n)| = 2mn$ and hence for prime p, either $m \equiv 0 \mod p$ or $n \equiv 0 \mod p$. By symmetry, assume that $n \equiv 0 \mod p$. By Theorem 3.1, $P_m \Box C_n$ admits a (C_{2p}, pK_2) -multidecomposition. The deletion of the edges of $P_m \Box C_n$ from $C_m \Box C_n$ results in nK_2 . As $n \equiv 0 \mod p$, $(pK_2)|(nK_2)$. Hence, $C_m \Box C_n$ admits a (C_{2p}, pK_2) -multidecomposition. Thus,

Theorem 4.1. For integers $m, n \ge p$ and for prime $p \ge 2$, $C_m \Box C_n$ admits a (C_{2p}, pK_2) -multidecomposition if and only if either $m \equiv 0 \mod p$ or $n \equiv 0 \mod p$.

For $p = 3, 5, C_m \square C_n$ admits a $(C_6, 3K_2)$, $(C_{10}, 5K_2)$ -multidecomposition respectively by Theorem 4.1.

Theorem 4.2. For integers $m, n \ge 4$, $C_m \Box C_n$ admits a $(C_8, 4K_2)$ -multidecomposition if and only if either $m \equiv 0 \mod 2$ or $n \equiv 0 \mod 2$.

Proof. By symmetry, assume that $n \equiv 0 \mod 2$. Consider two cases.

Case 1. If $n \equiv 0 \mod 4$, then $C_m \square C_n = P_m \square C_n \oplus nK_2$. By Theorem 3.4., $P_m \square C_n$ admits a $(C_8, 4K_2)$ -multidecomposition and by lemma 2.8., $(4K_2)|(nK_2)$. Thus $C_m \square C_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

Case 2. If $n \equiv 2 \mod 4$, Consider four cases.

Sub case 2.1. If $n \equiv 2 \mod 4 \equiv m$ then $C_m \Box C_n = P_m \Box P_n \oplus nK_2 \oplus mK_2 = P_m \Box P_n \oplus (n-2)K_2 \oplus (m-2)K_2 \oplus 4K_2$ by choosing the edges $\{(0,0)(m-1,0), (0,1)(m-1,1), (1,0)(1,n-1), (2,0)(2,n-1)\}$ of $4K_2$ from nK_2 and mK_2 and since $(n-2) \equiv 0 \mod 4 \equiv (m-2)$, by lemma 2.8., $(4K_2)|((n-2)K_2)$ and $(4K_2)|((m-2)K_2)$ and by Lemma 2.11., $P_m \Box P_n$ admits a $(C_8, 4K_2)$ -multidecomposition. Thus $C_m \Box C_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

Sub case 2.2. If $n \equiv 2 \mod 4$ and $m \equiv 0 \mod 4$ then $C_m \Box C_n = C_m \Box P_n \oplus mK_2$, since $m \equiv 0 \mod 4$, by Theorem 3.4, $C_m \Box P_n$ admits a $(C_8, 4K_2)$ -multidecomposition and by lemma 2.8., $(4K_2)|(mK_2)$. Thus $C_m \Box C_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

Sub case 2.3. If $n \equiv 2 \mod 4$ and $m \equiv 1 \mod 4$ then $C_m \square C_n = P_m \square P_{n-1} \oplus a$ matching $\{(0, j)(m - 1, j) : j \in \{0, 1, ..., n-1\}\} \cup \{(1, n-2)(1, n-1), (2, n-2)(2, n-1)\}$ of cardinality $(n+2) \oplus a$ matching $\{(i, 0)(i, n-1) : i \in \{0, 2, 3, ..., m-1\}\}$ of cardinality $(m-1) \oplus a$ matching $\{(i, n-2)(i, n-1) : i \in \{0, 3, 4, ..., m-1\}\} \cup \{(1, 0)(1, n-1)\}$ of cardinality (m - 1). Since by lemma 2.9., $P_m \square P_{n-1}$ admits $(C_8, 4K_2)$ -multidecomposition and by lemma 2.8., $4K_2|(n+2)K_2$ and $4K_2|(m-1)K_2$. Thus $C_m \square C_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

Sub case 2.4. If $n \equiv 2 \mod 4$ and $m \equiv 3 \mod 4$ then $C_m \Box C_n = P_{m-1} \Box P_n \oplus a$ path $(m - 2, n - 1)(m - 1, n - 1)(m - 1, n - 2) \dots (m - 1, 0)(0, 0)(0, n - 1)$ of length $n + 2 \oplus a$ matching $\{(m - 1, j)(m - 2, j) : j \in \{0, 1, \dots, n - 2\}\} \cup \{(1, 0)(1, n - 1), (2, 0)(2, n - 1), (0, n - 1)(m - 1, n - 1)\}$ of cardinality $(n + 2) \oplus a$ matching $\{(i, 0)(i, n - 1) : i \in \{3, 4, \dots, m - 1\}\}$ of cardinality $(m - 3) \oplus a$ matching $\{(0, j)(m - 1, j) : j \in \{1, 2, \dots, n - 2\}\}$ of cardinality (n - 2). Since by lemma 2.11. $P_{m-1} \Box P_n$ admits $(C_8, 4K_2)$ -multidecomposition, by lemma 2.8., $4K_2|P_{n+3}$ and $4K_2|(n + 2)K_2, 4K_2|(m - 3)K_2$. Thus $C_m \Box C_n$ admits a $(C_8, 4K_2)$ -multidecomposition.

5. Cartesian Product of a Path and a Clique

In this section, we have proved that $P_m \Box K_n$ admits a (C_{2p}, pK_2) -multidecomposition, for some values of $p \ge 3$.

If $P_m \Box K_n$ admits a (C_{2p}, pK_2) -multidecomposition, then p divides $|E(P_m \Box K_n)| = \frac{mn(n+1)}{2} - n$. Observe that, if $n \equiv 0 \mod p$, then $p|(\frac{mn(n+1)}{2} - n)$ and for all odd integers $p \ge 3$, if $m \equiv 1 \mod p \equiv n$ then $p|(\frac{mn(n+1)}{2} - n)$.

Theorem 5.1. For integers $m \ge 2$, $n \ge 3$ and for an odd integer $p \ge 3$, then $P_m \Box K_n$ admits a (C_{2p}, pK_2) multidecomposition if $m \equiv 1 \mod p \equiv n$.

Proof. Consider two cases.

Case 1. If *n* is even.

As *n* is even, there is a decomposition of K_n into $\frac{n}{2}$ Hamilton paths. Note that each Hamilton path is of length $n - 1 \equiv 0 \mod p$. First decompose each of the *m* disjoint K_n 's in $P_m \Box K_n$ into Hamilton paths and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into pK_2 's. The deletion of the edges of these pK_2 's results in $P_m \Box P_n$ and, by Theorem 2.1, it clearly admits a (C_{2p}, pK_2) -multidecomposition.

Case 2. If *n* is odd.

As n + 1 is even, there is a decomposition of K_{n+1} into $\frac{n-1}{2}$ Hamilton cycles and a 1-factor; consequently, there is a decomposition of K_n into $\frac{n-1}{2}$ Hamilton paths and a near 1-factor. Note that each Hamilton path is of length $n - 1 \equiv 0 \mod p$ and the near 1-factor is a matching of cardinality $\frac{n-1}{2} \equiv 0 \mod p$. First decompose each of the m disjoint K_n 's in $P_m \Box K_n$ into Hamilton paths and a near 1-factor and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into pK_2 's, also in each layer decompose the near 1-factor into pK_2 's. The deletion of the edges of these pK_2 's results in $P_m \Box P_n$ and, by Theorem 2.1, it clearly admits a (C_{2p}, pK_2) -multidecomposition.

If $P_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition, then 3 divides $|E(P_m \Box K_n)| = \frac{mn(n+1)}{2} - n$ and hence either $n \equiv 0 \mod 3$ or $m \equiv 1 \mod 3 \equiv n$.

Lemma 5.2. For integers $m, n \ge 2$, $P_m \Box K_n$ admits a ($C_6, 3K_2$)-multidecomposition if $m \equiv 1 \mod 3 \equiv n$.

Proof. Consider two cases. *Case 1.* For $n \equiv 4 \mod 6$. *Subcase 1.1.* $n \neq 4$. Proof follows from Theorem 5.1.

Subcase 1.2. n = 4. By lemma 2.9., $P_m \Box P_4$ admits a $(C_6, 3K_2)$ -multidecomposition and the deletion of the edges of $P_m \Box P_4$ from $P_m \Box K_4$ results in mP_4 . Clearly, $(3K_2)|(2P_4)$ and $(3K_2)|(3P_4)$, by lemma 2.8.. Using this one can find a decomposition of mP_4 by $3K_2$. *Case 2.* For $n \equiv 1 \mod 6$.

Proof follows from Theorem 5.1.

Theorem 5.3. For integers $m \ge 2$, $n \ge 3$ and $p \ge 3$, $P_m \Box K_n$ admits a (C_{2p}, pK_2) -multidecomposition if $n \equiv 0 \mod p$.

Proof. Consider two cases.

Case 1. If *n* is odd.

As *n* is odd, there is a decomposition of K_n into $\frac{n-1}{2}$ Hamilton cycles. Note that each Hamilton cycle is of length $n \equiv 0 \mod p$. First decompose each of the *m* disjoint K_n 's in $P_m \square K_n$ into Hamilton cycles and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into pK_2 's, by lemma 3.2.. The deletion of the edges of these pK_2 's results in $P_m \square C_n$, and by Theorem 3.1., it clearly admits a (C_{2p}, pK_2) -multidecomposition.

Case 2. If *n* is even.

As *n* is even, there is a decomposition of K_n into $\frac{n-2}{2}$ Hamilton cycles and a 1-factor; Note that each Hamilton cycle is of length $n \equiv 0 \mod p$ and the 1-factor is a matching of cardinality $\frac{n}{2} \equiv 0 \mod p$. First decompose each of the *m* disjoint K_n 's in $P_m \Box K_n$ into Hamilton cycles and a 1-factor and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into pK_2 's, also in each layer decompose the 1-factor into pK_2 's. The deletion of the edges of these pK_2 's results in $P_m \Box C_n$, and by Theorem 3.1, it clearly admits a (C_{2p}, pK_2) -multidecomposition.

6. Cartesian Product of a Cycle and a Clique

In this section, we have proved that $C_m \Box K_n$ admits a (C_{2p}, pK_2) -multidecomposition, for p = 3.

If $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition, then 3 divides $|E(C_m \Box K_n)| = \frac{mn(n+1)}{2}$ and hence neither $m \equiv 1 \mod 3 \equiv n \mod m \equiv 2 \mod 3$ and $n \equiv 1 \mod 3$.

Lemma 6.1. For integers m, $n \ge 2$, $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $n \equiv 0 \mod 3$.

Proof. Consider two cases.

Case 1. For $n \equiv 3 \mod 6$.

As *n* is odd, there is a decomposition of K_n into $\frac{n-1}{2}$ Hamilton cycles. Note that each Hamilton cycle is of length $n \equiv 0 \mod 3$. Decompose each of the *m* disjoint K_n 's in $C_m \Box K_n$ into Hamilton cycles and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $C_m \Box C_n$, and by Theorem 4.1., it clearly admits a (C_6 , $3K_2$)-multidecomposition. *Case 2.* $n \equiv 0 \mod 6$.

As *n* is even, there is a decomposition of K_n into $\frac{n-2}{2}$ Hamilton cycles and a 1-factor; Note that each Hamilton cycle is of length $n \equiv 0 \mod 6$ and the 1-factor is a matching of cardinality $\frac{n}{2} \equiv 0 \mod 3$. First decompose each of the *m* disjoint K_n 's in $C_m \Box K_n$ into Hamilton cycles and a 1-factor and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into $3K_2$'s, also in each layer decompose the 1-factor into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $C_m \Box C_n$, and by Theorem 4.1, it clearly admits a (C_6 , $3K_2$)-multidecomposition.

Lemma 6.2. For integers $m, n \ge 2$, $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $m \equiv 0 \mod 3$ and $n \equiv 1 \mod 3$.

Proof. Consider two cases.

Case 1. For $n \equiv 4 \mod 6$.

As *n* is even, there is a decomposition of K_n into $\frac{n}{2}$ Hamilton paths. Note that each Hamilton path is of length $n - 1 \equiv 3 \mod 6$. First decompose each of the *m* disjoint K_n 's in $C_m \Box K_n$ into Hamilton paths and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $C_m \Box P_n$ and, by Theorem 3.3., it clearly admits a $(C_6, 3K_2)$ -multidecomposition.

Case 2. $n \equiv 1 \mod 6$.

As n + 1 is even, there is a decomposition of K_{n+1} into $\frac{n-1}{2}$ Hamilton cycles and a 1-factor; consequently, there is a decomposition of K_n into $\frac{n-1}{2}$ Hamilton paths and a near 1-factor. Note that each Hamilton path is of length $n - 1 \equiv 0 \mod 6$ and the near 1-factor is a matching of cardinality $\frac{n-1}{2} \equiv 0 \mod 3$. First decompose each of the m disjoint K_n 's in $C_m \Box K_n$ into Hamilton paths and a near 1-factor and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into $3K_2$'s, also in each layer decompose the near 1-factor into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $C_m \Box P_n$ and, by Theorem 3.3., it clearly admits a (C_6 , $3K_2$)-multidecomposition.

Lemma 6.3. For integers $m, n \ge 2$, $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $m \equiv 0 \mod 3$ and $n \equiv 2 \mod 3$.

Proof. Consider two cases.

Case 1. For $n \equiv 2 \mod 6$.

As *n* is even, there is a decomposition of K_n into $\frac{n}{2}$ Hamilton paths. First decompose each of the *m* disjoint K_n 's in $C_m \Box K_n$ into Hamilton paths and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into $3K_2$'s, by choosing one edge from each Hamilton path, with cardinality $m, m \equiv 0 \mod 3$. The deletion of the edges of these $3K_2$'s results in $C_m \Box P_n$ and, by Theorem 3.1., it clearly admits a $(C_6, 3K_2)$ -multidecomposition.

Case 2. $n \equiv 5 \mod 6$.

As n + 1 is even, there is a decomposition of K_{n+1} into $\frac{n-1}{2}$ Hamilton cycles and a 1-factor; consequently, there is a decomposition of K_n into $\frac{n-1}{2}$ Hamilton paths and a near 1-factor. Note that the near 1-factor is a matching of cardinality $\frac{n-1}{2} \equiv 0 \mod 3$. First decompose each of the *m* disjoint K_n 's in $C_m \Box K_n$ into Hamilton paths and a near 1-factor and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into $3K_2$'s, also in each layer decompose the near 1-factor into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $C_m \Box P_n$ and, by Theorem 3.3., it clearly admits a $(C_6, 3K_2)$ -multidecomposition.

Lemma 6.4. If $n \equiv 2 \mod 3$, and if $n \neq 6$, then $(3K_2)|K_n - \mathscr{P}$.

Proof. For even *n*, first decompose K_n into $\frac{n}{2}$ Hamilton paths, let one of the Hamilton path be $\mathscr{P} = \{0, 1, n - 1, 2, n - 2, 3, n - 3, \dots, \frac{n}{2} - 2, \frac{n}{2} + 2, \frac{n}{2} - 1, \frac{n}{2} + 1, \frac{n}{2}\}$ after removing this Hamilton path, from the remaining Hamilton path deleting the following edges $\{(\frac{3n}{4} + i, \frac{n}{4} + i) : i \in \{1, 2, \dots, \frac{n-2}{2}\}$ if $\frac{n}{2}$ is even and $\{(\frac{3n+2}{4} + i, \frac{n+2}{4} + i) : i \in \{1, 2, \dots, \frac{n-2}{2}\}\}$ if $\frac{n}{2}$ is odd from each Hamilton path. Which is a matching of cardinality $\frac{n-2}{2}$, leaves $2P_{\frac{n}{2}}$, each of the length $\frac{n-2}{2}$, as *n* is even, $n \equiv 2 \mod 3$, implies $\frac{n}{2} \equiv 1 \mod 3$, by the Lemma 2.8., $3K_2|P_{\frac{n}{2}}$, hence $(3K_2)|K_n - \mathscr{P}$.

For odd *n* first decompose K_n into $\frac{n-1}{2}$ Hamilton paths and a near one factor,let one of the Hamilton path be $\mathscr{P} = \{0, 1, n-1, 2, n-2, 3, n-3, \dots, \frac{n-1}{2} - 2, \frac{n-1}{2} + 3, \frac{n-1}{2} - 1, \frac{n-1}{2} + 2, \frac{n-1}{2}, \frac{n-1}{2} + 1\}$ after removing this Hamilton path, from the remaining Hamilton path deleting the following edges $\{(\frac{3(n-1)}{4} + i, \frac{n-5}{4} + i) : i \in \{2, 3, \dots, \frac{n-1}{2}\}\}$ if $\frac{n-1}{2}$ is even, $\{(\frac{3(n+1)}{4} + i, \frac{n+1}{4} + i) : i \in \{1, 2, \dots, \frac{n-3}{2}\}\}$ if $\frac{n-1}{2}$ is odd, gives two disjoint paths. For each $i \in \{2, 3, \dots, \frac{n-1}{2}\}$ if $\frac{n-1}{2}$ is even, on combining the vertices $\{\frac{3(n-1)}{4} + i\}$ and $\{\frac{n-5}{4} + i\}$ gives the path $P_{n-1}(i)$ each of order $n - 1 \equiv 1 \mod 3$. For each $i \in \{1, 2, \dots, \frac{n-3}{2}\}$ if $\frac{n-1}{2}$ is odd, on combining the vertices $\{\frac{3(n+1)}{4} + i\}$

and $\{\frac{n+1}{4} + i\}$ gives the path $P_{n-1}(i)$, each of order $n-1 \equiv 1 \mod 3$. Hence by lemma 2.8., $3K_2|P_{n-1}(i)$. After removing one $3K_2$: $\{(\frac{n-1}{2}, n)(\frac{3(n-1)}{4} + 1, \frac{n-1}{4} - 1)(\frac{3(n-1)}{4}, \frac{n-1}{4})\}$ from $\{(\frac{3(n-1)}{4} + i, \frac{n-5}{4} + i) : i \in \{2, 3, ..., \frac{n-1}{2}\}\}$ if $\frac{n-1}{2}$ is even, union the near one factor $\{((n-1)-i, n+i) : i \in \{0, 1, ..., \frac{n-3}{2}\}\}$ gives the path P_{n-4} of order $n-4 \equiv 1 \mod 3$. Hence by lemma 2.8., $3K_2|P_{n-4}(i)$. Similarly after removing two disjoint paths $\{\frac{n-1}{2}, n, n-1, \frac{n-3}{2}\} \cup \{\frac{3n-1}{4}, \frac{n-3}{4}, \frac{3n-1}{4} - 1, \frac{n-3}{4} + 1\}$ from $\{(\frac{3(n+1)}{4} + i, \frac{n+1}{4} + i) : i \in \{1, 2, ..., \frac{n-3}{2}\}\}$ if $\frac{n-1}{2}$ is odd, union the near one factor $\{((n-1)-i, n+i) : i \in \{0, 1, ..., \frac{n-3}{2}\}\}$ gives the path P_{n-7} of order $n-7 \equiv 1 \mod 3$. Hence by lemma 2.8., $3K_2|P_{n-7}(i)$. Now by choosing the edges $\{(n, \frac{n-1}{2})(n-1, \frac{n-3}{2})(\frac{n-3}{4}, \frac{3n-1}{4} - 1)\}$ and $\{(n, n-1)(\frac{3n-1}{4}, \frac{n-3}{4})(\frac{3n-1}{4} - 1, \frac{n-3}{4} + 1)\}$ are matching and isomorphic to $3K_2$. Thus $(3K_2)|K_n - \mathcal{P}$.

Lemma 6.5. For integers $m, n \ge 2$, $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $m \equiv 1 \mod 3$ and $n \equiv 2 \mod 3$.

Proof. After removing *m*-times $K_n - \mathscr{P}$ from $C_m \Box K_n$, One have $C_m \Box P_n$, by the Lemma 6.4., $(3K_2)|K_n - \mathscr{P}$ and by the Theorem 3.2., $C_m \Box P_n$ admits a ($C_6, 3K_2$)-multidecomposition. Hence $C_m \Box K_n$ admits a ($C_6, 3K_2$)-multidecomposition.

Lemma 6.6. For integers $m, n \ge 2$, $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $m \equiv 2 \mod 3 \equiv n$.

Proof. After removing m-times $K_n - \mathscr{P}$ from $C_m \Box K_n$, one have $C_m \Box P_n$, by the Lemma 6.4., $(3K_2)|K_n - \mathscr{P}_n$ and by the Theorem 3.2., $C_m \Box P_n$ admits a $(C_6, 3K_2)$ -multidecomposition. Hence $C_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition.

7. Cartesian Product of Cliques

In this section, we have proved that $K_m \Box K_n$ admits a (C_{2p}, pK_2) -multidecomposition, for p = 3.

If $K_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition, then 3 divides $|E(K_m \Box K_n)| = \frac{mn(m+n-2)}{2}$ and hence either $m \equiv 0 \mod 3$ or $n \equiv 0 \mod 3$ or $m \equiv 1 \mod 3 \equiv n$.

Lemma 7.1. For integers m, $n \ge 2$, $K_m \Box K_n$ admits a (C₆, 3K₂)-multidecomposition if $m \equiv 0 \mod 3$.

Proof. Consider two cases.

Case 1. For $m \equiv 0 \mod 6$.

As *m* is even, there is a decomposition of K_m into $\frac{m-2}{2}$ Hamilton cycles and a 1-factor. Note that each Hamilton cycle is of length $m \equiv 0 \mod 6$. First decompose each of the *n* disjoint K_m 's in $K_m \square K_n$ into Hamilton cycles and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into $3K_2$'s by Lemma 3.2 and the 1-factor is a matching of cardinality $\frac{m}{2} \equiv 0 \mod 3$. The deletion of the edges of these $3K_2$'s results in $C_m \square K_n$ and, by Lemma 6.1,6.2 and 6.3., it clearly admits a (C_6 , $3K_2$)-multidecomposition. *Case 2*. For $m \equiv 3 \mod 6$.

As *m* is odd, there is a decomposition of K_m into $\frac{m-1}{2}$ Hamilton cycles. Note that each Hamilton cycle is of length $m \equiv 0 \mod 3$. Decompose each of the *n* disjoint K_m 's in $K_m \Box K_n$ into Hamilton cycles and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into $3K_2$'s by Lemma 3.2.. The deletion of the edges of these $3K_2$'s results in $C_m \Box K_n$ and, by Lemma 6.1,6.2 and 6.3., it clearly admits a (C_6 , $3K_2$)-multidecomposition.

Lemma 7.2. For integers $m, n \ge 2$, $K_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $n \equiv 0 \mod 3$.

Proof. Since $K_m \Box K_n = K_n \Box K_m$ and $n \equiv 0 \mod 3$, by Lemma 7.1., $K_m \Box K_n$ admits a ($C_6, 3K_2$)-multidecomposition.

Lemma 7.3. For integers $m, n \ge 2$, $K_m \Box K_n$ admits a $(C_6, 3K_2)$ -multidecomposition if $m \equiv 1 \mod 3 \equiv n$.

Proof. Consider two cases.

Case 1. For $m \equiv 4 \mod 6$.

As *m* is even, there is a decomposition of K_m into $\frac{m}{2}$ Hamilton paths. Note that each Hamilton path is of length $m - 1 \equiv 3 \mod 6$. First decompose each of the *n* disjoint K_m 's in $K_m \Box K_n$ into Hamilton paths and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $P_m \Box K_n$ and, by Lemma 5.2., it clearly admits a (C_6 , $3K_2$) multidecomposition.

Case 2. For $m \equiv 1 \mod 6$.

As m + 1 is even, there is a decomposition of K_{m+1} into $\frac{m-1}{2}$ Hamilton cycles and a 1-factor; consequently, there is a decomposition of K_m into $\frac{m-1}{2}$ Hamilton paths and a near 1-factor. Note that each Hamilton path is of length $m - 1 \equiv 0 \mod 6$ and the near 1-factor is a matching of cardinality $\frac{m-1}{2} \equiv 0 \mod 3$. First decompose each of the n disjoint K_m 's in $K_m \Box K_n$ into Hamilton paths and a near 1-factor and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into $3K_2$'s, also in each layer decompose the near 1-factor into $3K_2$'s. The deletion of the edges of these $3K_2$'s results in $P_m \Box K_n$ and, by Lemma 5.2., it clearly admits a (C_6 , $3K_2$)-multidecomposition.

Acknowledgements

The author is much grateful to an anonymous referee for his/her valuable comments on my paper.

References

- [1] A. Abueida, Multidesigns of the complete graph with a hole into the graph-pair of order 4, Bull. Inst. Combin. Appl. 53 (2008) 17 20.
- [2] A. Abueida, M. Daven, Multidesigns for graphs-pairs on 4 and 5 vertices, Graphs Comb. 19(4)(2003) 433 447.
- [3] A. Abueida, M. Daven, Multidecompositions of several graph products, Graphs and Combinatorics 29 (2013) 315 326.
- [4] A. Abueida, M. Daven, Multidecompositions of the complete graph, Ars Combinatoria 72 (2004) 17 22.
- [5] H. M. Priyadharsini, A. Muthusamy, (G_m, H_m) -multifactorization of λK_m , Journal of Combinatorial Mathematics and Combinatorial Computing 69 (2009) 145 150.
- [6] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Mathematics 310 15-16 (2010) 2164 2169.
- [7] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combinatoria 97 (2010) 257 270.
- [8] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combinatoria 107 (2012) 209 224.
- [9] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs and Combinatorics 29 (2013) 301 313.
- [10] H.C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combinatoria 108 (2013) 355 364.