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Abstract. We give a fixed point theorem for uniformly Lipschitzian mappings defined in modular vector
spaces which have the uniform normal structure property in the modular sense. We also discuss this result
in the variable exponent space

`p(.) =
{
(xn) ∈ RN;

∞∑
n=0

|λ xn|
p(n) < ∞ for some λ > 0

}
.

1. Introduction

In 1950, Nakano [12] introduced the theory of modular vector spaces which was further developed by
Musielak/Orlicz [15] [1959, p. 49]. It is well known that norms are modulars. An illuminating example [17]
of a modular vector space is given by

X = {(xn) ∈ RN;
∞∑

n=1

|λxn|
n < ∞ for some λ > 0}.

Indeed, this example was given by Orlicz [16] and inspired Nakano in his definition of a modular.
In this paper, we study the existence of fixed points for uniformly Lipschitzian mappings in modular

vector spaces. The key idea in our approach is the modular uniform normal structure property. We show
that under certain settings a uniformly Lipschitzian map has a fixed point if its modular Lipschitz constant
K < (Ñρ(Xρ))−1/2, where Ñρ(Xρ) is the modular uniform structure coefficient of the modular vector space Xρ.

For more on metric fixed point theory, the reader may consult the book [6]. As for the metric fixed point
theory of uniformly Lipschitzian mappings, the reader may consult the two papers [3, 10].
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2. Preliminaries

In this section, we give the basic definitions as well as the notations that will be used throughout. For
more details one can consult the book by Khamsi and Kozlowski [7].

Let X be a linear vector space on the field R.

Definition 2.1. A function ρ : X→ [0,∞] is called modular if the following hold:

(1) ρ(x) = 0 if and only if x = 0.

(2) ρ(αx) = ρ(x), for every scalar α with |α| = 1 and x ∈ X.

(3) ρ(αx + (1 − α)y) ≤ ρ(x) + ρ(y), for any α ∈ [0, 1] and any x, y ∈ X.

If (3) is replaced by
ρ(αx + (1 − α)y) ≤ αρ(x) + (1 − α)ρ(y),

for any α ∈ [0, 1] and x, y ∈ X, then ρ is called a convex modular.

Definition 2.2. Let ρ be a convex modular defined on X. The set Xρ = {x ∈ X : limα→0 ρ(αx) = 0} is called a
modular space . The Luxemburg norm ‖.‖ρ : Xρ → [0,∞) is defined by

‖x‖ρ = inf
{
α > 0 : ρ

( x
α

)
≤ 1

}
Definition 2.3. Let ρ be a modular defined on a vector space X.

(a) We say that a sequence {xn} ⊂ Xρ is ρ-convergent to x ∈ Xρ if and only if lim
n→∞

ρ(xn − x) = 0. Note that the
ρ-limit is unique if it exists.

(b) We say that a sequence {xn} ⊂ Xρ is ρ-Cauchy if lim
n,m→∞

ρ(xn − xm) = 0.

(c) We say that the modular space Xρ is ρ-complete if and only if any ρ-Cauchy sequence in Xρ is ρ-convergent.

(d) A set C ⊂ Xρ is called ρ-closed if for any sequence of {xn} ⊂ C which ρ-convergences to x implies that x ∈ C.

(e) A set C ⊂ Xρ is called ρ-bounded if diamρ(C) = sup{ρ(x − y) : x, y ∈ C} < ∞.

(f) ρ is said to satisfy the Fatou property if ρ(x) ≤ lim inf
n→∞

ρ(xn) whenever {xn} ρ-converges to x, for any x, xn in
Xρ.

The ρ-ball Bρ(x, r), where x ∈ Xρ and r ≥ 0, is defined by

Bρ(x, r) = {y ∈ Xρ;ρ(x − y) ≤ r}.

x and r are called respectively the center and the radius of the ρ-ball Bρ(x, r). Notice that ρ satisfies Fatou
property if and only if the balls are ρ-closed.

Definition 2.4. Let τ be a topology on Xρ. We will say that Xρ satisfies the strong τ-Opial property if

lim inf
n→∞

ρ(xn − u) = lim inf
n→∞

ρ(xn − x) + ρ(x − u),

for any sequence {xn} which τ-converges to x and any u ∈ Xρ.
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Definition 2.5. Let ρ be a modular defined on a vector space X. We say that ρ satisfies the ∆2-type condition if there
exists K , 0 such that

ρ(2x) ≤ Kρ(x),

for any x ∈ Xρ.

Assume that ρ is convex. We define the growth function ω : [0,∞)→ [0,∞] by

ω(t) = sup
{ρ(tx)
ρ(x)

, 0 < ρ(x) < ∞
}
.

The following properties of the growth function are direct consequence of the definition.

Lemma 2.6. Let Xρ be a modular vector space. Assume that ρ is convex and satisfies the ∆2-type condition. Then
the growth function ω has the following properties:

(1) ω(1) = 1 and ω(t) ≤ t for t ≤ 1.

(2) ω(t) < ∞, ∀ t ∈ [0,∞).

(3) ω : [0,∞) → [0,∞) is a convex, strictly increasing function. Thus it is continuous. Therefore the function
inverse ω−1 of ω is a strictly increasing continuous function.

(4) ω(αβ) ≤ ω(α) ω(β), for any α, β ∈ [0,∞), which implies

ω−1(α) ω−1(β) ≤ ω−1(αβ),

for any α, β ∈ [0,∞).

Moreover, the growth function can be used to give an upper bound for the associated Luxemburg norm by the formula

‖x‖ρ ≤
1

ω−1
( 1
ρ(x)

) ,
for any x ∈ Xρ.

The proof of this fundamental lemma follows from the similar results given in modular function spaces,
see Lemmas 3.1 and 3.3 in [5].

Let τ be a topology on Xρ. For any nonempty subset A ⊂ Xρ, the τ-closure of A is defined by

clτ(A) =
⋂{

C; C is τ-closed and contains A
}
.

Clearly clτ(A) is the smallest τ-closed subset of Xρ which contains A. In a similar fashion, we may define
clρ(A) the ρ-closure of A.

Example 2.7. For a function p :N→ [1,∞), define the vector space

`p(.) =
{
(xn) ∈ RN;

∞∑
n=0

|λ xn|
p(n) < ∞ for some λ > 0

}
.

Consider the function ρ : `p(.) → [0,∞] defined by

ρ(x) = ρ((xn)) =

∞∑
n=0

|xn|
p(n).
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Then ρ defines a convex modular on `p(.). Moreover, ρ satisfies the ∆2-type condition if and only if p+ = sup
n∈N

p(n) < ∞

and ω(2) ≤ 2p+ . The topology τ is the coordinatewise convergence. Using some of the ideas from Brezis and Lieb
[1], we prove that `p(.) satisfies the strong τ-Opial condition. It is enough to prove the strong τ-Opial condition for
sequences which τ-converge to 0 in `p(.). Fix ε(0, 1) and p ∈ [1,∞). Consider the function f : R→ R defined by

f (x) =
∣∣∣∣|1 + x|p − |x|p

∣∣∣∣ − ε|x|p.
Note that we have lim

|x|→∞
f (x) = −∞. In fact, we have

x >
1

(1 + ε)1/p − 1
=⇒ f (x) ≤ 0,

and
x < −

1
1 − (1 − ε)1/p =⇒ f (x) ≤ 0.

Moreover, it is easy to check that

−
1

1 − (1 − ε)1/p+ ≤ −
1

1 − (1 − ε)1/p and
1

(1 + ε)1/p − 1
≤

1
(1 + ε)1/p+

− 1
,

for p ∈ [1, p+], with p+ < ∞. Since f (0) = 1, then we have

sup
x∈R

f (x) = sup
x∈[x−,x+]

f (x),

where
x− = −

1
1 − (1 − ε)1/p+ and x+ =

1
(1 + ε)1/p+

− 1
,

for p ∈ [1, p+], with p+ < ∞. Set M = max
x∈[x−,x+]

(
1, |x|, |1 + x|

)
. Then

f (x) =
∣∣∣∣|1 + x|p − |x|p

∣∣∣∣ − ε|x|p ≤ |1 + x|p + |x|p − ε|x|p

which implies f (x) ≤ |1 + x|p + (1 − ε)|x|p ≤ (2 − ε)M, for any x ∈ [x−, x+]. Therefore, we have∣∣∣∣|1 + x|p − |x|p
∣∣∣∣ − ε|x|p ≤ (2 − ε)M

for any x ∈ R and any p ∈ [1, p+], with p+ < ∞. Set

Cε = sup
{∣∣∣∣|1 + x|p − |x|p

∣∣∣∣ − ε|x|p, x ∈ R and p ∈ [1, p+]
}
≥ 1.

Therefore, we have ∣∣∣∣|1 + x|p − |x|p
∣∣∣∣ ≤ Cε + ε|x|p,

for any x ∈ R and any p ∈ [1, p+], with p+ < ∞. Using this inequality, we get∣∣∣∣|a + b|p − |b|p
∣∣∣∣ ≤ Cε|a|p + ε|b|p, (BL)

for any a, b ∈ R and any p ∈ [1, p+], with p+ < ∞. Next, we use the inequality (BL) to prove that `p(.) satisfies the
strong τ-Opial property, where p(n) ∈ [1, p+], with p+ < ∞, for n ∈ N. Note that we do not assume p(n) ≥ p− > 1,
for any n ∈ N. Let {xn} ⊂ `p(.) which τ-converges to 0. Let u ∈ `p(.). Assume there exists M > 0 such that
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max
(
ρ(xn), ρ(u)

)
≤ M, for any n ∈ N. Fix ε > 0. Then there exists N ≥ 1 such that

∞∑
i=N+1

|u(i)|p(i) < ε/Cε, where

u = (u(i)). Since {xn} τ-converges to 0, we have

lim
n→∞

N∑
i=0

|xn(i) − u(i)|p(i) =

N∑
i=0

|u(i)|p(i).

On the other hand using the inequality (BL), we have

∞∑
i=N+1

∣∣∣∣|xn(i) − u(i)|p(i)
− |xn(i)|p(i)

∣∣∣∣ ≤ ∞∑
i=N+1

Cε |u(i)|p(i) + ε|xn(i)|p(i),

which implies
∞∑

i=N+1

∣∣∣∣|xn(i) − u(i)|p(i)
− |xn(i)|p(i)

∣∣∣∣ ≤ ε + ε M = (M + 1)ε.

We have ρ(xn − u) − ρ(xn) − ρ(u) = A + B, where

A =
N∑

i=0
|xn(i) − u(i)|p(i)

− |xn(i)|p(i)
− |u(i)|p(i)

and B =
∞∑

i=N+1
|xn(i) − u(i)|p(i)

− |xn(i)|p(i)
− |u(i)|p(i). Since Cε ≥ 1, we get

|B| ≤
∞∑

i=N+1

∣∣∣∣|xn(i) − u(i)|p(i)
− |xn(i)|p(i)

∣∣∣∣ +
∞∑

i=N+1
|u(i)|p(i)

≤ (M + 1)ε + ε/Cε
≤ (M + 1)ε + ε = (M + 2)ε.

Using lim
n→∞

N∑
i=0
|xn(i) − u(i)|p(i)

− |xn(i)|p(i)
− |u(i)|p(i) = 0, we get

lim sup
n→∞

∣∣∣∣ρ(xn − u) − ρ(xn) − ρ(u)
∣∣∣∣ ≤ (M + 2)ε.

If we let ε→ 0+, we get
lim sup

n→∞

∣∣∣∣ρ(xn − u) − ρ(xn) − ρ(u)
∣∣∣∣ = 0.

In other words, we proved that `p(.) satisfies the strong τ-Opial property.

The normal structure property played a major role early on in the study of the fixed point problem for
nonexpansive mappings [8]. Before we give the definition of the modular normal structure, we will need
the following notations. Let (Xρ, ρ) be a modular vector space and C a nonempty ρ-bounded subset of Xρ.
Set

(1) rρ(x,C) = sup{ρ(x − y) : y ∈ C}, for x ∈ Xρ,
(2) Rρ(C) = inf{rρ(x,C) : x ∈ C},
(3) Cρ(C) = {x ∈ C : rρ(x,C) = Rρ(C)}.

The number Rρ(C) is called the ρ-Chebyshev radius of C (in X) and Cρ(C) is called the ρ-Chebyshev center
of C.
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Definition 2.8. A modular vector space Xρ is said to have

1. ρ-normal structure property if for any nonempty ρ-bounded ρ-closed convex subset C of Xρ not reduced to one
point, we have Rρ(C) < diamρ(C);

2. ρ-uniformly normal structure if there exists a constant c ∈ (0, 1) such that for any nonempty ρ-bounded ρ-closed
convex subset C of Xρ not reduced to one point, we have Rρ(C) ≤ c diamρ(C).

3. The normal structure coefficient Ñρ(Xρ) of Xρ is the number defined by

Ñρ(Xρ) = sup
Rρ(C)

diamρ(C)
,

where the supremum is taken over any ρ-bounded ρ-closed convex not reduced to one point subset C ⊂ Xρ.

Clearly ρ-uniformly normal structure implies the ρ-normal structure. Notice that the modular vector space
Xρ has a ρ-uniform normal structure if and only if Ñρ(Xρ) < 1. Historically, the main example of a Banach
space which enjoys the uniform normal structure property is the class of uniformly convex spaces. Let us
discuss this connection in the context of modular vector spaces. First, recall that since the beginning of the
theory of modular vector spaces, the concept of modular uniform convexity was defined and investigated
[9, 11–14, 18].

Definition 2.9. [7, 13] Let (Xρ, ρ) be a modular vector space. Let r > 0 and ε > 0. Define

D(r, ε) =
{
(x, y); x, y ∈ Xρ, ρ(x) ≤ r, ρ(y) ≤ r, ρ(x − y) ≥ εr

}
.

If D(r, ε) , ∅, let

δρ(r, ε) = inf
{
1 −

1
r
ρ
(x + y

2

)
; (x, y) ∈ D(r, ε)

}
.

If D(r, ε) = ∅, we set δρ(r, ε) = 1. We say that ρ satisfies the uniform convexity (UC) if for every r > 0 and ε > 0, we
have δρ(r, ε) > 0.

Note, that for every r > 0, we have D(r, ε) , ∅, for ε > 0 small enough. The following result is the
modular analogue to the classical link between uniform convexity and uniform normal structure property.

Lemma 2.10. Let (Xρ, ρ) be a modular vector space. Assume

lim sup
ε→1−

inf
r>0
δρ(r, ε) > 0.

Then Xρ has the ρ-uniform normal structure property and

Ñρ(Xρ) ≤ 1 − lim sup
ε→1−

inf
r>0
δρ(r, ε).

Proof. Set η = lim sup
ε→1−

inf
r>0
δρ(r, ε). Let C be a ρ-bounded ρ-closed convex not reduced to one point subset of

Xρ. Hence diamρ(C) > 0. Fix ε ∈ (0, 1). There exists x, y ∈ C such that ρ(x − y) > diamρ(C)ε. For any z ∈ C,
we have ρ(x − z) ≤ diamρ(C) and ρ(y − z) ≤ diamρ(C). By definition of δρ(diamρ(C), ε), we get

ρ
(x + y

2
− z

)
≤ diamρ(C) (1 − δρ(diamρ(C), ε)).

Hence
Rρ(C) ≤ rρ

(x + y
2

,C
)
≤ diamρ(C) (1 − δρ(diamρ(C), ε)),
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which implies
Rρ(C)

diamρ(C)
≤ 1 − inf

r>0
δρ(r, ε).

Since the right hand side is independent of the subset C, we conclude that Ñρ(Xρ) ≤ 1− inf
r>0
δρ(r, ε). If we let

ε→ 1−, we get Ñρ(Xρ) ≤ 1 − η. Since η > 0, we conclude that Ñρ(Xρ) < 1, i.e., Xρ has the ρ-uniform normal
structure property.

In the next example, we discuss the case of `p(·) spaces (see Example 2.7) which satisfy the assumptions
of Lemma 2.10.

Example 2.11. Consider the function p :N→ [2,∞) and the vector space

`p(.) =
{
(xn) ∈ RN;

∞∑
n=0

|λ xn|
p(n) < ∞ for some λ > 0

}
.

The modular function ρ is defined by ρ(x) = ρ((xn)) =
∞∑

n=0
|xn|

p(n). Assume that p+ = sup
n∈N

p(n) < ∞. The following

inequality was first used by Clarkson [2]∣∣∣∣∣a + b
2

∣∣∣∣∣p +

∣∣∣∣∣a − b
2

∣∣∣∣∣p ≤ 1
2

(
|a|p + |b|p

)
,

for any a, b ∈ R, provided p ≥ 2. From this inequality, we easily deduce the following

ρ
(x + y

2

)
+

1
2p+

ρ(x − y) ≤
ρ(x) + ρ(y)

2
,

for any x, y ∈ `p(.). This inequality will imply

δρ(r, ε) ≥
ε

2p+
,

for any r > 0 and ε > 0. Obviously, we have lim sup
ε→1−

inf
r>0
δρ(r, ε) ≥ 1/2p+ > 0.

3. Main Result

Throughout this section, Xρ stands for a complete modular vector space and ρ is convex. We will assume
that ρ satisfies the Fatou property. Let τ be a topology on Xρ. The following lemma is useful for the proof
of the main result of this work.

Lemma 3.1. Assume Xρ satisfies the strong τ-Opial property. Let C be ρ-bounded and τ-sequentially compact
nonempty subset of Xρ. Let {xn} and {yn} be two sequences in C. Then there exists y ∈

⋂
n≥1

clτ(conv{yi}i≥n) ∩ C such

that
lim sup

n→∞
ρ(y − xn) ≤ lim sup

i→∞
lim sup

n→∞
ρ(yi − xn),

where clτ(conv(A)) is the smallest convex τ-closed subset of Xρ which contains A.

Proof. Since C is τ-sequentially compact and ρ-bounded subset, there is a subsequence {yφ(n)} of {yn} such
that {yφ(n)} τ-converges to y ∈ C. Moreover, there exists a τ-convergent subsequence {xψ(n)} of {xn} such that
lim
n→∞

ρ(xψ(n) − y) = lim sup
n→∞

ρ(xn − y). Set x ∈ C be the τ-limit of {xψ(n)}. Fix n ≥ 1. Then for any m ≥ n, we
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have yφ(m) ∈ clτ(conv{yi}i≥n) ∩ C which is a τ-closed subset. Hence y ∈ clτ(conv{yi}i≥n) ∩ C, for any n ≥ 1. By
using the strong τ-Opial property, we get

lim sup
n→∞

ρ(yi − xn) ≥ lim inf
n→∞

ρ(yi − xψ(n))

= lim inf
n→∞

ρ(xψ(n) − x) + ρ(x − yi).

Hence lim sup
i→∞

lim sup
n→∞

ρ(yi − xn) ≥ lim inf
n→∞

ρ(xψ(n) − x) + lim sup
i→∞

ρ(x − yi). On the other hand,we have

lim sup
i→∞

ρ(yi − x) ≥ lim inf
i→∞

ρ(yφ(i) − x)

= lim inf
i→∞

ρ(yφ(i) − y) + ρ(y − x),

which implies

lim sup
i→∞

lim sup
n→∞

ρ(yi − xn) ≥ lim inf
n→∞

ρ(xψ(n) − x) + lim sup
i→∞

ρ(x − yi)

= lim inf
n→∞

ρ(xψ(n) − x) + ρ(y − x),

= lim inf
n→∞

ρ(xψ(n) − y)

= lim
n→∞

ρ(xψ(n) − y)

= lim sup
n→∞

ρ(xn − y).

Lemma 3.2. Assume Xρ satisfies the strong τ-Opial property. Let C be ρ-bounded and τ-sequentially compact
convex nonempty subset of Xρ. Let c be a constant such that c > Ñρ(Xρ). Then for any sequence {xn} in C, there
exists x ∈ C such that

(i) lim sup
n→∞

ρ(x − xn) ≤ c diamρ({xn}),

(ii) ρ(y − x) ≤ lim sup
n→∞

ρ(y − xn), for all y ∈ C.

Proof. Let {xn} be a sequence in C. Without loss of generality, we assume diamρ({xn}) > 0. Set An =
clτ(conv{xi}i≥n), for any n ≥ 1. Our assumptions on C imply that An ⊂ C, for any n ≥ 1. Since C is

τ-sequentially compact, A =
∞⋂

n=1
An is a nonempty subset of C. For any x ∈ A and y ∈ C, we have

ρ(y − x) ≤ rρ(y,A) ≤ rρ(y,An) ≤ sup
i≥n

ρ(y − xi),

because the ρ-balls are τ-closed. Hence

ρ(y − x) ≤ lim sup
n→∞

ρ(y − xi).

Hence (ii) holds for any x ∈ A. Next, we prove the existence of an x ∈ A for which (i) holds. Let ε > 0 such
that

Ñρ(Xρ)diamρ({xn}) + ε ≤ c diamρ({xn}).

By definition of the Chebyshev radius, for any n ≥ 1, there exists yn ∈ An such that

rρ(yn,An) ≤ Rρ(An) + ε
≤ Ñρ(Xρ)diamρ(An) + ε
≤ Ñρ(Xρ)diamρ({xi}) + ε
≤ c diamρ({xi}),
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which implies sup
i≥m

ρ(yn − xi) ≤ c diamρ({xi}), for any m ≥ n. Hence

lim sup
i→∞

ρ(yn − xi) ≤ c diamρ({xi}).

Using Lemma 3.1, there exists x ∈ A such that

lim sup
n→∞

ρ(x − xn) ≤ lim sup
n→∞

lim sup
i→∞

ρ(yn − xi),

which implies lim sup
n→∞

ρ(x − xn) ≤ c diamρ({xi}).

Next, we give the main result of this work. This result was initially discovered in [4] in modular function
spaces. For the metric version, the reader may refer to [3, 10].

Theorem 3.3. Assume Xρ satisfies the strong τ-Opial property and ρ satisfies the ∆2-type condition. Assume
Ñρ(Xρ) < 1. Let C be ρ-bounded, ρ-closed and τ-sequentially compact convex nonempty subset of Xρ. Let T : C→ C
be a uniformly Lipschitzian mapping with K < (Ñρ(Xρ))−1/2, then T has a fixed point.

Proof. Without loss of generality, we may assume K > 1 since (Ñρ(Xρ))−1/2 > 1. Pick c ∈ (1, Ñρ(Xρ)), i.e.,
1 < c < Ñρ(Xρ), such that 1 < K < c−1/2. Fix x0 ∈ C. Using Lemma 3.2, we construct inductively a sequence
{xn} such that

(1) lim sup
n→∞

ρ(xi+1 − Tn(xi)) ≤ c diamρ({Tn(xi)}),

(2) ρ(xi+1 − y) ≤ lim sup
n→∞

ρ(y − Tn(xi))), for any y ∈ C.

for any i ∈N. Set Di = lim sup
n→∞

ρ(xi+1 − Tn(xi)), for any i ∈N. For n ≥ m, we have

ρ(Tn(xi) − Tm(xi)) ≤ K ρ(xi − Tn−m(xi))
≤ K lim sup

s→∞
ρ(Ts(xi−1) − Tn−m(xi))

≤ K2 lim sup
s→∞

ρ(Ts(xi−1) − (xi))

≤ K2 Di−1,

which implies diamρ({Tn(xi)}) ≤ K2 Di−1, for any i ≥ 1. Hence

Di = lim sup
n→∞

ρ(xi+1 − Tn(xi)) ≤ c δρ({Tn(xi)}) ≤ c K2 Di−1,

for any i ≥ 1, which implies Di = (c K2)i D0, for any i ∈N. Set h = c K2 < 1. On the other hand, we have

ρ(xi+1 − xi) = ρ

(
2

xi+1 − Tn(xi) + Tn(xi) − xi

2

)
≤ ω(2)

(
ρ(xi+1 − Tn(xi)) + ρ(xi − Tn(xi))

)
≤ ω(2)

(
ρ(xi+1 − Tn(xi)) + lim sup

m→∞
ρ(Tm(xi−1) − Tn(xi))

)
≤ ω(2)

(
ρ(xi+1 − Tn(xi)) + K lim sup

m→∞
ρ(Tm−n(xi−1) − xi)

)
≤ ω(2)

(
ρ(xi+1 − Tn(xi)) + K Di−1

)
,

for any i ≥ 1. If we let n→∞, we get

ρ(xi+1 − xi) ≤ ω(2) (Di + K Di−1) ≤ ω(2)hi−1 K(c K + 1) D0 = A hi,
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for any i ∈ N, where A = ω(2) K(c K + 1) D0/h. Using the properties of the growth function ω (see Lemma
2.6), we get

ω−1
( 1

A

)
ω−1

(1
h

)i

≤ ω−1

(
1

ρ(xi+1 − xi)

)
which implies

‖xi+1 − xi‖ρ ≤
1

ω−1(A−1)

(
1

ω−1(h−1)

)i

,

for any i ∈ N. Since h < 1, we have 1 = ω−1(1) < ω−1(h−1). Hence the series
∑
‖xi+1 − xi‖ρ is convergent

which implies that {xn} is Cauchy in the Banach space (Xρ, ‖.‖ρ). Hence {xn} converges to some x ∈ Xρ. Since
ρ satisfies the ∆2-type condition, then {xn} ρ-converges to x as well. Hence x ∈ C. Let us finish the proof of
Theorem 3.3 by proving that x is in fact a fixed point of T. Indeed, we have

ρ(x − T(x)) ≤ ω(3)
(
ρ(x − xi+1) + ρ(xi+1 − Tn(xi)) + ρ(Tn(xi) − T(x))

)
≤ ω(3)

(
ρ(x − xi+1) + ρ(xi+1 − Tn(xi)) + K ρ(x − Tn−1(xi))

)
Since

ρ(x − Tn−1(xi))) ≤ ω(2)
(
ρ(xi+1 − Tn−1(xi)) + ρ(xi+1 − x))

)
,

if we let n→∞, we get

lim sup
n→∞

ρ(x − Tn−1(xi))) ≤ ω(2)
(

lim sup
n→∞

ρ(xi+1 − Tn−1(xi)) + ρ(xi+1 − x))
)
,

which implies
ρ(x − Tx) ≤ ω(3)

(
ρ(x − xi+1) + Di + K ω(2) (Di + ρ(xi+1 − xi))

)
,

for any i ∈N. Finally, if i→∞, we obtain ρ(x − T(x)) = 0, i.e. T(x) = x.
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