Discontinuity of Control Function in the (F, φ, θ)-Contraction in Metric Spaces

Mehdi Asadi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Abstract

In this paper, we improve very recent results of Kumrod et al. [2] with discontinuity of control function in the (F, φ, θ)-contraction in metric spaces. Illustrative examples and an application in nonlinear integral equation are presented.

1. Introduction and Preliminaries on φ-fixed points and (F, φ)-contraction mappings

In 2014, Jleli et al. [1] introduced the concepts of φ-fixed points, φ-Picard mappings and weakly φ-Picard mappings. After that Kumrod et al. [2] extended the concepts of (F, φ, θ)-contraction mapping and (F, φ, θ) weak contraction mapping in metric spaces and established φ-fixed point results for such mappings. Their results were combined with the continuous control function F.

Here we review basic definitions and theorems.
Let X be a nonempty set, $\varphi: X \rightarrow[0, \infty)$ be a given function and $T: X \rightarrow X$ be a mapping. We denote the set of all fixed points of T by

$$
F_{T}:=\{x \in X: T x=x\}
$$

and denote the set of all zeros of the function φ by

$$
Z_{\varphi}:=\{x \in X: \varphi(x)=0\} .
$$

Definition 1.1. Let X be a nonempty set and $\varphi: X \rightarrow[0, \infty)$ be a given function. An element $z \in X$ is called φ-fixed point of the mapping $T: X \rightarrow X$ if and only if z is a fixed point of T and $\varphi(z)=0$.

Definition 1.2. Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function. A mapping $T: X \rightarrow X$ is said to be a φ-Picard mapping if and only if

- $F_{T} \cap Z_{\varphi}=\{z\}$, where $z \in X$,
- $T^{n} x \rightarrow z$ as $n \rightarrow \infty$, for each $x \in X$.

Definition 1.3. Let (X, d) be a metric space and $\varphi: X \rightarrow[0, \infty)$ be a given function. We say that the mapping $T: X \rightarrow X$ is a weakly φ-Picard mapping if and only if

[^0]- T has at least one φ-fixed point,
- the sequence $\left\{T^{n} x\right\}$ converges for each $x \in X$, and the limit is a φ-fixed point of T.

Also, Jleli et al. introduced the new concept of control function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ satisfying the following conditions:
(F1) $\max \{a, b\} \leq F(a, b, c)$ for all $a, b, c \in[0, \infty)$;
(F2) $F(0,0,0)=0$;
(F3) F is continuous.
The class of all functions satisfying the conditions (F1)-(F3) is denoted by \mathcal{F}.
Example 1.4. Let $F_{1}, F_{2}, F_{3}:[0, \infty) \rightarrow[0, \infty)$ be defined by

1. $F_{1}(a, b, c)=a+b+c$;
2. $F_{2}(a, b, c)=\max \{a, b\}+c$;
3. $F_{3}(a, b, c)=a+a^{2}+b+c$;
for all $a, b, c \in[0, \infty)$. Then $F_{1}, F_{2}, F_{3} \in \mathcal{F}$.
By using the control function in \mathcal{F}, Jleli et al. defined the new contractive conditions and proved the φ-fixed point results as follows:

Definition 1.5. Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T: X \rightarrow X$ is an (F, φ)-contraction with respect to the metric d if and only if there is $k \in(0,1)$ such that

$$
\begin{equation*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq k F(d(x, y), \varphi(x), \varphi(y)) \tag{1}
\end{equation*}
$$

for all $x, y \in X$.
Definition 1.6. Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T: X \rightarrow X$ is an (F, φ)-weak contraction with respect to the metric d if and only if there is $k \in(0,1)$ and $L \geq 0$ such that

$$
\begin{equation*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq k F(d(x, y), \varphi(x), \varphi(y))+L[F(d(y, T x), \varphi(y), \varphi(T x))-F(0, \varphi(y), \varphi(T x)))] \tag{2}
\end{equation*}
$$

for all $x, y \in X$.
In this paper, we introduce the concepts of (F, φ, θ)-contraction mapping and (F, φ, θ)-weak contraction mapping in metric spaces and establish φ-fixed point results for such mappings with discontinuous control function F. Presented theorems extend the φ-fixed point results of Kumrod et al. [1, 2]. Here are examples of expressing highlight the validity of our results. Numerical experiments are given for approximating the φ-fixed point with examples in [2]. Finally, as an application, the fixed point results are verified from our main results and we prove the existence and uniqueness of a solution of a nonlinear integral equation.

2. Main results

Let J be the set of all functions $\theta:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
(j1) θ is a nondecreasing function, i.e., $t_{1}<t_{2}$ implies $\theta\left(t_{1}\right) \leq \theta\left(t_{2}\right)$;
(j2) θ is continuous;
(j3) $\sum_{n=0}^{\infty} \theta^{n}(t)<\infty$ for all $t>0$.

Note that (j4) implies (j3).
We introduce the new concept of control function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ satisfying the following conditions without continuity:
$\left(F_{M} 1\right) \max \{a, b\} \leq F(a, b, c)$ for all $a, b, c \in[0, \infty)$;
$\left(F_{M} 2\right) F(0,0,0)=0 ;$
$\left(F_{M} 3\right) \lim \sup _{n \rightarrow \infty} F\left(x_{n}, y_{n}, 0\right) \leq F(x, y, 0)$ when $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.
The class of all functions satisfying the conditions $(F 1)-(F 3)$ is denoted by $\mathcal{F}_{\mathcal{M}}$.
Remark 2.1. Let F be defined by $F(a, b, c)=a+b+[c]$ or $F(a, b, c)=\max \{a, b\}+[c]$. Then F satisfies $\left(F_{M} 3\right)$ but F is not continuous.

Lemma 2.2. ([2, Lemma 2.1]) If $\theta \in J$, then $\theta(t)<t$ for all $t>0$.
Remark 2.3. ([2, Remark 2.2]) If $\theta \in J$, then $\theta(0)=0$.
Here we define the new contractive condition in metric spaces as follows:
Definition 2.4. Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}_{\mathcal{M}}$. The mapping $T: X \rightarrow X$ is said to be an (F, φ, θ)-contraction with respect to the metric d if and only if there is $k \in(0,1)$ such that

$$
\begin{equation*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq \theta(F(d(x, y), \varphi(x), \varphi(y))) \tag{3}
\end{equation*}
$$

for all $x, y \in X$.
Now we give the existence of φ-fixed point results for (F, φ, θ)-contraction mappings with control function F which is not continuous.

Theorem 2.5. Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}_{\mathcal{M}}$. Assume that the following conditions are satisfied:
(H1) φ is lower semi-continuous,
(H2) $T: X \rightarrow X$ is an (F, φ, θ)-contraction with respect to the metric d.
Then the following assertions hold:
(i) $F_{T} \subseteq Z_{\varphi}$;
(ii) T is a φ-Picard mapping.

Proof. The frame of the proof is the same in Theorem 2.5 [2]. So for arbitrary point $x \in X,\left\{T^{n} x\right\}$ is Cauchy sequence, $\lim _{n \rightarrow \infty} d\left(T^{n} x, z\right)=\lim _{n \rightarrow \infty} \varphi\left(T^{n} x\right)=0$ and $\varphi(z)=0$ for some $z \in X$.

$$
\begin{aligned}
d\left(T^{n+1} x, T z\right) & \leq \max \left\{d\left(T^{n+1} x, T z\right), \varphi\left(T^{n+1} x\right)\right\} \\
& \leq F\left(d\left(T^{n+1} x, T z\right), \varphi\left(T^{n+1} x\right), \varphi(T z)\right) \\
& \leq \theta\left(F\left(d\left(T^{n} x, z\right), \varphi\left(T^{n} x\right), \varphi(z)\right)\right) \\
& \left.<F\left(d\left(T^{n} x, z\right), \varphi\left(T^{n} x\right), \varphi(z)\right)\right) \\
& =F\left(d\left(T^{n} x, z\right), \varphi\left(T^{n} x\right), 0\right)
\end{aligned}
$$

Thus

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} d\left(T^{n+1} x, T z\right) \leq \limsup _{n \rightarrow \infty} F\left(d\left(T^{n} x, z\right), \varphi\left(T^{n} x\right), 0\right) \leq F(0,0,0)=0 \\
\lim _{n \rightarrow \infty} d\left(T^{n} x, T z\right)=\lim _{n \rightarrow \infty} d\left(T^{n} x, z\right)=0
\end{gathered}
$$

So $z=T z$ and it is a unique fixed point of T.

Next, we give some examples to illustrate Theorem 2.5.
Example 2.6. Let $X=[0,1]$ and $d: X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space.

1. Fix $n \in \mathbb{N}$ and assume that $T: X \rightarrow X$ is defined by $T x=\frac{k x^{n}}{n}$, where $k \in[0,1)$;
2. the function $\varphi: X \rightarrow[0, \infty)$ is defined by $\varphi(x)=x$ for all $x \in X$;
3. the function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ defined by $F(a, b, c)=a+b+[c]$, where $[c]$ is the integer part of c
4. the function $\theta:[0, \infty) \rightarrow[0, \infty)$ is defined by $\theta(t)=k t$ for $t \in[0, \infty)$, where $k[0,1)$.

Note that $F \in \mathcal{F}_{\mathcal{M}}, \theta \in J$ and further F is discontinuous.
T is an (F, φ, θ)-contraction mapping, because

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =\left|\frac{k x^{n}}{n}-\frac{k y^{n}}{n}\right|+\frac{k^{n} x}{n}+\left[\frac{k y^{n}}{n}\right] \\
& =\left|\frac{k x^{n}}{n}-\frac{k y^{n}}{n}\right|+\frac{k^{n} x}{n}+0 \\
& \leq k\left(\frac{|x-y|\left|x^{n-1}+\cdots+y^{n-1}\right|}{n}+k \frac{x^{n}}{n}\right) \\
& \leq k(|x-y|+x+0) \\
& =k(|x-y|+x+[y]) \\
& =k(d(x, y)+x+[y]) \\
& =k(F(d(x, y), \varphi(x), \varphi(y))) \\
& =\theta(F(d(x, y), \varphi(x), \varphi(y))) .
\end{aligned}
$$

This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ-fixed point in X.
Example 2.7. Let $X=[0,1]$ and $d: X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space.

1. Fix $n \in \mathbb{N}$ and assume that $T: X \rightarrow X$ is defined by $T x=\frac{k x^{n}}{n}$, where $k \in[0,1)$;
2. the function $\varphi: X \rightarrow[0, \infty)$ is defined by $\varphi(x)=x$ for all $x \in X$;
3. the function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ defined by $F(a, b, c)=\max \{a, b\}+[c]$, where $[c]$ is the integer part of c
4. the function $\theta:[0, \infty) \rightarrow[0, \infty)$ is defined by $\theta(t)=k t$ for $t \in[0, \infty)$, where $k[0,1)$.

Note that $F \in \mathcal{F}_{\mathcal{M}}, \theta \in J$ and further F is discontinuous.
T is an (F, φ, θ)-contraction mapping, because

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =\max \left\{\left|\frac{k x^{n}}{n}-\frac{k y^{n}}{n}\right|, \frac{k x^{n}}{n}\right\}+\left[\frac{k y^{2}}{2}\right] \\
& =\max \left\{\left|\frac{k x^{n}}{n}-\frac{k y^{n}}{n}\right|, \frac{k x^{n}}{n}\right\}+0 \\
& \leq k(\max \{|x-y|, x\}+[y]) \\
& =k(\max \{d(x, y), x\}+[y]) \\
& =k(F(d(x, y), \varphi(x), \varphi(y))) \\
& =\theta(F(d(x, y), \varphi(x), \varphi(y))) .
\end{aligned}
$$

This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ-fixed point in X.
Example 2.8. Let $X=[0,1]$ and $d: X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space.

1. Assume that $T: X \rightarrow X$ is defined by $T x=k \sin x$, where $k \in[0,1)$;
2. the function $\varphi: X \rightarrow[0, \infty)$ is defined by $\varphi(x)=x$ for all $x \in X$;
3. the function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ defined by $F(a, b, c)=a+b+[c]$, where $[c]$ is the integer part of c
4. the function $\theta:[0, \infty) \rightarrow[0, \infty)$ is defined by $\theta(t)=k t$ for $t \in[0, \infty)$, where $k[0,1)$.

Note that $F \in \mathcal{F}_{\mathcal{M}}, \theta \in J$ and further F is discontinuous.
T is an (F, φ, θ)-contraction mapping, because

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =|k \sin x-k \sin y|+k \sin x+[k \sin y] \\
& \leq k|x-y|+k x+0 \\
& =k(|x-y|+x+[y]) \\
& =k(d(x, y)+x+[y]) \\
& =k(F(d(x, y), \varphi(x), \varphi(y))) \\
& =\theta(F(d(x, y), \varphi(x), \varphi(y))) .
\end{aligned}
$$

This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ-fixed point in X.
Example 2.9. Let $X=[0,3]$ and $d: X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space.

1. Assume that $T: X \rightarrow X$ is defined by $T x=0$ if $0 \leq x<2.5$ and $T x=k \ln \frac{x}{2}$ if $2.5 \leq x \leq 3$ where $k \in[0,1)$;
2. The function $\varphi: X \rightarrow[0, \infty)$ is defined by $\varphi(x)=x$ for all $x \in X$;
3. the function $F:[0, \infty)^{3} \rightarrow[0, \infty)$ defined by $F(a, b, c)=a+b+[c]$ where $[c]$ is the integer part of c;
4. the function $\theta:[0, \infty) \rightarrow[0, \infty)$ is defined by $\theta(t)=0$ if $0 \leq t \leq 1$ and $\theta(t)=k \ln (t)$ if $t \geq 1$, where $k[0,1)$.

Note that F is $\mathcal{F}_{\mathcal{M}}$ and further F is discontinuous.
When $2.5 \leq x, y \leq 3$, without loss of generality, we may suppose that $x \geq y$. Then we get

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =\left|k \ln \frac{x}{2}-k \ln \frac{y}{2}\right|+k \ln \frac{x}{2}+\left[k \ln \frac{y}{2}\right] \\
& \leq\left|k \ln \frac{x}{2}-k \ln \frac{y}{2}\right|+k \ln \frac{x}{2}+k \ln \frac{y}{2} \\
& \leq 2 k \ln \left(\frac{3}{2}\right) \\
& =k \ln 2.25 \\
& \leq k \ln (d(x, y)+x+[y]) \\
& =k \ln (F(d(x, y), \varphi(x), \varphi(y))) \\
& =\theta(F(d(x, y), \varphi(x), \varphi(y))) .
\end{aligned}
$$

If $x \in[2.5,3]$ and $y \in[0,2.25]$, then

$$
\begin{aligned}
F(d(T x, T y), \varphi(T x), \varphi(T y)) & =\left|k \ln \frac{x}{2}-0\right|+k \ln \frac{x}{2}+[0] \\
& \leq 2 k \ln \left(\frac{3}{2}\right) \\
& =k \ln 2.25 \\
& \leq k \ln (d(x, y)+x+[y]) \\
& =k \ln (F(d(x, y), \varphi(x), \varphi(y))) \\
& =\theta(F(d(x, y), \varphi(x), \varphi(y)))
\end{aligned}
$$

The other cases are clear. This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ-fixed point in X.
Now by $\mathcal{F} \subseteq \mathcal{F}_{\mathcal{M}}$, we have:

Corollary 2.10. ([2, Theorem 1.11]) Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. Suppose that the following conditions hold:
(H1) φ is lower semi-continuous,
(H2) $T: X \rightarrow X$ is an (F, φ)-contraction with respect to the metric d.
Then the following assertions hold:
(i) $F_{T} \subseteq Z_{\varphi}$;
(ii) T is a φ-Picard mapping;
(iii) if $x \in X$ and $z \in F_{T}$, then

$$
d\left(T^{n} x, z\right) \leq \frac{k^{n}}{1-k} F(d(t x, x), \varphi(T x), \varphi(x))
$$

for all $n \in \mathbb{N}$.
Corollary 2.11. ([2, Theorem 1.12]) Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. Suppose that the following conditions hold:
(H1) φ is lower semi-continuous,
(H2) $T: X \rightarrow X$ is an (F, φ)-weak contraction with respect to the metric d.
Then the following assertions hold:
(i) $F_{T} \subseteq Z_{\varphi}$;
(ii) T is a weakly φ-Picard mapping;
(iii) if $x \in X$ and $T^{n} x \rightarrow z \in F_{T}$ as $n \rightarrow \infty$ then

$$
d\left(T^{n} x, z\right) \leq \frac{k^{n}}{1-k} F(d(t x, x), \varphi(T x), \varphi(x))
$$

for all $n \in \mathbb{N}$.
Next we generalize the contractive condition (2) and prove the another main result in this work.
Definition 2.12. Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T: X \rightarrow X$ is an (F, φ, θ)-weak contraction with respect to the metric d if and only if

$$
\begin{equation*}
F(d(T x, T y), \varphi(T x), \varphi(T y)) \leq \theta(F(d(x, y), \varphi(y), \varphi(T x)))+L[F(N(x, y), \varphi(y), \varphi(T x))-F(0, \varphi(y), \varphi(T x)))] \tag{4}
\end{equation*}
$$

for all $x, y \in X$, where $N(x, y)=\min \{d(x, T x), d(y, T y), d(y, T x)\}$ and $L \geq 0$.
Theorem 2.13. Let (X, d) be a metric space, $\varphi: X \rightarrow[0, \infty)$ be a given function, $F \in \mathcal{F}_{\mathcal{M}}$ and $\theta \in J$. Assume that the following conditions are satisfied:
(H1) φ is lower semi-continuous,
(H2) $T: X \rightarrow X$ is an (F, φ, θ)-weak contraction with respect to the metric d.
Then the following assertions hold:
(i) $F_{T} \subseteq Z_{\varphi}$;
(ii) T is a weakly φ-Picard mapping.

Proof. The framework of the proof is the same in proof of [2, Theorem 2.9].
Remark 2.14. If we take $\theta(t):=k t$ for all $t \in[0, \infty)$, where $k \in[0,1)$, then by Theorems 2.5 and 2.13 we obtain previous results in [1, 2].

3. An application

Consider the following nonlinear integral equation:

$$
\begin{equation*}
x(t)=\phi(t)+\int_{a}^{t} K(t, s, x(s)) d s \tag{5}
\end{equation*}
$$

where $a \in \mathbb{R}, x \in C([a, b], \mathbb{R}), \phi[a, b] \rightarrow \mathbb{R}$ and $K:[a, b] \times[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ are two given functions.
Theorem 3.1. Consider the nonlinear integral equation (5). Suppose that the following condition holds:
(i) K is continuous;
(ii) there is $\theta \in J$ such that

$$
|K(t, s, x(s))-K(t, s, y(s))| \leq \frac{\theta(|x(s)-y(s)|)}{b-a}
$$

for all $x, y \in C([a, b], \mathbb{R})$ and for $t, s \in[a, b]$.
Then the nonlinear integral equation (5) has a unique solution.
Proof. Let $X:=C([a, b], \mathbb{R}), T: X \rightarrow X$ defined by

$$
(T x)(t)=\phi(t)+\int_{0}^{t} K(t, s, x(s)) d s, \quad \forall x \in X
$$

The metric d given by $d(x, y)=\max _{t \in[a, b]}|x(s)-y(s)|$ for all $x, y \in X$. Thus X is a complete metric space. Now define control function F by $F(a, b, c)=\max \{a, b\}+[c]$ for each $a, b, c \in[0, \infty)$. Also define $\varphi(x)=0$ for all $x \in X$.

Let $x, y \in X$ and $t \in[a, b]$. therefore

$$
\begin{aligned}
|T x(t)-T y(t)| & =\left|\int_{a}^{t} K(t, s, x(s)) d s-\int_{a}^{t} K(t, s, y(s)) d s\right| \\
& \leq \int_{a}^{t}|K(t, s, x(s))-K(t, s, y(s))| d s \\
& \leq \int_{a}^{t} \frac{\theta(|x(s)-y(s)|)}{b-a} d s \\
& \leq \frac{1}{b-a} \int_{a}^{t} \theta(d(x, y)) d s \\
& \leq \theta(d(x, y))
\end{aligned}
$$

So

$$
\begin{aligned}
d(T x, T y) & \leq \theta(d(x, y)) \\
\max \{d(T x, T y), \varphi(T x)\} & \leq \theta(\max \{d(x, y), \varphi(x)\}) \\
\max \{d(T x, T y), \varphi(T x)\}+[\varphi(T y)] & \leq \theta(\max \{d(x, y), \varphi(x)\}+[\varphi(y)])
\end{aligned}
$$

for all $x, y \in X$. Hence it satisfies the contraction (3).
Thus all the conditions of Theorem 2.5 are satisfied and hence T has a unique φ-fixed point in X. This implies that there exists a unique solution of the nonlinear integral equation (5).

References

[1] M. Jleli, B. Samet, C. Vetro, Fixed point theory in partial metric spaces via φ-fixed point's concept in metric spaces, Journal of Inequalities and Applications (2014) 2014:426.
[2] P. Kumrod, W. Sintunavarat, A new contractive condition approach to φ-fixed point results in metric spaces and its applications, Journal of Computational and Applied Mathematics 311 (2017) 194-204.

[^0]: 2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10
 Keywords. Weakly φ-Picard mappings; (F, φ)-contraction mappings; φ-fixed points.
 Received: 11 May 2017; Accepted: 31 July 2017
 Communicated by Erdal Karapınar
 Research supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran, Grant No. 94/S/70/98499.
 Email address: masadi.azu@gmail.com (Mehdi Asadi)

