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Discontinuity of Control Function in the (F, ϕ, θ)-Contraction
in Metric Spaces

Mehdi Asadia
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Abstract. In this paper, we improve very recent results of Kumrod et al. [2] with discontinuity of control
function in the (F, ϕ, θ)-contraction in metric spaces. Illustrative examples and an application in nonlinear
integral equation are presented.

1. Introduction and Preliminaries onϕ-fixed points and (F, ϕ)-contraction mappings

In 2014, Jleli et al. [1] introduced the concepts ofϕ-fixed points, ϕ-Picard mappings and weaklyϕ-Picard
mappings. After that Kumrod et al. [2] extended the concepts of (F, ϕ, θ)-contraction mapping and (F, ϕ, θ)-
weak contraction mapping in metric spaces and established ϕ-fixed point results for such mappings. Their
results were combined with the continuous control function F.

Here we review basic definitions and theorems.
Let X be a nonempty set, ϕ : X → [0,∞) be a given function and T : X → X be a mapping. We denote

the set of all fixed points of T by
FT := {x ∈ X : Tx = x}

and denote the set of all zeros of the function ϕ by

Zϕ := {x ∈ X : ϕ(x) = 0}.

Definition 1.1. Let X be a nonempty set and ϕ : X→ [0,∞) be a given function. An element z ∈ X is called ϕ-fixed
point of the mapping T : X→ X if and only if z is a fixed point of T and ϕ(z) = 0.

Definition 1.2. Let (X, d) be a metric space and ϕ : X→ [0,∞) be a given function. A mapping T : X→ X is said
to be a ϕ-Picard mapping if and only if

• FT ∩ Zϕ = {z}, where z ∈ X,

• Tnx→ z as n→∞, for each x ∈ X.

Definition 1.3. Let (X, d) be a metric space and ϕ : X → [0,∞) be a given function. We say that the mapping
T : X→ X is a weakly ϕ-Picard mapping if and only if
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• T has at least one ϕ-fixed point,

• the sequence {Tnx} converges for each x ∈ X, and the limit is a ϕ-fixed point of T.

Also, Jleli et al. introduced the new concept of control function F : [0,∞)3
→ [0,∞) satisfying the following

conditions:

(F1) max{a, b} ≤ F(a, b, c) for all a, b, c ∈ [0,∞);

(F2) F(0, 0, 0) = 0;

(F3) F is continuous.

The class of all functions satisfying the conditions (F1)-(F3) is denoted by F .

Example 1.4. Let F1,F2,F3 : [0,∞)→ [0,∞) be defined by

1. F1(a, b, c) = a + b + c;
2. F2(a, b, c) = max{a, b} + c;
3. F3(a, b, c) = a + a2 + b + c;

for all a, b, c ∈ [0,∞). Then F1,F2,F3 ∈ F .

By using the control function inF , Jleli et al. defined the new contractive conditions and proved theϕ-fixed
point results as follows:

Definition 1.5. Let (X, d) be a metric space, ϕ : X→ [0,∞) be a given function and F ∈ F . We say that the mapping
T : X→ X is an (F, ϕ) -contraction with respect to the metric d if and only if there is k ∈ (0, 1) such that

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) ≤ kF(d(x, y), ϕ(x), ϕ(y)) (1)

for all x, y ∈ X.

Definition 1.6. Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function and F ∈ F . We say that the
mapping T : X → X is an (F, ϕ) -weak contraction with respect to the metric d if and only if there is k ∈ (0, 1) and
L ≥ 0 such that

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) ≤ kF(d(x, y), ϕ(x), ϕ(y)) + L[F(d(y,Tx), ϕ(y), ϕ(Tx)) − F(0, ϕ(y), ϕ(Tx)))] (2)

for all x, y ∈ X.

In this paper, we introduce the concepts of (F, ϕ, θ)-contraction mapping and (F, ϕ, θ)-weak contraction
mapping in metric spaces and establish ϕ-fixed point results for such mappings with discontinuous control
function F. Presented theorems extend the ϕ-fixed point results of Kumrod et al. [1, 2]. Here are examples
of expressing highlight the validity of our results. Numerical experiments are given for approximating the
ϕ-fixed point with examples in [2]. Finally, as an application, the fixed point results are verified from our
main results and we prove the existence and uniqueness of a solution of a nonlinear integral equation.

2. Main results

Let J be the set of all functions θ : [0,∞)→ [0,∞) satisfying the following conditions:

(j1) θ is a nondecreasing function, i.e., t1 < t2 implies θ(t1) ≤ θ(t2);

(j2) θ is continuous;

(j3)
∑
∞

n=0 θ
n(t) < ∞ for all t > 0.
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Note that (j4) implies (j3).
We introduce the new concept of control function F : [0,∞)3

→ [0,∞) satisfying the following conditions
without continuity:

(FM1) max{a, b} ≤ F(a, b, c) for all a, b, c ∈ [0,∞);

(FM2) F(0, 0, 0) = 0;

(FM3) lim supn→∞ F(xn, yn, 0) ≤ F(x, y, 0) when xn → x and yn → y as n→∞.

The class of all functions satisfying the conditions (F1) − (F3) is denoted by FM.

Remark 2.1. Let F be defined by F(a, b, c) = a + b + [c] or F(a, b, c) = max{a, b} + [c]. Then F satisfies (FM3) but F
is not continuous.

Lemma 2.2. ([2, Lemma 2.1]) If θ ∈ J, then θ(t) < t for all t > 0.

Remark 2.3. ([2, Remark 2.2]) If θ ∈ J, then θ(0) = 0.

Here we define the new contractive condition in metric spaces as follows:

Definition 2.4. Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function and F ∈ FM. The mapping
T : X→ X is said to be an (F, ϕ, θ)-contraction with respect to the metric d if and only if there is k ∈ (0, 1) such that

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) ≤ θ(F(d(x, y), ϕ(x), ϕ(y))) (3)

for all x, y ∈ X.

Now we give the existence of ϕ-fixed point results for (F, ϕ, θ)-contraction mappings with control function
F which is not continuous.

Theorem 2.5. Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function and F ∈ FM. Assume that the
following conditions are satisfied:

(H1) ϕ is lower semi-continuous,

(H2) T : X→ X is an (F, ϕ, θ)-contraction with respect to the metric d.

Then the following assertions hold:

(i) FT ⊆ Zϕ;

(ii) T is a ϕ-Picard mapping.

Proof. The frame of the proof is the same in Theorem 2.5 [2]. So for arbitrary point x ∈ X, {Tnx} is Cauchy
sequence, limn→∞ d(Tnx, z) = limn→∞ ϕ(Tnx) = 0 and ϕ(z) = 0 for some z ∈ X.

d(Tn+1x,Tz) ≤ max{d(Tn+1x,Tz), ϕ(Tn+1x)}
≤ F(d(Tn+1x,Tz), ϕ(Tn+1x), ϕ(Tz))
≤ θ(F(d(Tnx, z), ϕ(Tnx), ϕ(z)))
< F(d(Tnx, z), ϕ(Tnx), ϕ(z))).
= F(d(Tnx, z), ϕ(Tnx), 0).

Thus
lim sup

n→∞
d(Tn+1x,Tz) ≤ lim sup

n→∞
F(d(Tnx, z), ϕ(Tnx), 0) ≤ F(0, 0, 0) = 0.

lim
n→∞

d(Tnx,Tz) = lim
n→∞

d(Tnx, z) = 0,

So z = Tz and it is a unique fixed point of T.
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Next, we give some examples to illustrate Theorem 2.5.

Example 2.6. Let X = [0, 1] and d : X × X → R be defined by d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a
complete metric space.

1. Fix n ∈N and assume that T : X→ X is defined by Tx = kxn

n , where k ∈ [0, 1);
2. the function ϕ : X→ [0,∞) is defined by ϕ(x) = x for all x ∈ X;
3. the function F : [0,∞)3

→ [0,∞) defined by F(a, b, c) = a + b + [c], where [c] is the integer part of c
4. the function θ : [0,∞)→ [0,∞) is defined by θ(t) = kt for t ∈ [0,∞), where k [0,1).

Note that F ∈ FM, θ ∈ J and further F is discontinuous.
T is an (F, ϕ, θ)-contraction mapping, because

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) =

∣∣∣∣∣kxn

n
−

kyn

n

∣∣∣∣∣ + knx
n
+

[
kyn

n

]
=

∣∣∣∣∣kxn

n
−

kyn

n

∣∣∣∣∣ + knx
n
+ 0

≤ k
(
|x − y||xn−1 + · · · + yn−1

|

n
+ k

xn

n

)
≤ k(|x − y| + x + 0)
= k(|x − y| + x + [y])
= k(d(x, y) + x + [y])
= k(F(d(x, y), ϕ(x), ϕ(y)))
= θ(F(d(x, y), ϕ(x), ϕ(y))).

This shows that all conditions of Theorem 2.5 are satisfied and so T has a ϕ-fixed point in X.

Example 2.7. Let X = [0, 1] and d : X × X → R be defined by d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a
complete metric space.

1. Fix n ∈N and assume that T : X→ X is defined by Tx = kxn

n , where k ∈ [0, 1);
2. the function ϕ : X→ [0,∞) is defined by ϕ(x) = x for all x ∈ X;
3. the function F : [0,∞)3

→ [0,∞) defined by F(a, b, c) = max{a, b} + [c], where [c] is the integer part of c
4. the function θ : [0,∞)→ [0,∞) is defined by θ(t) = kt for t ∈ [0,∞), where k [0,1).

Note that F ∈ FM, θ ∈ J and further F is discontinuous.
T is an (F, ϕ, θ)-contraction mapping, because

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) = max
{∣∣∣∣∣kxn

n
−

kyn

n

∣∣∣∣∣ , kxn

n

}
+

[
ky2

2

]
= max

{∣∣∣∣∣kxn

n
−

kyn

n

∣∣∣∣∣ , kxn

n

}
+ 0

≤ k(max{|x − y|, x} + [y])
= k(max{d(x, y), x} + [y])
= k(F(d(x, y), ϕ(x), ϕ(y)))
= θ(F(d(x, y), ϕ(x), ϕ(y))).

This shows that all conditions of Theorem 2.5 are satisfied and so T has a ϕ-fixed point in X.

Example 2.8. Let X = [0, 1] and d : X × X → R be defined by d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a
complete metric space.
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1. Assume that T : X→ X is defined by Tx = k sin x, where k ∈ [0, 1);
2. the function ϕ : X→ [0,∞) is defined by ϕ(x) = x for all x ∈ X;
3. the function F : [0,∞)3

→ [0,∞) defined by F(a, b, c) = a + b + [c], where [c] is the integer part of c
4. the function θ : [0,∞)→ [0,∞) is defined by θ(t) = kt for t ∈ [0,∞), where k [0,1).

Note that F ∈ FM, θ ∈ J and further F is discontinuous.
T is an (F, ϕ, θ)-contraction mapping, because

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) = |k sin x − k sin y| + k sin x + [k sin y]
≤ k|x − y| + kx + 0
= k(|x − y| + x + [y])
= k(d(x, y) + x + [y])
= k(F(d(x, y), ϕ(x), ϕ(y)))
= θ(F(d(x, y), ϕ(x), ϕ(y))).

This shows that all conditions of Theorem 2.5 are satisfied and so T has a ϕ-fixed point in X.

Example 2.9. Let X = [0, 3] and d : X × X → R be defined by d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a
complete metric space.

1. Assume that T : X→ X is defined by Tx = 0 if 0 ≤ x < 2.5 and Tx = k ln x
2 if 2.5 ≤ x ≤ 3 where k ∈ [0, 1);

2. The function ϕ : X→ [0,∞) is defined by ϕ(x) = x for all x ∈ X;
3. the function F : [0,∞)3

→ [0,∞) defined by F(a, b, c) = a + b + [c] where [c] is the integer part of c;
4. the function θ : [0,∞)→ [0,∞) is defined by θ(t) = 0 if 0 ≤ t ≤ 1 and θ(t) = k ln(t) if t ≥ 1, where k [0,1).

Note that F is FM and further F is discontinuous.
When 2.5 ≤ x, y ≤ 3, without loss of generality, we may suppose that x ≥ y. Then we get

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) =
∣∣∣∣k ln

x
2
− k ln

y
2

∣∣∣∣ + k ln
x
2
+

[
k ln

y
2

]
≤

∣∣∣∣k ln
x
2
− k ln

y
2

∣∣∣∣ + k ln
x
2
+ k ln

y
2

≤ 2k ln
(3

2

)
= k ln 2.25
≤ k ln(d(x, y) + x + [y])
= k ln(F(d(x, y), ϕ(x), ϕ(y)))
= θ(F(d(x, y), ϕ(x), ϕ(y))).

If x ∈ [2.5, 3] and y ∈ [0, 2.25], then

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) =
∣∣∣∣k ln

x
2
− 0

∣∣∣∣ + k ln
x
2
+ [0]

≤ 2k ln
(3

2

)
= k ln 2.25
≤ k ln(d(x, y) + x + [y])
= k ln(F(d(x, y), ϕ(x), ϕ(y)))
= θ(F(d(x, y), ϕ(x), ϕ(y))).

The other cases are clear. This shows that all conditions of Theorem 2.5 are satisfied and so T has a ϕ-fixed point in X.

Now by F ⊆ FM, we have:
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Corollary 2.10. ([2, Theorem 1.11]) Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function and F ∈ F .
Suppose that the following conditions hold:

(H1) ϕ is lower semi-continuous,

(H2) T : X→ X is an (F, ϕ)-contraction with respect to the metric d.

Then the following assertions hold:

(i) FT ⊆ Zϕ;

(ii) T is a ϕ-Picard mapping;

(iii) if x ∈ X and z ∈ FT, then

d(Tnx, z) ≤
kn

1 − k
F(d(tx, x), ϕ(Tx), ϕ(x)),

for all n ∈N.

Corollary 2.11. ([2, Theorem 1.12]) Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function and F ∈ F .
Suppose that the following conditions hold:

(H1) ϕ is lower semi-continuous,

(H2) T : X→ X is an (F, ϕ)-weak contraction with respect to the metric d.

Then the following assertions hold:

(i) FT ⊆ Zϕ;

(ii) T is a weakly ϕ-Picard mapping;

(iii) if x ∈ X and Tnx→ z ∈ FT as n→∞ then

d(Tnx, z) ≤
kn

1 − k
F(d(tx, x), ϕ(Tx), ϕ(x)),

for all n ∈N.

Next we generalize the contractive condition (2) and prove the another main result in this work.

Definition 2.12. Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function and F ∈ F . We say that the
mapping T : X→ X is an (F, ϕ, θ)-weak contraction with respect to the metric d if and only if

F(d(Tx,Ty), ϕ(Tx), ϕ(Ty)) ≤ θ(F(d(x, y), ϕ(y), ϕ(Tx))) + L[F(N(x, y), ϕ(y), ϕ(Tx)) − F(0, ϕ(y), ϕ(Tx)))] (4)

for all x, y ∈ X, where N(x, y) = min{d(x,Tx), d(y,Ty), d(y,Tx)} and L ≥ 0.

Theorem 2.13. Let (X, d) be a metric space, ϕ : X → [0,∞) be a given function, F ∈ FM and θ ∈ J. Assume that
the following conditions are satisfied:

(H1) ϕ is lower semi-continuous,

(H2) T : X→ X is an (F, ϕ, θ)-weak contraction with respect to the metric d.

Then the following assertions hold:

(i) FT ⊆ Zϕ;

(ii) T is a weakly ϕ-Picard mapping.

Proof. The framework of the proof is the same in proof of [2, Theorem 2.9 ].

Remark 2.14. If we take θ(t) := kt for all t ∈ [0,∞), where k ∈ [0, 1), then by Theorems 2.5 and 2.13 we obtain
previous results in [1, 2].
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3. An application

Consider the following nonlinear integral equation:

x(t) = φ(t) +
∫ t

a
K(t, s, x(s))ds, (5)

where a ∈ R, x ∈ C([a, b],R), φ[a, b]→ R and K : [a, b] × [a, b] ×R→ R are two given functions.

Theorem 3.1. Consider the nonlinear integral equation (5). Suppose that the following condition holds:

(i) K is continuous;

(ii) there is θ ∈ J such that

|K(t, s, x(s)) − K(t, s, y(s))| ≤
θ(|x(s) − y(s)|)

b − a
for all x, y ∈ C([a, b],R) and for t, s ∈ [a, b].

Then the nonlinear integral equation (5) has a unique solution.

Proof. Let X := C([a, b],R), T : X→ X defined by

(Tx)(t) = φ(t) +
∫ t

0
K(t, s, x(s))ds, ∀x ∈ X.

The metric d given by d(x, y) = maxt∈[a,b] |x(s)− y(s)| for all x, y ∈ X. Thus X is a complete metric space. Now
define control function F by F(a, b, c) = max{a, b} + [c] for each a, b, c ∈ [0,∞). Also define ϕ(x) = 0 for all
x ∈ X.

Let x, y ∈ X and t ∈ [a, b]. therefore

|Tx(t) − Ty(t)| =

∣∣∣∣∣∣
∫ t

a
K(t, s, x(s))ds −

∫ t

a
K(t, s, y(s))ds

∣∣∣∣∣∣
≤

∫ t

a
|K(t, s, x(s)) − K(t, s, y(s))|ds

≤

∫ t

a

θ(|x(s) − y(s)|)
b − a

ds

≤
1

b − a

∫ t

a
θ(d(x, y))ds

≤ θ(d(x, y)).

So

d(Tx,Ty) ≤ θ(d(x, y))
max{d(Tx,Ty), ϕ(Tx)} ≤ θ(max{d(x, y), ϕ(x)})

max{d(Tx,Ty), ϕ(Tx)} + [ϕ(Ty)] ≤ θ(max{d(x, y), ϕ(x)} + [ϕ(y)]),

for all x, y ∈ X. Hence it satisfies the contraction (3).
Thus all the conditions of Theorem 2.5 are satisfied and hence T has a unique ϕ-fixed point in X. This

implies that there exists a unique solution of the nonlinear integral equation (5).
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