

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Discontinuity of Control Function in the (F, φ, θ) -Contraction in Metric Spaces

Mehdi Asadia

^aDepartment of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Abstract. In this paper, we improve very recent results of Kumrod *et al.* [2] with discontinuity of control function in the (F, φ, θ) -contraction in metric spaces. Illustrative examples and an application in nonlinear integral equation are presented.

1. Introduction and Preliminaries on φ -fixed points and (F, φ) -contraction mappings

In 2014, Jleli et~al.~[1] introduced the concepts of φ -fixed points, φ -Picard mappings and weakly φ -Picard mappings. After that Kumrod et~al.~[2] extended the concepts of (F, φ, θ) -contraction mapping and (F, φ, θ) -weak contraction mapping in metric spaces and established φ -fixed point results for such mappings. Their results were combined with the continuous control function F.

Here we review basic definitions and theorems.

Let *X* be a nonempty set, $\varphi: X \to [0, \infty)$ be a given function and $T: X \to X$ be a mapping. We denote the set of all fixed points of *T* by

$$F_T := \{x \in X : Tx = x\}$$

and denote the set of all zeros of the function φ by

$$Z_{\varphi} := \{x \in X : \varphi(x) = 0\}.$$

Definition 1.1. Let X be a nonempty set and $\varphi: X \to [0, \infty)$ be a given function. An element $z \in X$ is called φ -fixed point of the mapping $T: X \to X$ if and only if z is a fixed point of T and $\varphi(z) = 0$.

Definition 1.2. Let (X,d) be a metric space and $\varphi: X \to [0,\infty)$ be a given function. A mapping $T: X \to X$ is said to be a φ -Picard mapping if and only if

- $F_T \cap Z_{\varphi} = \{z\}$, where $z \in X$,
- $T^n x \to z$ as $n \to \infty$, for each $x \in X$.

Definition 1.3. Let (X, d) be a metric space and $\varphi : X \to [0, \infty)$ be a given function. We say that the mapping $T : X \to X$ is a weakly φ -Picard mapping if and only if

2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10

Keywords. Weakly φ -Picard mappings; (F, φ)-contraction mappings; φ -fixed points.

Received: 11 May 2017; Accepted: 31 July 2017

Communicated by Erdal Karapınar

Research supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran, Grant No. 94/S/70/98499.

Email address: masadi.azu@gmail.com (Mehdi Asadi)

- T has at least one φ -fixed point,
- the sequence $\{T^n x\}$ converges for each $x \in X$, and the limit is a φ -fixed point of T.

Also, Jleli *et al.* introduced the new concept of control function $F : [0, \infty)^3 \to [0, \infty)$ satisfying the following conditions:

- (F1) $\max\{a, b\} \le F(a, b, c)$ for all $a, b, c \in [0, \infty)$;
- (F2) F(0,0,0) = 0;
- (F3) *F* is continuous.

The class of all functions satisfying the conditions (F1)-(F3) is denoted by \mathcal{F} .

Example 1.4. Let $F_1, F_2, F_3 : [0, \infty) \rightarrow [0, \infty)$ be defined by

- 1. $F_1(a, b, c) = a + b + c$;
- 2. $F_2(a, b, c) = \max\{a, b\} + c$;
- 3. $F_3(a,b,c) = a + a^2 + b + c$;

for all $a, b, c \in [0, \infty)$. Then $F_1, F_2, F_3 \in \mathcal{F}$.

By using the control function in $\mathcal F$, Jleli $\mathit{et\ al.}$ defined the new contractive conditions and proved the ϕ -fixed point results as follows:

Definition 1.5. Let (X, d) be a metric space, $\varphi : X \to [0, \infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T : X \to X$ is an (F, φ) -contraction with respect to the metric d if and only if there is $k \in (0, 1)$ such that

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) \le kF(d(x, y), \varphi(x), \varphi(y)) \tag{1}$$

for all $x, y \in X$.

for all $x, y \in X$.

Definition 1.6. Let (X,d) be a metric space, $\varphi: X \to [0,\infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T: X \to X$ is an (F,φ) -weak contraction with respect to the metric d if and only if there is $k \in (0,1)$ and $L \ge 0$ such that

$$F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) \le kF(d(x,y),\varphi(x),\varphi(y)) + L[F(d(y,Tx),\varphi(y),\varphi(Tx)) - F(0,\varphi(y),\varphi(Tx)))] \tag{2}$$

In this paper, we introduce the concepts of (F, φ, θ) -contraction mapping and (F, φ, θ) -weak contraction mapping in metric spaces and establish φ -fixed point results for such mappings with discontinuous control function F. Presented theorems extend the φ -fixed point results of Kumrod $et\ al.\ [1,2]$. Here are examples of expressing highlight the validity of our results. Numerical experiments are given for approximating the φ -fixed point with examples in [2]. Finally, as an application, the fixed point results are verified from our main results and we prove the existence and uniqueness of a solution of a nonlinear integral equation.

2. Main results

Let J be the set of all functions $\theta:[0,\infty)\to[0,\infty)$ satisfying the following conditions:

- (j1) θ is a nondecreasing function, i.e., $t_1 < t_2$ implies $\theta(t_1) \le \theta(t_2)$;
- (j2) θ is continuous;
- (j3) $\sum_{n=0}^{\infty} \theta^n(t) < \infty$ for all t > 0.

Note that (j4) implies (j3).

We introduce the new concept of control function $F:[0,\infty)^3 \to [0,\infty)$ satisfying the following conditions without continuity:

 $(F_M 1) \max\{a, b\} \le F(a, b, c) \text{ for all } a, b, c \in [0, \infty);$

$$(F_M 2) F(0,0,0) = 0;$$

$$(F_M3)$$
 $\limsup_{n\to\infty} F(x_n,y_n,0) \le F(x,y,0)$ when $x_n\to x$ and $y_n\to y$ as $n\to\infty$.

The class of all functions satisfying the conditions (F1) – (F3) is denoted by \mathcal{F}_M .

Remark 2.1. Let F be defined by F(a, b, c) = a + b + [c] or $F(a, b, c) = \max\{a, b\} + [c]$. Then F satisfies $(F_M 3)$ but F is not continuous.

Lemma 2.2. ([2, Lemma 2.1]) *If* $\theta \in J$, then $\theta(t) < t$ for all t > 0.

Remark 2.3. ([2, Remark 2.2]) *If* $\theta \in J$, *then* $\theta(0) = 0$.

Here we define the new contractive condition in metric spaces as follows:

Definition 2.4. Let (X,d) be a metric space, $\varphi: X \to [0,\infty)$ be a given function and $F \in \mathcal{F}_M$. The mapping $T: X \to X$ is said to be an (F,φ,θ) -contraction with respect to the metric d if and only if there is $k \in (0,1)$ such that

$$F(d(Tx,Ty),\varphi(Tx),\varphi(Ty)) \le \theta(F(d(x,y),\varphi(x),\varphi(y))) \tag{3}$$

for all $x, y \in X$.

Now we give the existence of φ -fixed point results for (F, φ, θ) -contraction mappings with control function F which is not continuous.

Theorem 2.5. Let (X,d) be a metric space, $\varphi:X\to [0,\infty)$ be a given function and $F\in\mathcal{F}_M$. Assume that the following conditions are satisfied:

- (H1) φ is lower semi-continuous,
- (H2) $T: X \to X$ is an (F, φ, θ) -contraction with respect to the metric d.

Then the following assertions hold:

- (*i*) $F_T \subseteq Z_{\omega}$;
- (ii) T is a φ -Picard mapping.

Proof. The frame of the proof is the same in Theorem 2.5 [2]. So for arbitrary point $x \in X$, $\{T^n x\}$ is Cauchy sequence, $\lim_{n\to\infty} d(T^n x, z) = \lim_{n\to\infty} \varphi(T^n x) = 0$ and $\varphi(z) = 0$ for some $z \in X$.

$$\begin{split} d(T^{n+1}x,Tz) & \leq & \max\{d(T^{n+1}x,Tz),\varphi(T^{n+1}x)\} \\ & \leq & F(d(T^{n+1}x,Tz),\varphi(T^{n+1}x),\varphi(Tz)) \\ & \leq & \theta(F(d(T^{n}x,z),\varphi(T^{n}x),\varphi(z))) \\ & < & F(d(T^{n}x,z),\varphi(T^{n}x),\varphi(z))). \\ & = & F(d(T^{n}x,z),\varphi(T^{n}x),0). \end{split}$$

Thus

$$\lim \sup_{n \to \infty} d(T^{n+1}x, Tz) \le \lim \sup_{n \to \infty} F(d(T^n x, z), \varphi(T^n x), 0) \le F(0, 0, 0) = 0.$$

$$\lim_{n\to\infty} d(T^n x, Tz) = \lim_{n\to\infty} d(T^n x, z) = 0,$$

So z = Tz and it is a unique fixed point of T. \square

Next, we give some examples to illustrate Theorem 2.5.

Example 2.6. Let X = [0,1] and $d: X \times X \to \mathbb{R}$ be defined by d(x,y) = |x-y| for all $x,y \in X$. Then (X,d) is a complete metric space.

- 1. Fix $n \in \mathbb{N}$ and assume that $T: X \to X$ is defined by $Tx = \frac{kx^n}{n}$, where $k \in [0,1)$;
- 2. the function $\varphi: X \to [0, \infty)$ is defined by $\varphi(x) = x$ for all $x \in X$;
- 3. the function $F:[0,\infty)^3\to [0,\infty)$ defined by F(a,b,c)=a+b+[c], where [c] is the integer part of c
- 4. the function $\theta:[0,\infty)\to[0,\infty)$ is defined by $\theta(t)=kt$ for $t\in[0,\infty)$, where k [0,1).

Note that $F \in \mathcal{F}_M$, $\theta \in J$ and further F is discontinuous.

T is an (F, φ, θ) -contraction mapping, because

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) = \left| \frac{kx^n}{n} - \frac{ky^n}{n} \right| + \frac{k^n x}{n} + \left[\frac{ky^n}{n} \right]$$

$$= \left| \frac{kx^n}{n} - \frac{ky^n}{n} \right| + \frac{k^n x}{n} + 0$$

$$\leq k \left(\frac{|x - y||x^{n-1} + \dots + y^{n-1}|}{n} + k \frac{x^n}{n} \right)$$

$$\leq k(|x - y| + x + 0)$$

$$= k(|x - y| + x + [y])$$

$$= k(d(x, y) + x + [y])$$

$$= k(F(d(x, y), \varphi(x), \varphi(y)))$$

$$= \theta(F(d(x, y), \varphi(x), \varphi(y))).$$

This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ -fixed point in X.

Example 2.7. Let X = [0,1] and $d: X \times X \to \mathbb{R}$ be defined by d(x,y) = |x-y| for all $x,y \in X$. Then (X,d) is a complete metric space.

- 1. Fix $n \in \mathbb{N}$ and assume that $T: X \to X$ is defined by $Tx = \frac{kx^n}{n}$, where $k \in [0,1)$;
- 2. the function $\varphi: X \to [0, \infty)$ is defined by $\varphi(x) = x$ for all $x \in X$;
- 3. the function $F:[0,\infty)^3 \to [0,\infty)$ defined by $F(a,b,c) = \max\{a,b\} + [c]$, where [c] is the integer part of c
- 4. the function $\theta:[0,\infty)\to[0,\infty)$ is defined by $\theta(t)=kt$ for $t\in[0,\infty)$, where k [0,1).

Note that $F \in \mathcal{F}_M$, $\theta \in J$ and further F is discontinuous.

T is an (F, φ, θ) -contraction mapping, because

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) = \max \left\{ \left| \frac{kx^n}{n} - \frac{ky^n}{n} \right|, \frac{kx^n}{n} \right\} + \left[\frac{ky^2}{2} \right]$$

$$= \max \left\{ \left| \frac{kx^n}{n} - \frac{ky^n}{n} \right|, \frac{kx^n}{n} \right\} + 0$$

$$\leq k(\max\{|x - y|, x\} + [y])$$

$$= k(\max\{d(x, y), x\} + [y])$$

$$= k(F(d(x, y), \varphi(x), \varphi(y)))$$

$$= \theta(F(d(x, y), \varphi(x), \varphi(y))).$$

This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ -fixed point in X.

Example 2.8. Let X = [0,1] and $d: X \times X \to \mathbb{R}$ be defined by d(x,y) = |x-y| for all $x,y \in X$. Then (X,d) is a complete metric space.

- 1. Assume that $T: X \to X$ is defined by $Tx = k \sin x$, where $k \in [0, 1)$;
- 2. the function $\varphi: X \to [0, \infty)$ is defined by $\varphi(x) = x$ for all $x \in X$;
- 3. the function $F:[0,\infty)^3 \to [0,\infty)$ defined by F(a,b,c)=a+b+[c], where [c] is the integer part of c
- 4. the function $\theta:[0,\infty)\to[0,\infty)$ is defined by $\theta(t)=kt$ for $t\in[0,\infty)$, where k [0,1).

Note that $F \in \mathcal{F}_M$, $\theta \in J$ *and further* F *is discontinuous.*

T is an (F, φ, θ) -contraction mapping, because

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) = |k \sin x - k \sin y| + k \sin x + [k \sin y]$$

$$\leq k|x - y| + kx + 0$$

$$= k(|x - y| + x + [y])$$

$$= k(d(x, y) + x + [y])$$

$$= k(F(d(x, y), \varphi(x), \varphi(y)))$$

$$= \theta(F(d(x, y), \varphi(x), \varphi(y))).$$

This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ -fixed point in X.

Example 2.9. Let X = [0,3] and $d: X \times X \to \mathbb{R}$ be defined by d(x,y) = |x-y| for all $x,y \in X$. Then (X,d) is a complete metric space.

- 1. Assume that $T: X \to X$ is defined by Tx = 0 if $0 \le x < 2.5$ and $Tx = k \ln \frac{x}{2}$ if $2.5 \le x \le 3$ where $k \in [0, 1)$;
- 2. The function $\varphi: X \to [0, \infty)$ is defined by $\varphi(x) = x$ for all $x \in X$;
- 3. the function $F:[0,\infty)^3 \to [0,\infty)$ defined by F(a,b,c)=a+b+[c] where [c] is the integer part of c;
- 4. the function $\theta:[0,\infty)\to[0,\infty)$ is defined by $\theta(t)=0$ if $0\leq t\leq 1$ and $\theta(t)=k\ln(t)$ if $t\geq 1$, where k [0,1).

Note that F is \mathcal{F}_M and further F is discontinuous.

When $2.5 \le x$, $y \le 3$, without loss of generality, we may suppose that $x \ge y$. Then we get

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) = \left|k \ln \frac{x}{2} - k \ln \frac{y}{2}\right| + k \ln \frac{x}{2} + \left[k \ln \frac{y}{2}\right]$$

$$\leq \left|k \ln \frac{x}{2} - k \ln \frac{y}{2}\right| + k \ln \frac{x}{2} + k \ln \frac{y}{2}$$

$$\leq 2k \ln \left(\frac{3}{2}\right)$$

$$= k \ln 2.25$$

$$\leq k \ln(d(x, y) + x + [y])$$

$$= k \ln(F(d(x, y), \varphi(x), \varphi(y)))$$

$$= \theta(F(d(x, y), \varphi(x), \varphi(y))).$$

If $x \in [2.5, 3]$ *and* $y \in [0, 2.25]$ *, then*

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) = \left| k \ln \frac{x}{2} - 0 \right| + k \ln \frac{x}{2} + [0]$$

$$\leq 2k \ln \left(\frac{3}{2} \right)$$

$$= k \ln 2.25$$

$$\leq k \ln(d(x, y) + x + [y])$$

$$= k \ln(F(d(x, y), \varphi(x), \varphi(y)))$$

$$= \theta(F(d(x, y), \varphi(x), \varphi(y))).$$

The other cases are clear. This shows that all conditions of Theorem 2.5 are satisfied and so T has a φ -fixed point in X.

Now by $\mathcal{F} \subseteq \mathcal{F}_{\mathcal{M}}$, we have:

Corollary 2.10. ([2, Theorem 1.11]) *Let* (X, d) *be a metric space,* $\varphi : X \to [0, \infty)$ *be a given function and* $F \in \mathcal{F}$. *Suppose that the following conditions hold:*

- (H1) φ is lower semi-continuous,
- (H2) $T: X \to X$ is an (F, φ) -contraction with respect to the metric d.

Then the following assertions hold:

- (*i*) $F_T \subseteq Z_{\omega}$;
- (ii) T is a φ -Picard mapping;
- (iii) if $x \in X$ and $z \in F_T$, then

$$d(T^n x, z) \le \frac{k^n}{1 - k} F(d(tx, x), \varphi(Tx), \varphi(x)),$$

for all $n \in \mathbb{N}$.

Corollary 2.11. ([2, Theorem 1.12]) *Let* (X, d) *be a metric space,* $\varphi : X \to [0, \infty)$ *be a given function and* $F \in \mathcal{F}$. *Suppose that the following conditions hold:*

- (H1) φ is lower semi-continuous,
- (H2) $T: X \to X$ is an (F, φ) -weak contraction with respect to the metric d.

Then the following assertions hold:

- (i) $F_T \subseteq Z_{\omega}$;
- (ii) T is a weakly φ -Picard mapping;
- (iii) if $x \in X$ and $T^n x \to z \in F_T$ as $n \to \infty$ then

$$d(T^{n}x,z) \leq \frac{k^{n}}{1-k}F(d(tx,x),\varphi(Tx),\varphi(x)),$$

for all $n \in \mathbb{N}$.

Next we generalize the contractive condition (2) and prove the another main result in this work.

Definition 2.12. Let (X, d) be a metric space, $\varphi : X \to [0, \infty)$ be a given function and $F \in \mathcal{F}$. We say that the mapping $T : X \to X$ is an (F, φ, θ) -weak contraction with respect to the metric d if and only if

$$F(d(Tx, Ty), \varphi(Tx), \varphi(Ty)) \le \theta(F(d(x, y), \varphi(y), \varphi(Tx))) + L[F(N(x, y), \varphi(y), \varphi(Tx)) - F(0, \varphi(y), \varphi(Tx)))]$$
 (4) for all $x, y \in X$, where $N(x, y) = \min\{d(x, Tx), d(y, Ty), d(y, Tx)\}$ and $L \ge 0$.

Theorem 2.13. Let (X, d) be a metric space, $\varphi : X \to [0, \infty)$ be a given function, $F \in \mathcal{F}_M$ and $\theta \in J$. Assume that the following conditions are satisfied:

- (H1) φ is lower semi-continuous,
- (H2) $T: X \to X$ is an (F, φ, θ) -weak contraction with respect to the metric d.

Then the following assertions hold:

- (i) $F_T \subseteq Z_{\varphi}$;
- (ii) T is a weakly φ -Picard mapping.

Proof. The framework of the proof is the same in proof of [2, Theorem 2.9]. \Box

Remark 2.14. If we take $\theta(t) := kt$ for all $t \in [0, \infty)$, where $k \in [0, 1)$, then by Theorems 2.5 and 2.13 we obtain previous results in [1, 2].

3. An application

Consider the following nonlinear integral equation:

$$x(t) = \phi(t) + \int_a^t K(t, s, x(s))ds, \tag{5}$$

where $a \in \mathbb{R}$, $x \in C([a, b], \mathbb{R})$, $\phi[a, b] \to \mathbb{R}$ and $K : [a, b] \times [a, b] \times \mathbb{R} \to \mathbb{R}$ are two given functions.

Theorem 3.1. Consider the nonlinear integral equation (5). Suppose that the following condition holds:

- (i) K is continuous;
- (ii) there is $\theta \in J$ such that

$$|K(t,s,x(s)) - K(t,s,y(s))| \le \frac{\theta(|x(s) - y(s)|)}{h - a}$$

for all $x, y \in C([a, b], \mathbb{R})$ and for $t, s \in [a, b]$.

Then the nonlinear integral equation (5) has a unique solution.

Proof. Let $X := C([a, b], \mathbb{R}), T : X \to X$ defined by

$$(Tx)(t) = \phi(t) + \int_0^t K(t, s, x(s))ds, \quad \forall x \in X.$$

The metric d given by $d(x, y) = \max_{t \in [a,b]} |x(s) - y(s)|$ for all $x, y \in X$. Thus X is a complete metric space. Now define control function F by $F(a,b,c) = \max\{a,b\} + [c]$ for each $a,b,c \in [0,\infty)$. Also define $\varphi(x) = 0$ for all $x \in X$.

Let $x, y \in X$ and $t \in [a, b]$. therefore

$$|Tx(t) - Ty(t)| = \left| \int_{a}^{t} K(t, s, x(s)) ds - \int_{a}^{t} K(t, s, y(s)) ds \right|$$

$$\leq \int_{a}^{t} |K(t, s, x(s)) - K(t, s, y(s))| ds$$

$$\leq \int_{a}^{t} \frac{\theta(|x(s) - y(s)|)}{b - a} ds$$

$$\leq \frac{1}{b - a} \int_{a}^{t} \theta(d(x, y)) ds$$

$$\leq \theta(d(x, y)).$$

So

$$d(Tx,Ty) \leq \theta(d(x,y))$$

$$\max\{d(Tx,Ty),\varphi(Tx)\} \leq \theta(\max\{d(x,y),\varphi(x)\})$$

$$\max\{d(Tx,Ty),\varphi(Tx)\} + [\varphi(Ty)] \leq \theta(\max\{d(x,y),\varphi(x)\} + [\varphi(y)]),$$

for all $x, y \in X$. Hence it satisfies the contraction (3).

Thus all the conditions of Theorem 2.5 are satisfied and hence T has a unique φ -fixed point in X. This implies that there exists a unique solution of the nonlinear integral equation (5). \square

References

- [1] M. Jleli, B. Samet, C. Vetro, Fixed point theory in partial metric spaces via φ -fixed point's concept in metric spaces, Journal of Inequalities and Applications (2014) 2014:426.
- [2] P. Kumrod, W. Sintunavarat, A new contractive condition approach to φ -fixed point results in metric spaces and its applications, Journal of Computational and Applied Mathematics 311 (2017) 194–204.