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Abstract. Some physical processes, both classical physics and quantum physics reduced to eigenvalue
problems for Sturm-Liouville equations. In the recent years there has been an increasing interest in dis-
continuous eigenvalue problems for various Sturm-Liouville type equations. Such problems are connected
with heat transfer problems, vibrating string problems, diffraction problems and etc. In this study we shall
investigate a class of two order eigenvalue problem with supplementary transmission conditions at one
interior singular point. We give an operator-theoretic interpretation in suitable Hilbert space.

1. Introduction

Boundary value problems arise directly as mathematical models of motion according to Newton’s law,
but more often as a result of using the method of separation of variables to solve the classical partial
differential equations of physics, such as Laplace’s equation, the heat equation, and the wave equation.
Many topics in mathematical physics require investigations of eigenvalues and eigenfunctions of boundary
value problems. These investigations are of utmost importance for theoretical and applied problems in
mechanics, the theory of vibrations and stability, hydrodynamics, elasticity, acoustics, electrodynamics,
quantum mechanics, and many other branches of natural science (cf. [11, 12, 21]). Such problems are
formulated in many different ways. For example, the Schrodinger equation in quantum mechanics is
a famous example of an eigenvalue problem where the energy levels are determined by a self-adjoint
operator. The Hamiltonian H is the operator of the energy in a quantum system. In the case of molecules it
is conveniently divided into three parts

H = TN + Te + U(q,Q).

TN and Te are the kinetic energies of the nuclei and the electrons , respectively . The total potential energy
U(q,Q) comprises the mutual repulsion of the electrons , the mutual repulsion of the nuclei and the attracting
potential between electrons and nuclei . The coordinates of the electrons and the nuclei are represented by
q and Q, respectively . The eigenvalues Em and the corresponding eigenfunctions ψm are the solutions of
the Schrodinger equation (H − Em)ψm = 0.
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In this study we shall investigate a new class of Sturm-Liouville type problem which consist of a
Sturm-Liouville equation

L(y) := −p(x)y′′(x) + q(x)y(x) = µ2y(x) (1)

to hold in disjoint intervals [a, c) and (c,b] where discontinuity in y and y′ at the interface point x=c are
prescribed by two the transmission conditions

V j(y) := β−j1y′(c−) + β−j0y(c−) + β+
j1y′(c+) + β+

j0y(c+) = 0, j = 1, 2 (2)

together with eigenparameter-dependent boundary conditions

U1(y) := α10y(a) − α11y′(a) − µ2(α′10y(a) − α′11y′(a)) = 0, (3)

U2(y) := α20y(b) − α21y′(b) + µ2(α′20y(b) − α′21y′(b)) = 0, (4)

where p(x) = p− > 0 for x ∈ [a, c), p(x) = p+ > 0 for x ∈ (c, b], the potential q(x) is real-valued continuous
function in each of the intervals [a, c) and (c, b], and has a finite limits q(c∓0), λ is a complex eigenparameter,
p∓, αi j, β∓i j, α

′

i j (i = 1, 2 and j = 0, 1) are real numbers. These boundary-transmission conditions are of great
importance for theoretical and applied studies and have a definite mechanical or physical meaning (see, for
example, [1–10, 13–19, 23, 24]). Also the problems with transmission conditions arise in mechanics, such
as thermal conduction problems for a thin laminated plate, which studied in [21]. This class of problems
essentially differs from the classical case, and its investigation requires a specific approaches.

2. Definitions and integral equations of the one-hand eigensolutions

Let B1 =

[
α11 α10
α′11 α′10

]
, B2 =

[
α21 α20
α′21 α′20

]
and T=

[
β+

10 β+
11 β−10 β−11

β+
20 β+

21 β−20 β−21

]
. Denote the determinant of the

matrix Bi by θi(i = 1, 2) and the determinant of the k-th and j-th columns of the matrix T by ∆kj. Note that
throughout this study we shall assume that θ1 > 0, θ2 > 0, ∆12 > 0 and ∆34 > 0.With a view to constructing
the characteristic function we define four one-hand eigensolutions ϕ∓(x, µ) and ψ∓(x, µ) by own procedure
as follows. At first we shall define one left solution ϕ−(x, µ) and one right solution ψ+(x, µ) of the equation
(1) on left interval (a,c) and on right interval (c,b) satisfying the initial conditions

y(a) = α11 − µ
2α′11, y′(a) = α10 − µ

2α′10 (5)

and

y(b) = α21 + µ2α′21, y′(b) = α20 + µ2α′20 (6)

respectively. It is known that these solutions are entire functions of parameter µ ∈ C for each fixed x (see,
for example, [12]). After defining this solutions we shall define the other solutions ϕ+(x, µ) and ψ−(x, µ)
in terms of ϕ−(x, µ) and ψ+(x, µ). Namely employing the same method as in [19] we can prove that the
equation (1) under initial conditions

y(c+) =
1

∆12
(∆23ϕ

−(c−, µ) + ∆24
∂ϕ−(c − µ)

∂x
) (7)

y′(c+) =
−1
∆12

(∆13ϕ
−(c−, µ) + ∆14

∂ϕ−(c−, µ)
∂x

). (8)

and

y(c−) =
−1
∆34

(∆14ψ
+(c+, µ) + ∆24

∂ψ+(c+, µ)
∂x

), (9)

y′(c−) =
1

∆34
(∆13ψ

+(c+, µ) + ∆23
∂ψ+(c+, µ)

∂x
). (10)
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has unique solutions ϕ+(x, µ) and ψ−(x, µ) which are entire functions of parameters µ ∈ C for each fixed x ∈
(c, b) and x ∈ (a, c) respectively. Below, for shorting we shall use also notations; ϕ±(x, µ) := ϕ±µ(x), ψ±(x, µ) :=
ψ±µ(x) :

Lemma 2.1. The next integral and integro-differential equations are hold for k = 0 and k = 1.

dk

dxk
ϕ−µ(x) =

√
p−

(α10 − µ2α′10)

µ
dk

dxk
sin

µ (x − a)√
p−


+(α11 − µ

2α′11)
dk

dxk
cos

µ (x − a)√
p−

 +
1√
p−µ

x∫
a

dk

dxk
sin

µ (x − z)√
p−

 q(z)ϕ−µ(z)dz

dk

dxk
ψ−µ(x) = −

1
∆34

(∆14ψ
+(c, µ) + ∆24

∂ψ+(c, µ)
∂x

))
dk

dxk
cos

µ(x − c)√
p−


+

√
p−

µ∆34
(∆13ψ

+(c, µ) + ∆23
∂ψ+(c, µ)

∂x
))

dk

dxk
sin

µ(x − c)√
p−


+

1√
p−µ

c−∫
x

dk

dxk
sin

[
µ (x − z)

]
q(z)ψ−µ(z)dz (11)

for x ∈ [a, c) and

dk

dxk
ϕ+
µ(x) =

1
∆12

(∆23ϕ
−(c, µ) + ∆24

∂ϕ−(c, µ)
∂x

))
dk

dxk
cos

µ(x − c)√
p+


−

√
p+

µ∆12
(∆13ϕ

−(c, µ) + ∆14
∂ϕ−(c, µ)

∂x
))

dk

dxk
sin

µ(x − c)√
p+


+

1√
p+µ

x∫
c+

dk

dxk
sin

µ (x − z)√
p+

 q(z)ϕ+
µ(z)dz (12)

dk

dxk
ψ+
µ(x) =

√
p+

µ
(α20 + µ2α′20)

dk

dxk
sin

µ (x − b)√
p+


+(α21 + µ2α′21)

dk

dxk
cos

µ (x − b)√
p+

 +
1√
p+µ

b∫
x

dk

dxk
sin

µ (x − z)√
p+

 q(z)ψ+
µ(z)dz

for x ∈ (c, b].

Proof. For proving of these formulas it is enough substitute µ2ϕ∓µ(z) + p∓ dk

dxkϕ
∓
µ(z) andµ2ψ∓µ(z) + p∓ dk

dxkψ
∓
µ(z)

instead of q(z)ϕ∓µ(z) and q(z)ψ∓µ(z) respectively in the corresponding integral terms and then integrate by
parts twice.

3. Asymptotic expressions of eigensolutions

Now we are ready to prove the following theorems.
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Theorem 3.1. Let , Imµ = t. Then if α′11 , 0 the asymptotic estimates

dk

dxk
ϕ−µ(x) = −α′11µ

k+2 dk

dxk
cos

µ (x − a)√
p−

 + O
(∣∣∣µ∣∣∣k+1

e
|t|(x−a)
√

p−

)
(13)

dk

dxk
ϕ+
µ(x) =

∆24

∆12

α′11√
p−
µk+3 sin

µ (c − a)√
p−

 dk

dxk
cos

µ (x − c)√
p+

 + O
(
|µ|k+2e

|t|( (x−c)
√

p+
+

(c−a)
√

p−
)
)

(14)

are valid as
∣∣∣µ∣∣∣→∞, while if α′11 = 0 the asymptotic estimates

dk

dxk
ϕ−µ(x) = −α′10

√
p−µk+1 dk

dxk
sin

µ(x − a)√
p−

 + O
(∣∣∣µ∣∣∣k e

|t|(x−a)
√

p−

)
(15)

dk

dxk
ϕ+
µ(x) = −

∆24

∆12
α′10µ

k+2 cos

µ (c − a)√
p−

 dk

dxk
cos

µ(x − c)√
p+

 + O
(∣∣∣µ∣∣∣k+1

e
|t|( (x−c)
√

p+
+

(c−a)
√

p−
)
)

(16)

are valid as
∣∣∣µ∣∣∣→∞ (k = 0, 1). All asymptotic estimates are holds uniformly with respect to x.

Proof. The asymptotic formulas (13) and (15) for ϕ−µ(x) follows immediately from the Titchmarsh’s Lemma
([22], Lemma 1.7). But the corresponding formulas for ϕ+

µ(x) need individual consideration. Let α11 , 0.
Put

ϕ+
µ(x) = e

|t|( (x−c)
√

p+ Y(x, µ) (17)

it follows from (12) that

Y(x, µ) | ≤ e
|t|( (x−c)
√

p+
{

1
∆12

(∆23M1

∣∣∣µ∣∣∣2 + ∆24M2

∣∣∣µ∣∣∣3)e
−|t|( (x−c)

√
p+ e

|t|(c−a)
√

p−

−

√
p+

µ∆12
(∆13M1

∣∣∣µ∣∣∣2 + ∆14M2

∣∣∣µ∣∣∣3)e
−|t|( (x−c)

√
p+ e

|t|(c−a)
√

p−

+
1√
p+µ

x∫
c+

e
|t|( (x−z)
√

p+ q(z)Y(z, µ)e
−|t|( (x−c)

√
p+ dz} (18)

for some M1 > 0 and M2 > 0. (17) and (18) we get

ϕ+
µ(x) = O

(
|µ|3e

|t|( (x−c)
√

p+
+

(c−a)
√

p−
)
)

(19)

as
∣∣∣µ∣∣∣→∞. Now, the estimate (14) for the case k = 0 is obtained by substituting (19) in the integral term on

the right-hand side of (12) . The case k = 1 of the (14) follows at once on differentiating (12) and making the
same procedure as in the case k = 0. The proof of (16) is similar.

Similarly we can prove the following Theorem.

Theorem 3.2. Let Imµ = t. Then if α′21 , 0

dk

dxk
ψ+
µ(x) = α′21µ

k+2 dk

dxk
cos

µ (b − x)√
p+

 + O
(∣∣∣µ∣∣∣k+1

e
|t|(b−x)
√

p+

)
(20)

dk

dxk
ψ−µ(x) = −

∆24

∆34

α′21√
p+
µk+3 sin

µ (b − c)√
p+

 dk

dxk
cos

µ (x − c)√
p−

 + O
(
|µ|k+2e

|t|( (b−c)
√

p+
+

(c−x)
√

p−
)
)

(21)
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as
∣∣∣µ∣∣∣→∞, while if α′21 = 0

dk

dxk
ψ+
µ(x) = −a′20

√
p+µk+1 dk

dxk
sin

µ(b − x)√
p+

 + O
(∣∣∣µ∣∣∣k e

|t| (b−x)
√

p+

)
(22)

dk

dxk
ψ−µ(x) = −

∆24

∆34
α′20µ

k+2 cos

µ (b − c)√
p+

 dk

dxk
cos

µ(x − c)√
p−

 + O
(∣∣∣µ∣∣∣k+1

e
|t|( (b−c)
√

p+
+

(c−x)
√

p−
)
)

(23)

as
∣∣∣µ∣∣∣→∞ (k = 0, 1). Each of this asymptotic equalities hold uniformly for x.

4. The characteristic function and eigenvalues

It is well-known from ordinary differential equation theory that the Wronskians W[ϕ−µ(x), ψ−µ(x)] and
W[ϕ+

µ(x), ψ+
µ(x)] are independent of variable x. Let w±(µ) := W[ϕ±µ(x), ψ±µ(x)].

Lemma 4.1. The equality ∆34w−(µ) = ∆12w+(µ) holds for each µ ∈ C.

Proof. By using (7)-(8) and (9)-(10) we have

w+(µ) = ϕ+(c, µ)
dψ+(c, µ)

dx
−

dϕ+(c, µ)
dx

ψ+(c, µ)

=
∆34

∆12
(ϕ−(c, µ)

dψ−(c, µ)
dx

−
dϕ−(c, µ)

dx
ψ−(c, µ))

=
∆34

∆12
w−(µ).

We shall define the characteristic function four our problem as

w(µ) := ∆34w−(µ) = ∆12 w+(µ).

Theorem 4.2. The eigenvalues of the problem (1)-(4) are consist of the zeros of the characteristic function w(µ).

Proof. Let w(µ0) = 0. Then W[ϕ−µ0
, ψ−µ0

]x = 0. Thus, the functions ϕ−µ0
(x) and ψ−µ0

(x) are linearly depended,
i.e., there is k , 0 such that

ψ−µ0
(x) = kϕ−µ0

(x), x ∈ [a, c). (24)

It is easy to see that the function ψµ0 (x) defined on whole [a, c) ∪ (c, b] by ψµ0 (x) = ψ−µ0
(x) for [a, c) and

ψµ0 (x) = ψ+
µ0

(x) for (c, b] satisfies the second boundary condition (4) and both transmission conditions
(2). Moreover, in view of (24) ψµ0 (x) would satisfy also the first boundary condition (3). Consequently
the function ψµ0 (x) is an eigenfunction of the problem(1)- (4) corresponding to the eigenvalue µ0. Hence
each zero of w(µ) is an eigenvalue. Now let y0(x) be any eigenfunction corresponding to eigenvalue µ0.
Suppose, it possible that w(µ0) , 0. Then the couples of the functions ϕ−, ψ− and ϕ+, ψ+ would be linearly
independent on [a, c) and (c, b] respectively. Therefore, the solution y0(x) may be represented in the form

y0(x) =

{
k11ϕ−µ0

(x) + k12ψ−µ0
(x) for x ∈ [a, c)

k21ϕ+
µ0

(x) + k22ψ+
µ0

(x) for x ∈ (c, b] (25)

where at least one of the coefficients k11, k12, k21 and k22 is not zero. Considering the equations

U1(y0) = U2(y0) = V1(y0) = V2(y0) = 0 (26)

as the homogenous system of linear equations of the variables k11, k12, k21, k22 and taking into account the
conditions (2) − (4) we obtain homogenous linear simultaneous equation of the variables ki j (i, j = 1, 2) the
determinant of which is equal to 1

∆12∆34
ω3(µ) and therefore does not vanish by assumption. Consequently this

linear simultaneous equation has only trivial solution ki j = 0 (i, j = 1, 2). We thus arrive at a contradiction,
which completes the proof.
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Now by modifying the classical method we shall prove the next Theorem.

Theorem 4.3. The eigenvalues of the boundary value transmission problem (1) − (4) are real.

Proof. Let µ0 be eigenvalue and y0 be eigenfunction corresponding to this eigenvalue. Denoting(
`a(y) `′a(y)
`b(y) `′b(y)

)
=

(
α10y(a) − α11y′(a) α′10y(a) − α′21y′(a)
α20y(b) − α21y′(b) α′20y(b) − α′21y′(b)

)
we have

∆34

p−

c−∫
a

(µ0y0(x))y0(x)dx +
∆12

p+

b∫
c+

((µ0y0(x))y0(x)dx +
∆34

p−θ1
`a(y0)`′a(y0)

−
∆12

p+θ2
`b(y0)`′b(y0) − {

∆34

p−

c−∫
a

(y0)(x)µ0y0(x)dx +
∆12

p+

b∫
c+

(y0)(x)µ0y0(x)dx

+
∆34

p−θ1
`′a(y0)`a(y0) −

∆12

p+θ2
`′b(y0)`b(y0)}

= ∆34 W[y0, z; c−] − ∆34 W[y0, y0; a] + ∆12W[y0, y0; b] − ∆12 W[y0, y0; c+]

+
∆34

p−θ1
{`a(y0)`′a(y0) − `′a(y0)`a(y0)} +

∆12

p+θ2
{`′b(y0)`b(y0) − `b(y0)`′b(y0)} (27)

Since the eigenfunction y0(x) is satisfied the boundary and transmission conditions (2) − (4) it is easy to
derive that

`a(y0)`′a(y0) − `′a(y0)`a(y0) = p−θ1W(y0, y0; a) (28)

`′b(y0)`b(y0) − `b(y0)`′b(y0) = −p+θ2W(y0, y0; b) (29)

W(y, y0; c−) =
∆12

∆34
W(y0, y0; c+). (30)

By substituting these equations in (27) we have

(µ0 − µ0)[
∆34

p−

c−∫
a

(y0(x))2dx +
∆12

p+

b∫
c+

(y0(x))2dx] = 0

Since p− > 0 p+ > 0, ∆12 > 0 and ∆34 > 0 we get µ0 = µ0. Consequently all eigenvalues of the problem
(1) − (4) are real. The proof is complete.

Since the Wronskians of ϕ+
µ(x) and ψ+

µ(x) are independent of x, in particular, by putting x = a we have

ω(µ) = ∆34{ϕ
−(a, µ)

dψ−(a, µ)
dx

−
dϕ−(a, µ)

dx
ψ−(a, µ)}

= ∆34{(α11 − µ
2α′11)

dψ−(a, µ)
dx

+ (α10 − µ
2α′10)ψ−(a, µ)}. (31)

Let Imµ = t. By substituting (20) and (23) in (31) we obtain easily the following asymptotic representations
(i) If α′21 , 0 and α′11 , 0, then

w(µ) = −
∆24α′11α

′

21√
p−

√
p+
µ6 sin

µ (c − a)√
p−

 sin

µ (b − c)√
p+

 + O
(∣∣∣µ∣∣∣5 e

|t|( (b−c)
√

p+
+

(c−a)
√

p−
)
)

(32)

(ii) If α′21 , 0 and α′11 = 0, then

w(µ) = −
∆24α′10α

′

21√
p+

µ5 cos

µ (c − a)√
p−

 sin

µ (b − c)√
p+

 + O
(∣∣∣µ∣∣∣4 e

|t|( (b−c)
√

p+
+

(c−a)
√

p−
)
)

(33)
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(iii) If α′21 = 0 and α′11 , 0, then

w(µ) = −
∆24α′11α

′

20√
p−

µ5 sin

µ (c − a)√
p−

 cos

µ (b − c)√
p+

 + O
(∣∣∣µ∣∣∣4 e

|t|( (b−c)
√

p+
+

(c−a)
√

p−
)
)

(34)

(iv) If α′21 = 0 and α′11 = 0, then

w(µ) = ∆24α
′

10α
′

20µ
4 cos

µ (c − a)√
p−

 cos

µ (b − c)√
p+

 + O
(∣∣∣µ3

∣∣∣ e|t|( (b−c)
√

p+
+

(c−a)
√

p−
)
)

(35)

5. Asymptotic formulas for eigenvalues and eigenfunctions

Now we are ready to derive the needed asymptotic formulas for eigenvalues and eigenfunctions.

Theorem 5.1. The boundary-value-transmission problem (1)-(4) has an precisely numerable many real eigenvalues,
whose behavior may be expressed by two sequence

{
µn,1

}
and

{
µn,2

}
with following asymptotic as n→∞

(i) If α′21 , 0 and α′11 , 0, then

µn,1 =

√
p−(n − 3)π
(c − a)

+ O
(1

n

)
, µn,2 =

√
p+nπ

(b − c)
+ O

(1
n

)
, (36)

(ii) If α′21 , 0 and α′11 = 0, then

µn,1 =

√
p−(2n + 1)π
2(c − a)

+ O
(1

n

)
, µn,2 =

√
p+(n − 2)π
(b − c)

+ O
(1

n

)
, (37)

(iii) If α′21 = 0 and α′11 , 0, then

µn,1 =

√
p−(n − 2)π
(c − a)

+ O
(1

n

)
, µn,2 =

√
p+(2n + 1)π
2(b − c)

+ O
(1

n

)
, (38)

(iv) If α′21 = 0 and α′11 = 0, then

µn,1 =

√
p−(2n − 3)π
2(c − a)

+ O
(1

n

)
, µn,2 =

√
p+(2n + 1)π
2(b − c)

+ O
(1

n

)
(39)

Proof. Let α′21 , 0 and α′11 , 0. By applying the well-known Rouche Theorem which asserts that if
f (z) and 1(z) are analytic inside and on a closed contour Γ, and |1(z)| < | f (z)| on Γ then f (z) and f (z) + 1(z)
have the same number zeros inside Γ provided that the zeros are counted with multiplicity, it follows that
w(µ) has the same number of zeros inside the sufficiently large appropriate contours as the leading term

w0(µ) = −
∆24α′11α

′

21√
p−
√

p+
µ6 sin

[
µ(c−a)
√

p−

]
sin

[
µ(b−c)
√

p+

]
in (32). Now applying the similar technique which used in [20]

we can found the needed asymptotic formulas (36) . Other cases can be proved similarly.

Finally, using the fact that the function ϕ̃n,i defined on whole [a, c)∪(c, b] and given by ϕ̃n,i = ϕ−µn,i
(x) for x ∈

[a, c) and ϕ̃n,i = ϕ+
µn,i

(x) for x ∈ (c, b] is an eigenfunction according to the eigenvalue µn and putting (36)-(39)
in the (13)-(16) and (20)-(23) we found the following asymptotic formulas for eigenfunctions:
(i) If α′21 , 0 and α′11 , 0, then

ϕ̃n,1(x) =


−α′11p−

[
(n−3)π
(c−a)

]2
cos

[
(n−3)π(x−a)

(c−a)

]
+ O (n) , for x ∈ [a, c)

∆24α′11p−

∆12

[
(n−3)π
(c−a)

]3
sin [(n − 3)π] cos

[ √
p−(n−3)π(x−c)
√

p+(c−a)

]
+O

(
n2

)
, for x ∈ (c, b]
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and

ϕ̃n,2(x) =


−α′11p+

[
nπ

(b−c)

]2
cos

[ √
p+nπ(x−a)
√

p−(b−c)

]
+ O (n) , for x ∈ [a, c)

∆24α′11

∆12

√
p−

[ √
p+nπ

(b−c)

]3

sin
[ √

p+nπ(c−a)
√

p−(b−c)

]
cos

[
nπ(x−c)

(b−c)

]
+O

(
n2

)
, for x ∈ (c, b]

(ii) If α′21 , 0 and α′11 = 0, then

ϕ̃n,1(x) =


−α′10p−

[
(2n+1)π
2(c−a)

]
sin

[
(2n+1)π(x−a)

2(c−a)

]
+ O (1) , for x ∈ [a, c)

−
∆24α′10p−

∆12

[
(2n+1)π
2(c−a)

]2
cos

[
(2n+1)π

2

]
cos

[ √
p−(2n+1)π(x−c)

2
√

p+(c−a)

]
+O (n) , for x ∈ (c, b]

and

ϕ̃n,2(x) =


−α′10

√
p−

[ √
p+(n−2)π
(b−c)

]
sin

[ √
p+(n−2)π(x−a)
√

p−(b−c)

]
+ O (1) , for x ∈ [a, c)

−
∆24α′10p+

∆12

[
(n−2)π
(b−c)

]2
cos

[ √
p+(n−2)π(c−a)
√

p−(b−c)

]
cos

[
(n−2)π(x−c)

(b−c)

]
+O (n) , for x ∈ (c, b]

(iii) If α′21 = 0 and α′11 , 0, then

ϕ̃n,1(x) =


−α′11p−

[
(n−2)π
(c−a)

]2
cos

[
(n−2)π(x−a)

(c−a)

]
+ O (n) , for x ∈ [a, c)

−∆24α′11p−

∆12

[
(n−2)π
(c−a)

]3
sin [(n − 2)π] cos

[ √
p−(n−2)π(x−c)
√

p+(c−a)

]
+O

(
n2

)
, for x ∈ (c, b]

and

ϕ̃n,2(x) =


−α′11p+

[
(2n+1)π
2(b−c)

]2
cos

[ √
p+(2n+1)π(x−a)

2
√

p−(b−c)

]
+ O (n) , for x ∈ [a, c)

−
∆24α′11

∆12

√
p−

[ √
p+(2n+1)π
2(b−c)

]3

sin
[ √

p+(2n+1)π(c−a)

2
√

p−(b−c)

]
cos

[
(2n+1)π(x−c)

2(b−c)

]
+O

(
n2

)
, for x ∈ (c, b]

(iv) If α′21 = 0 and α′11 = 0, then

ϕ̃n,1(x) =


−α′10p−

[
(2n−3)π
2(c−a)

]
sin

[
(2n−3)π(x−a)

2(c−a)

]
+ O (1) for x ∈ [a, c)

−
∆24p−α′10

∆12

[
(2n−3)π
2(c−a)

]2
cos

[
(2n−3)π

2

]
cos

[ √
p−(2n−3)π(x−c)

2
√

p+(c−a)

]
+O (1) , for x ∈ (c, b]

and

ϕ̃n,2(x) =


−α′10

√
p−

[ √
p+(2n+1)π
2(b−c)

]
sin

[ √
p+(2n+1)π(x−a)

2
√

p−(b−c)

]
+ O (1) , for x ∈ [a, c)

−
∆24p+α′10

∆12

[
(2n+1)π
2(b−c)

]2
cos

[ √
p+(2n+1)π(c−a)

2
√

p−(b−c)

]
cos

[
(2n+1)π(x−c)

2(b−c)

]
+O (n) , for x ∈ (c, b]

All this asymptotic approximations are hold uniformly for x.

Remark 5.2. Although eigenfunction looks as simple as that of standard Sturm-Liouville problems, it is a rather
complicated because of the transmission conditions. To illustration this fact let us give the graphs of characteristic
function ω(µ) and eigenfunction ϕµ(x) for one simple special case of the considered problem.
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6. Example

Consider the following simple case of the BVTP’s (1) − (4)

−y′′(x) = µ2y(x) x ∈ [−π, 0) ∪ (0, π] (40)
y(−π) + µ2y′(−π) = 0, (41)
µ2y(π) + y′(π) = 0, (42)
y(0−) = 2y(+0), y′(−0) = y′(+0) (43)

We find easily that

ϕ−(x, µ) = µ2 cos[µ(π + x)] − 1
µ sin[µ(π + x)]

ϕ+(x, µ) = 1
2 (µ2 cosµπ − 1

µ sinµπ) cos(µx) − (µ2 sinµπ + 1
µ cosµπ) sin(µx)

ψ−(x, µ) = 2(cosµπ − µ sinµπ) cos(µx) + (sinµπ + µ cosµπ) sin(µx)
ψ+(x, µ) = cos[µ(π − x)] − µ sin[µ(π − x)].

Using these formulas we have

w(µ) = (µ4 + 2) cos2 µ − (2µ4 + 1) sin2 µ + 3(µ3
− µ) sinµ cosµ.

The graphs of the functions w(µ) and ϕµ(x) is displayed in following Figures for different values of spectral
parameter.

m
2 4 6 8 10 12 14 16 18 20

K200.000

K100.000

0

100.000

Figure1: Graph of the characteristic function w(µ)
for real µ

K3 K2 K1 0 1 2 3

K1,0

K0,5

0,5

1,0

Figure2: Graph of the eigensolution ϕµ(x)
for µ = 1

K3 K2 K1 0 1 2 3

K100

K50

50

100

Figure3: Graph of the eigensolution ϕµ(x)
for µ = 10
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