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Abstract. The objective of this paper is to provide complete characterizations of orthogonal families, tight
frames and orthonormal bases of Gabor systems on local fields of positive characteristic by means of some
basic equations in the Fourier domain.

1. Introduction

Gabor systems are the collection of functions

G(a, b, ψ) =
{
MmbTnaψ(x) =: e2πimaxψ(x − na) : m,n ∈ Z

}
(1.1)

which are built by the action of modulations and translations of a single, and hence, can be viewed as
the set of time-frequency shifts of ψ(x) ∈ L2(R) along the lattice aZ × bZ in R2. Such systems, also called
Weyl-Heisenberg systems, were introduced by Gabor [2] with the aim of constructing efficient, time-frequency
localized expansions of signals as an infinite linear combinations of elements in (1.1). The system G(a, b, ψ)
is called a Gabor frame if there exist constants A,B > 0 such that

A
∥∥∥ f

∥∥∥2

2
≤

∑
m∈Z

∑
n∈Z

∣∣∣∣〈 f ,MmbTnaψ
〉∣∣∣∣2 ≤ B

∥∥∥ f
∥∥∥2

2
, (1.2)

holds for every f ∈ L2(R), and we call the optimal constants A and B the lower frame bound and the upper
frame bound, respectively. A tight Gabor frame refers to the case when A = B, and a normalized tight frame refers
to the case when A = B = 1. Gabor systems that form frames for L2(R) have a wide variety of applications.
An important problem in practice is therefore to determine conditions for Gabor systems to be frames. In
practice, once the window function has been chosen, the first question to investigate for Gabor analysis is to
find the values of the time-frequency parameters a, b such that G(a, b, ψ) is a frame. Therefore, the product
ab will decide whether the system G(a, b, ψ) constitutes a frame or even complete for L2(R) or not. A useful
tool in this context is the Ron and Shen [6] criterion. By using this criterion, Gröchenig et al.[4] have proved
that the system G(a, b, ψ) cannot be a frame for L2(R) if |ab| > 1. In addition to this, they have also shown
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that the system G(a, b, ψ) will form an orthonormal basis for L2(R) if |ab| = 1. For information on this topic,
we refer to the monographs [1, 3].

A field K equipped with a topology is called a local field if both the additive and multiplicative groups
of K are locally compact Abelian groups. For example, any field endowed with the discrete topology is
a local field. For this reason we consider only non-discrete fields. The local fields are essentially of two
types (excluding the connected local fields R and C). The local fields of characteristic zero include the
p-adic field Qp. Examples of local fields of positive characteristic are the Cantor dyadic group and the
Vilenkin p-groups. Local fields have attracted the attention of several mathematicians, and have found
innumerable applications not only in the number theory, but also in the representation theory, division
algebras, quadratic forms and algebraic geometry. As a result, local fields are now consolidated as a part
of the standard repertoire of contemporary mathematics. For more details we refer the reader to the book
of Taibleson [10].

The local field K is a natural model for the structure of Gabor frame systems, as well as a domain
upon which one can construct Gabor basis functions. There is a substantial body of work that has been
concerned with the construction of Gabor frames on K, or more generally, on local fields of positive
characteristic. Li and Jiang [5] constructed Gabor frames on local fields of positive characteristic using
basic concepts of operator theory and have established a necessary and sufficient conditions for the system{
Mu(m)bTu(n)aψ =: χm(bx)ψ

(
x − u(n)a

)}
m,n∈N0

to be a frame for L2(K). Recently, Shah [7] established a complete
characterization of Gabor frames on local fields by virtue of two basic equations in the frequency domain
has shown how to construct an orthonormal Gabor basis for L2(K). Recent results related to Gabor frames
on local fields can be found in [8,9] and the references therein.

Motivated by the notion of Gabor systems on local fields, our aim is to give complete characterizations
of orthogonal families, tight frames and orthonormal bases of Gabor systems on local fields of positive
characteristic by means of some basic equations in the frequency domain.

The outline of the paper is as follows. In Section 2, we discuss some preliminary facts about local
fields of positive characteristic and also some results which are required in the subsequent section. Char-
acterizations of orthogonal Gabor systems on local fields of positive characteristic are given in Section
3.

2. Preliminaries on Local Fields

Let K be a fixed local field with the ring of integers D = {x ∈ K : |x| ≤ 1}. Since K+ is a locally compact
Abelian group, we choose a Haar measure dx for K+. The field K is locally compact, non-trivial, totally
disconnected and complete topological field endowed with non–Archimeadean norm |·| : K→ R+ satisfying

(a) |x| = 0 if and only if x = 0;

(b) |x y| = |x||y| for all x, y ∈ K;

(c) |x + y| ≤ max
{
|x|, |y|

}
for all x, y ∈ K.

Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1} be the prime ideal of the ring of
integers D in K. Then, the residue space D/B is isomorphic to a finite field GF(q), where q = pc for some
prime p and c ∈ N. Since K is totally disconnected and B is both prime and principal ideal, so there exist
a prime element p of K such that B = 〈p〉 = pD. Let D∗ = D \ B = {x ∈ K : |x| = 1}. Clearly, D∗ is a group
of units in K∗ and if x , 0, then we can write x = pny, y ∈ D∗. Moreover, if U =

{
am : m = 0, 1, . . . , q − 1

}
denotes the fixed full set of coset representatives of B in D, then every element x ∈ K can be expressed
uniquely as x =

∑
∞

`=k c` p` with c` ∈ U. Recall that B is compact and open, so each fractional ideal
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Bk = pkD =
{
x ∈ K : |x| < q−k

}
is also compact and open and is a subgroup of K+. We use the notation in

Taibleson’s book [10]. In the rest of this paper, we use the symbolsN,N0 andZ to denote the sets of natural
numbers, non-negative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1. Therefore, χ is constant
on cosets of D so if y ∈ Bk, then χy(x) = χ(y, x), x ∈ K. Suppose that χu is any character on K+, then the
restriction χu|D is a character on D. Moreover, as characters on D, χu = χv if and only if u − v ∈ D. Hence,
if {u(n) : n ∈N0} is a complete list of distinct coset representative of D in K+, then, as it was proved in [10],
the set

{
χu(n) : n ∈N0

}
of distinct characters on D is a complete orthonormal system on D.

Definition 2.1. The Fourier transform of f ∈ L1(K) is denoted by f̂ (ξ) and defined by

f̂ (ξ) =

∫
K

f (x)χξ(x) dx. (2.1)

Note that

f̂ (ξ) =

∫
K

f (x)χξ(x) dx =

∫
K

f (x)χ(−ξx) dx.

The properties of Fourier transform on local field K are much similar to those of on the real line. In fact,
one can prove the following results:

• The map f → f̂ is a bounded linear transformation of L1(K) into L∞(K), and
∥∥∥ f̂

∥∥∥
∞
≤

∥∥∥ f
∥∥∥

1
.

• If f ∈ L1(K), then f̂ is uniformly continuous.

• If f ∈ L1(K) ∩ L2(K), then
∥∥∥ f̂

∥∥∥
2

=
∥∥∥ f

∥∥∥
2
.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂ (ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f (x)χξ(x) dx, (2.2)

where fk = f Φ−k and Φk is the characteristic function of Bk.

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B � GF(q) where GF(q) is a
c-dimensional vector space over the field GF(p). We choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D

∗ such that span{
ζ j

}c−1

j=0
� GF(q). For n ∈N0 satisfying

0 ≤ n < q, n = a0 + a1p + · · · + ac−1pc−1, 0 ≤ ak < p, and k = 0, 1, . . . , c − 1,

we define
u(n) = (a0 + a1ζ1 + · · · + ac−1ζc−1) p−1.

Also, for n = b0 + b1q + b2q2 + · · · + bsqs, n ∈N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s, we set

u(n) = u(b0) + u(b1)p−1 + · · · + u(bs)p−s. (2.3)

This defines u(n) for all n ∈N0. In general, it is not true that u(m + n) = u(m) + u(n). But, if r, k ∈N0 and 0 ≤
s < qk, then u(rqk + s) = u(r)p−k + u(s). Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(`) + u(k) : k ∈N0} = {u(k) : k ∈N0} for a fixed ` ∈N0. Hereafter we use the notation χn = χu(n), n ≥ 0.
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Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as above. We define a character
χ on K as follows:

χ(ζµp− j) =

{
exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c − 1 or j , 1. (2.4)

We also denote the test function space on K by Ω, that is, each function f in Ω is a finite linear combination
of functions of the formΦk(x − h), h ∈ K, k ∈ Z, whereΦk is the characteristic function of Bk. This class of
functions can also be described in the following way. A function 1 ∈ Ω if and only if there exist integers
k, ` such that 1 is constant on cosets of Bk and is supported on B`. It follows that Ω is closed under Fourier
transform and is an algebra of continuous functions with compact support, which is dense in C0(K) as well
as in Lp(K), 1 ≤ p < ∞.

Let a and b be any two fixed elements in K. For fixed positive integer L, let Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊂ L2(K),

define the multi-generator Gabor system

G(a, b,Ψ) :=
{
Mu(m)bTu(n)aψ

` =: χm(bx)ψ`
(
x − u(n)a

)
: n,m ∈N0, 1 ≤ ` ≤ L

}
, (2.5)

where Mu(m)b f (x) = χm(bx) f (x) and Tu(n)a f (x) = f
(
x − u(n)a

)
are the modulation and translation operators

defined on L2(K), respectively.

We call the Gabor system G(a, b,Ψ) a Gabor frame for L2(K), if there exist constants C and D, 0 < C ≤
D < ∞ such that

C
∥∥∥ f

∥∥∥2

2
≤

L∑
`=1

∑
m∈N0

∑
n∈N0

∣∣∣∣〈 f ,Mu(m)bTu(n)aψ
`
〉∣∣∣∣2 ≤ D

∥∥∥ f
∥∥∥2

2
. (2.6)

In order to prove theorems to be presented in next section, we need the following results whose proofs can
be found in [1].

Lemma 2.2. LetH be a Hilbert space and
{
fk
}∞
k=1 be a family of elements ofH . Then

∞∑
k=1

∣∣∣∣〈 f , fk
〉∣∣∣∣2 =

∥∥∥ f
∥∥∥2

2
, for all f ∈ H

if and only if

f =

∞∑
k=1

〈 f , fk〉 fk, for all f ∈ H .

Lemma 2.3. Suppose that
{
fk
}∞
k=1 is a family of elements in a Hilbert spaceH such that the first equality of

Lemma 2.2 holds for all f in a dense subsetD ofH . Then, the same equality is true for all f ∈ H .

Theorem 2.4. Suppose
{
fk
}∞
k=1 is a tight frame with constant 1 in Hilbert space H . If ‖ fk‖2 = 1, for all

k = 1, 2, . . . , then
{
fk
}∞
k=1 is an orthonormal basis forH .

We have also the following proposition (See [10]).

Proposition 2.5. The system
{
ψ
(
x − u(k)

)
: k ∈N0

}
of functions is an orthogonal system in L2(K) if and only if∑

k∈N0

∣∣∣∣ψ̂(
ξ − b−1u(k)

)∣∣∣∣2 = |b|
∥∥∥ψ∥∥∥2

2
a.e. ξ ∈ K.
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3. Orthogonal Gabor Systems on Local Fields

We shall start this section by characterizing the orthogonality of Gabor systems G(a, b,Ψ) given by (2.5) in
terms of the Fourier transforms of the generators.

Theorem 3.1. The Gabor system G(a, b,Ψ) given by (2.5) is orthogonal if and only if∑
n∈N0

∣∣∣∣ψ̂`(ξ − b−1u(n)
)∣∣∣∣2 = |b|

∥∥∥ψ`∥∥∥2

2
, a.e. ξ ∈ K, 1 ≤ ` ≤ L, (3.1)

∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂`

(
ξ + b−1u(s)

)
= 0, a.e. ξ ∈ K, (3.2)

for every n ∈N, 1 ≤ ` ≤ L, and∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
= 0, a.e. ξ ∈ K, (3.3)

for every n ∈N0, 1 ≤ `, k ≤ L, ` , k.

Proof. We first assume that the system G(a, b,Ψ) is orthogonal. Then, equation (3.1) is satisfied for every `,
by virtue of the Proposition 2.5. Using the Plancherel theorem, we obtain

0 =
〈
ψ`m,n, ψ

k
〉

=
〈
ψ̂`m,n, ψ̂

k
〉

=

∫
K
χmn(ab)χm(bξ) ψ̂`

(
ξ − u(n)a

)
ψ̂k(ξ) dξ

=
∑
s∈N0

∫
Bs
χmn(ab)χm(bξ) ψ̂`

(
ξ − u(n)a

)
ψ̂k(ξ) dξ

= χmn(ab)
∑
s∈N0

∫
D

χm(bξ) ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
dξ.

Now, if the series∑
s∈N0

∫
D

∣∣∣∣χm(bξ) ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
dξ

∣∣∣∣
converges, then by Beppo-Levi’s theorem, we can interchange the order of integration and summation in
the following integral∫

D

∑
s∈N0

χm(bξ) ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
dξ.

However, we observe that∑
s∈N0

∫
D

∣∣∣∣χm(bξ) ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
dξ

∣∣∣∣
=

∫
K

∣∣∣∣ψ̂`(ξ − u(n)a
)
ψ̂k(ξ)

∣∣∣∣ dξ

≤

{∫
K

∣∣∣∣ψ̂`(ξ − u(n)a
)∣∣∣∣2 dξ

}1/2 {∫
K

∣∣∣∣ψ̂`′ (ξ)
∣∣∣∣2 dξ

}1/2

< ∞.



F. A. Shah et al. / Filomat 31:16 (2017), 5193–5201 5198

Therefore, for ` , k and m,n ∈N0, we have∫
D

∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)χm(bξ) dξ = 0.

Since {χm(bξ) : m ∈N0} is a basis for L2(D) and∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
,

is a periodic function with period a, so we can conclude that for ` = k and n ∈N, or for ` , k,n ∈N0,∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(n)a

)
ψ̂k

(
ξ + b−1u(s)

)
= 0, for a.e. ξ ∈ K.

This completes the proof of the first implication.

Now let us assume that all the three conditions are satisfied. It is easy to verify that〈
ψ`m,n, ψ

k
m′,n′

〉
= χ

(
ab u(m −m′)u(n′)

) 〈
ψ`m−m′,n+n′ψ

k
〉
.

Further, Proposition 2.5 implies that the systems
{
ψ`0,n : n ∈N0

}
are orthogonal for each `. Therefore to

finish the proof, we can invoke Beppo-Levi’s theorem, Plancherel formula and, the second and the third
conditions to prove, as above, that 〈

ψ`m,n, ψ
k
〉

= 0, for ` , k, m,n ∈N0.

This completes the proof.

To prove the completeness of Gabor systems G(a, b,Ψ) in L2(K) when |ab| = 1, we set

W`
m = span

{
ψ`m,n : n ∈N0

}
, 1 ≤ ` ≤ L,m ∈N0. (3.4)

Assume that the Gabor systems G(a, b,Ψ) given by (2.5) are orthogonal in L2(K) and let P`m denote the
orthogonal projection onto the space W`

m, that is;

P`m f (x) =
∑

n∈N0

〈
f , ψ`m,n

〉
ψ`m,n(x), for every f ∈ L2(K). (3.5)

Then, we have〈
f̂ , ψ̂`m,n

〉
=

∫
K

f̂ (ξ)χn(bξ)χmn(ab) ψ̂`
(
ξ − u(m)a

)
dξ

=
∑
s∈N0

∫
Bs
χn(bξ) f̂ (ξ) ψ̂`

(
ξ − u(m)a

)
dξ

=
∑
s∈N0

∫
D

χn

(
ξ + b−1u(s)

)
f̂
(
ξ + b−1u(s)

)
ψ̂`

(
ξ + b−1u(s) − u(m)a

)
dξ.



F. A. Shah et al. / Filomat 31:16 (2017), 5193–5201 5199

Note that∑
s∈N0

∫
D

∣∣∣∣χn(bξ) f̂
(
ξ + b−1u(s)

)
ψ̂`

(
ξ + b−1u(s) − u(m)a

)∣∣∣∣dξ
=

∫
K

∣∣∣∣∣ f̂ (ξ)ψ̂`
(
ξ − u(m)a

)∣∣∣∣∣ dξ
≤

{∫
K

∣∣∣ f̂ (ξ)
∣∣∣2 dξ

}1/2 {∫
K

∣∣∣∣ψ̂`(ξ − u(m)a
)∣∣∣∣2 dξ

}1/2

=
∥∥∥ f̂

∥∥∥
2

∥∥∥ψ̂∥∥∥
2
< ∞.

Therefore, we can use the Beppo-Levis theorem to obtain:

〈
f̂ , ψ̂`m,n

〉
=

∫
D

∑
s∈N0

f̂
(
ξ + b−1u(s)

)
ψ̂`

(
ξ + b−1u(s) − u(m)a

)χn(bξ) dξ.

Clearly, these are the Fourier coefficients of the a- periodic function∑
s∈N0

f̂
(
ξ + b−1u(s)

)
ψ̂`

(
ξ + b−1u(s) − u(m)a

)
,

thus, we can write∑
s∈N0

f̂
(
ξ + b−1u(s)

)
ψ̂`

(
ξ + b−1u(s) − u(m)a

)
= |b|

∑
n∈N0

〈
f̂ , ψ̂`m,n

〉
χn(bξ).

Multiplying both sides of the above identity by ψ̂`
(
ξ − u(m)a

)
, we obtain the desired expression for P`m as:

P̂`m f (ξ) =
1
|b|

∑
s∈N0

f̂
(
ξ + b−1u(s)

)
ψ̂`

(
ξ + b−1u(s) − u(m)a

)
ψ̂`

(
ξ − u(m)a

)
. (3.6)

Theorem 3.2. Let Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊆ L2(K) and a, b ∈ K \ {0} be given. If |ab| = 1 and the functions

ψ1, ψ2, . . . , ψL satisfy the following three conditions:∑
m∈N0

∣∣∣∣ψ̂`(ξ − b−1u(m)
)∣∣∣∣2 = |b|

∥∥∥ψ`∥∥∥2

2
, a.e. ξ ∈ K, 1 ≤ ` ≤ L, (3.7)

∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(m)a

)
ψ̂`

(
ξ + b−1u(s)

)
= 0, a.e. ξ ∈ K, (3.8)

for every m ∈N, 1 ≤ ` ≤ L, and∑
s∈N0

ψ̂`
(
ξ + b−1u(s) − u(m)a

)
ψ̂k

(
ξ + b−1u(s)

)
= 0, a.e. ξ ∈ K, (3.9)

for every m ∈N0, 1 ≤ `, k ≤ L, ` , k. Then, the Gabor system G(a, b,Ψ) as defined in (2.5) is complete in L2(K).

Proof. To prove the result, it is sufficient to prove that

L∑
`=1

∑
m∈N0

P̂`m f (ξ) =
( L∑
`=1

∥∥∥ψ`∥∥∥2

2

)
f̂ (ξ) a.e. ξ ∈ K, (3.10)
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and

lim
M→∞

∥∥∥∥∥∥ L∑
`=1

∑
|m|≤M

P̂`m f

∥∥∥∥∥∥
2

=
( L∑
`=1

∥∥∥ψ`∥∥∥2

2

) ∥∥∥ f̂
∥∥∥

2
, (3.11)

hold for every f ∈ L2(K). Since Ω is dense in L2(K) and is closed under the Fourier transform, the set

Ω0 =
{

f ∈ Ω : supp f̂ ⊂ K\ {0}
}
.

is also dense in L2(K). Therefore, in view of Lemma 2.2 and 2.3, it is enough to verify that the equalities
(3.10) and (3.11) hold for all f ∈ Ω0. In Theorem 3.1, we have already shown that the systemG(a, b,Ψ) given
by (2.5) is orthogonal in L2(K); hence by applying (3.6) to the projections P`m, we can write

L∑
`=1

∑
m∈N0

P̂`m f (ξ)

=
1
|b|

L∑
`=1

∑
m∈N0

∑
s∈N0

f̂
(
ξ + b−1u(s)

)
ψ`

(
ξ + b−1u(s) − u(m)a

)
ψ̂`

(
ξ − u(m)a

)
=

1
|b|

L∑
`=1

∑
m∈N0

f̂ (ξ)
∣∣∣∣ψ̂`(ξ − u(m)a

)∣∣∣∣2 +
1
|b|

L∑
`=1

∑
m∈N0

∑
s∈N

f̂
(
ξ + b−1u(s)

)
ψ`

(
ξ + b−1u(s) − u(m)a

)
ψ̂`

(
ξ − u(m)a

)
=

1
|b|

f̂ (ξ)
L∑
`=1

∑
m∈N0

∣∣∣∣ψ̂`(ξ − u(m)a
)∣∣∣∣2 +

1
|b|

L∑
`=1

∑
s∈N

f̂
(
ξ + b−1u(s)

) ∑
m∈N0

ψ`
(
ξ + b−1u(s) − u(m)a

)
ψ̂`

(
ξ − u(m)a

)
= f̂ (ξ)

 L∑
`=1

∥∥∥ψ`∥∥∥2

2

 .
Here we have used our assumption on the functions ψ`, i.e., equations (3.7)–(3.9) and the fact |ab| = 1. The
change in the order of summation is valid since f ∈ Ω0, which implies that the sum over s ∈N is finite.

In order to prove the relation (3.11), we use the fact that P`m’s are mutually orthogonal, so we have∥∥∥∥∥∥ L∑
`=1

∑
|m|≤M

P̂`m f

∥∥∥∥∥∥
2

≤

 L∑
`=1

∥∥∥ψ`∥∥∥2

2


1/2 ∥∥∥ f̂

∥∥∥
2
, for every M > 0.

Moreover, the orthogonality of P`m’s implies that∥∥∥∥∥∥ L∑
`=1

∑
|m|≤M

P̂`m f

∥∥∥∥∥∥
2

=

 L∑
`=1

∑
|m|≤M

∥∥∥∥P̂`m f
∥∥∥∥2

2


1/2

is an increasing sequence bounded by
(∑L

`=1

∥∥∥ψ`∥∥∥2

2

)1/2∥∥∥ f̂
∥∥∥

2
. Therefore, we have

lim
M→∞

∥∥∥∥∥∥ L∑
`=1

∑
|m|≤M

P̂`m f

∥∥∥∥∥∥
2

≤

 L∑
`=1

∥∥∥ψ`∥∥∥2

2


1/2 ∥∥∥ f̂

∥∥∥
2
.

On the other hand, by Fatou’s lemma we have

lim
M→∞

∥∥∥∥∥∥ L∑
`=1

∑
|m|≤M

P̂`m f

∥∥∥∥∥∥
2

≥

 L∑
`=1

∥∥∥ψ`∥∥∥2

2


1/2 ∥∥∥ f̂

∥∥∥
2
.
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Combining the above inequalities, we get the desired result.

As a consequence of the above theorem, we get following characterization of tight Gabor frames of
L2(K).

Corollary 3.3. Let a, b ∈ K \ {0} be given. Suppose Ψ =
{
ψ1, ψ2, . . . , ψL

}
⊆ L2(K) be such that

L∑
`=1

‖ψ`‖22 = 1. Then

with the assumptions of Theorem 3.2, the system G(a, b,Ψ) constitutes a tight frame with constant 1 for L2(K).

By combining Corollary 3.3 with Theorem 2.3, we can obtain the following characterization for Gabor
systems generated by a single function.

Theorem 3.4. Let ψ ∈ L2(K) and a, b ∈ K \ {0} such that |ab| = 1. Then the system G(a, b,Ψ) is a tight frame with
constant 1 if and only if the following equations hold:∑

m∈N0

∣∣∣∣ψ̂(
ξ − b−1u(m)

)∣∣∣∣2 = |b|, a.e. ξ ∈ K,

∑
s∈N0

ψ̂
(
ξ + b−1u(s) − u(m)a

)
ψ̂
(
ξ + b−1u(s)

)
= 0, a.e. ξ ∈ K,m ∈N.
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[2] D. Gabor, Theory of communications, J. Inst. Elect. Engn. 93 (1946) 429–457.
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