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of an Operator in Banach Space

Xiaoji Liu?, Yonghui Qin®?

“College of Science, Guangxi University for Nationalities, Nanning 530006, P.R. China.
bCollege of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, P.R. China.

Abstract. In this paper, we consider perturbation analysis for the generalized Drazin inverse of an operator
in Banach space. An necessary and sufficient condition for the generalized Drazin invertible is given. The
upper bound is given under some certain conditions, and a relative perturbation bound is also considered.

1. Introduction

The Drazin inverse arises in many fields, such as, differential equations, difference equations, Markov
chains, and control theory [1, 2]. The perturbation analysis for the Drazin inverse is useful in computational
mathematics [2, 7]. In recent years, many results on the perturbation bound for the Drazin inverse of
a given matrix or operator have been considered in [3, 4, 24]. In [3], Castro and Koliha considered the
perturbation for the Drazin inverse of a closed linear operator under some certain conditions, and also
obtained an upper bound. In [5], Castro et al. studied perturbations for the Drazin inverse of a closed linear
operator A, when the perturbing operator has the same spectral projection as A. In [20], Martinez and Castro
considered the Drazin inverse of block matrices. Cvetkovi¢-Ili¢ investigated the generalized Drazin inverse
with commutativity up to a factor in a Banach algebra in [8]. Xu et al. considered the stable perturbation
of the Drazin inverse of the square matrices in [30]. In [10], Deng and Wei considered the perturbation
for the generalized Drazin inverse of a bounded linear operator. They also gave an explicit generalized
Drazin inverse expression for the perturbation under certain restrictions on the perturbing matrices. In
[22], Rakocevi¢ and Wei investigated perturbation for the generalized Drazin inverse of a bounded linear
operator over Banach space. Castro and Martinez studied additive properties for the generalized Drazin
inverse in Banach algebra [6]. In [16], Huang et al. considered stable perturbations for outer inverses of
linear operators in Banach space.

Let X, Y be Banach space and let B(X, Y) be the set of all bounded linear operators from Xto Y. If X = Y,
then B(X, Y) = B(X). For a bounded linear operator A € B(X), the symbols R(A), N(A), 6(A) and r(A) denote
the range, the null space, the spectrum and the spectral radius of A, respectively. For any A € B(X), there
exists B such that, for some k € IN,

BAB = B, AB = BA, A*'X = A, (1)
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then B is called the Drazin inverse of A, and is denoted by B = AP. The smallest nonnegative k in (1) is
called the index of A, denoted by Ind(A). It is well-known that A € B(X) has a Drazin inverse if and only if
the point A = 0 is a pole of the resolvent A - (AI — A)~!. The order of this pole is equal to Ind(A).

In [17], Koliha introduced the concept for a generalized Drazin (GD) inverse of an operator A € B(X).
The GD inverse exists if and only if 0 ¢ acco(A). If 0 ¢ acco(A), then there exist open subsets U and V of C,
such that 0(A) \ {0} c U, 0 € V,and U NV = (. Define a function f as in [17] by

0 AeV
fh=11 :
- A
1 eu
The GD inverse of A is defined by f(A) = Ad. If A is GD-invertible, then the spectral idempotent of A
corresponding to 0 is denoted by A™ = [ — AAY. Let X = N(A™) & R(A™), where A € B(X) is GD-invertible.
If A is GD-invertible, then A has the following form

0

N(A™)
A=l 0 Al [ R R(A” ] [ R b )
where A; is invertible and A, is quasinilpotent. Also, the GD inverse A9 is given by
d _ N(AT) N(A™)
A ] [ R(A™) |— [ R(A™) | )

The motivation of the results in this paper is from those given in [10], which is considered the perturbation
of the GD inverse in the following cases:

e A + Q1 is invertible and dim[R(A™)] is finite,

e A1 + Qq is invertible and Q»A; =0,

e A1+ Qs invertible and QnAs = A2Q»,

where Q is the perturbing operator of A and given by Q = [ Qol ! le

X = N(A™) @ R(A™).

Some results on the perturbation for the GD inverse with suitable certain conditions are given in
[4, 13, 19, 23-29] as follows:

o Il +A;'Qull <1, Az + Qy, is quasinilpotent, Q1 = 0

e A1 + Qq is invertible, Q5 is quasinilpotent, Q2Ar = A2Q2», Q12 =0

e Q11 = 0, Q2 is quasinilpotent, Q2A; =0

oIl +A7'Qull <1,Q12=0,Q2 =0.

In this paper, we consider perturbation bound for [|[(A + Q)¢ — Ad|| with A; + Qy1 being invertible and
one of the conditions being given as bellow:

(1) A2Q22 =0, Q =0; (11) AzQz =0, Az 0; (111) Q sz.

A+Q)I— AdII
llA4]|

] with respect to the decomposition

Also, we give a relative perturbation bound for

A B ] be a bounded linear operator on X @Y. If 6(A) N 6(C) has no-interior point,

Lemma 1.1. [14] Let M = [ 0 C

then o(M) = o(A) U a(C).

Lemma 1.2. [10] Let A, Q € B(X) and let 0.(A) = {A : dist(A, 0(A)) < €}. Then for any € > 0 there exists 6 > 0
such that 6(A + Q) C 0.(A), whenever ||Q|| < 6.

The following lemma is given by Theorem 5.1 in [12] and Lemma 2.2 in [13] (see [15] and [21] for the
finite dimensional case).
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Lemma 1.3. If A € B(X) and B € B(Y) are GD-invertible, then
A C B 0
efo 5 [

are GD-invertible and

Ad S B4 0
d _ d _
M _'[ 0 Bd]/ N = S lid]’ (4)

where S = Yo o(AY)"*2CB"B™ + Y "y ATA"C(B)"*2 — A4CBd.
Lemma 1.4. [18] Let A € B(X) be Drazin invertible. If r(A) > O, then
dist(0, 5(A)\{0}) = (r(A%) .
Lemma 1.5. [11] Let A, Q € B(X) be GD-invertible and AQ = 0, then A + Q is GD-invertible and

(A + Q)d — QT[ Z Qn(Ad)n+1 + Z(Qd)n+1A”An-
n=0 n=0

Lemma 1.6. [9] Let A,Q € B(X) be GD-invertible and AQ = QA. Then A + Q is GD-invertible if and only if
1+ A4Q is GD-invertible. In this case, we have

(A+Q = A%(1+A°QFQQ" + Q7 ) (-Q" (Al + ) Q) Ay AT
n=0

n=0
and

(A+Q)A+ Q) = (AAY + QA1 + AYQ)QQY + Q"AAY + QQIAT.

2. Perturbation Bound for the GD Inverse of an Operator

In this section, we consider the perturbation for the GD inverse of an operator A € B(X). We present

a necessary and sufficient condition for the GD invertible under certain conditions. An upper bound for
A+ A

] is also considered, where Q is

(A + Q)¢ — Ad|| is given, and a relative perturbation bound for
perturbing operator.

Theorem 2.1. Let A € B(X) be GD-invertible and Q € B(X). Assume that A>Q = 0, then A + Q is GD-invertible if
and only if (A + Q)A™ is GD-invertible. If AQ is GD-invertible and Q* = 0, then
(i) A + Qis GD invertible and

0o

(A+Q =) (QAQ™AQIA" + (AQ™(AQ))(A%) !
j=0

Ly (QUAQ™ + ((AQ)y 1 A)AY A",
j=0

(ii) Further, if JAQIIAYIP <1, ICAQ)NIA%I < 1, then

d _ pAd
Ugfi_j:ﬁ%%éqT__fé—Jl < ”(2(/4(2)ﬂ[4d” +_”([4(2)d[4(2H
ICAQ)™IIAQINIAY
T Jagiiae QAN+ 1)
IAQ) AL

KA = [AQKI AZH)(uQnuA“n +14A),
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where K(A) = ||AIlllAY]l.
Proof. Suppose that A, A4 are given by (2), (3), respectively. Thus, we have

On Q R(A™) R(A™)
Q=] Qn On 1 N(A) |—1 N(A™) | (5)

Since AZQ = 0 and A; is invertible, we have
Qi1 =0, Qip =0, A3Qy =0, A3Q% =0. (6)
Thus, we derive

A 0
A+Q=[ Q211 A2+Q22]

By Lemma 1.3, we can prove that (A + Q)9 exists if and only if (A; + Q)¢ exists. i.e. (A + Q) exists if and

only if (A + Q)A™ is GD-invertible.
From Q° = 0, we get

020 =0, Q3,=0. 7)

By (6) and (7), we have
(A2022)(Q22A2) = (Q2242)(A2Q2) = 0. 8)
From the GD-invertibility of AQ, then (A202)? exists. Hence, (Q24,)? exits. By Lemma 1.6, we get
(A2Q2 + QnA2)® = (A200)" + (QnA)". )

Since A%(Azsz + Q2Ay) = 0 and A; is quasinilpotent. By Lemma 1.5 and (9), we have that A, + Q2 is
GD-invertible and

[(A2 + Qn)*¢ (A3 + A2Qx + QuAy)?

[(A2Q2 + QunAy) "1 AY

[: i1

(4202 + (QuAz)) " A2 (10)

B
Il
o

Similarly, we obtain

[(A2Q2)% + (Q2242)1™ = [(A2Q0) 1" + [(Q22A2) "™, n e N.
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d
By (10) and Cline’s formula (Q2A,)? = sz((Azng)z) A, we obtain

(A2 + Q)" = (A2 + Q2)) (42 + Q)

= (A2 + Q) Z ((A2Qx)* + (szz‘lz)d)n+1 A
n=0

= (A2 + sz) Z((A2Q22)d)n+1 + ((Q22A2)d)n+1A§n

n=0

(sz((t‘lezz)d)nJr1 + Az((szAz)d)nH)A%n

(Qu2((A42Q2)"y"™ + A2[Qna((A2Qu) ") Ar]"*" A"

D1 1D 3D

(Qa((A2Q22)")"* + ((A2Q22)%)"*1 A2) AT

Il
[=}

n

and
- n+1
(A2 + Q)™ = (A2Qa)" = Y A2Qo2 ((A2Q)") " A"
n=1
- d)"™ yon1
=) Qo ((AQm)?)" A,
n=0
By Lemma 1.3, we get that A + Q is GD-invertible and

arr=[ 4 ]
R (A2+Qn) F

where
R= Z(Az + Q)" (A2 + Q)" Qa1 (A7) = (A2 + Q) QAT
n=0

Thus, for n > 2, we obtain

n | (Q2A)"2Qn, if n is even
(A2 + Q)"Qn = { A2(Q0A)"V2Q,, ifnisodd -

By (6) and (12), we have

(A2 + Q)" Qa1 = (I - Q22(A2Q2)A2)Qa1,
(A2 + 022)" Q2 = O2(A202)",

(A2 + Q22)"A2Q2 = (A202)"A20Q2,

(A2 + Q22)"A2Q21 = (A202)"A2Q01.

5181

(11)

(12)

(13)

(14)

(15)
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Note that

(AQAT = [ (Azsz) A2Q21A 0]

. 0
QUQ)™(AY)* = [Qz( 1y? sz(Azsz)dAzQzl(Al_l)2 0]’

Il
—_

(QUQ™AQYAY + (AQ™(AQ))
]
0 0

= | X3 (sz(Azsz)”(Azsz)f‘lAanAIl '
+HA4200)"(4200) M A2Qn)  Li(A2Qn)"(42Qu0)

From (13) — (16), we have

R= (I - sz(Azsz)dAz)Qm (AT + Z 022(A2Q2) ™ (A2Q2) 1 A2Qu (A )2

=1

+ Z:.(Azsz)n(l‘szz)j_lAZQzl(Afl)ZjJrl - (Azsz)dAzQﬂAIl-
j=1
Hence,

1 -
[A 0] Z (QUQ (AQYA® + (AQ)"(AQY (A%,

j=0

Now, by (13) and (17), we have

0o

(A+Q)= Z(Q(AQ)")(AQ)jAd + (AQ(AQY AN

=0

+ i(Q((AQ)d)j+1 + ((AQ)d)j+1A)A2jA”'

j=0

i.e. (i) holds.
By (18), we obtain

(A+Q - A=) (QAQ™AQVAY + (AQ(AQY )(A%)H!
j=0

+ Y (QUAQI™ +((AQ)%) 1 A)AT AT - A
=0

= QAQY"(A%) - (AQ)(AQ)A*
+ Z (QUQ™(AQYA® + (AQY(AQ) ) (A%

i (QUAQH ™ + (AQ) " A)A% AT,
j=0

5182

(16)

(17)

(18)

(19)
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By (19), it leads to
(A + Q) — A7

IA

IQAQ™ (A%l + (AQ)?AQAT|

+ Y IAQ (IAQINAYE) (IQA%IR + A1)
j=1

+ Y IQIAQN (IAQ A 1A

=0

+ Y 1A (IAQ A% IAA™.
j=0

If JAQIIIAYIP < T and [I(AQ)YlA%]l < 1, then

d_ ad
W < IQAQ" Al + IIAQ)* AQIl
A" AN I
1- IIAQ||||Ad||2(”Q””A P +1A4P)
ICAQ)NIIAI

KA1 AQTAD (lQuA™ + aam), 20)

where K(A) = |AllIA9]l. Thus, (i) holds. O

Corollary 2.2. Let A, Q € B(X) and Q be GD-invertible. Assume that AQ* = 0, then A + Q is GD-invertible if and
only if Q™(A + Q) is GD-invertible. If Q"AQ is GD-invertible and A% = 0, then

(i) A + Q is invertible and
(4+Q¢ = Y (@ [(AQH(AQ) + QUAQ (AQ)]
=0

+ ) QT [QUAQY + ((AQ)Yy 4]

=0

(i) Further, if |AQIIQY < 1, ICAQ)MIQ?N < 1, then

d _d
W < IAQ" QI + IIAQ)AQI
NAQTMIAQN [ ~aps ., iy
T agnadE QT+ IR
IAQA QI

[IAMQ™ I+ 1Q™Qlll,

T K Q) — IAQNIAZ)
where K(Q) = IQNIQCI

Theorem 2.3. Let A € B(X) be GD-invertible and any Q € B(X). Assume that AQ(I — A™) = 0 and A2A™Q =0,
then there exists a constant & > 0 such that A + Q is GD-invertible, when ||Q|| < 6, if and only if (A + Q)A™)9 exists.
If A*Q is GD-invertible and A™Q? = 0, then

(i) (A+Q) =v+w—0vQuw+{ L, 0" ?AAIQIA(A + Q)I"} X [I - A(A + Qu],
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(i) Further, if |AYQAAY|| < 1 and ||(AQ)IA?|| < 1, then

0

(A + Q) = A%l < 82(1 + 611IQll) + IIATlQll + 03,
A+ Q) — Al _ K(A)5lIAQIIA + A™A + Q)ll2) i (61I|A"(A + Q)II)”
Al B (1 -11A4QlN? oy 1A4QIl

1Al IlAdQIIIIQII) A4 sylAdQl
o) p
’ 2(7<<A) "1 oadq) T T adg) T 1o adql]

where K(A) = ||AY|||Al| and

_ it ad « _ IAYAYQ
o= (+AQTAY 0 = T FEs
w=Y [QUAQ*! + ((AQ*)*1A] AAT(AA™Y,
j=0
5, laliaany| [1QAQ)I + IAQ) A
2T 1 - I(AQ)[IlIA2| '
_ S1(1 +[IA™(A + Q)ll262) 1Al i (61||A”(A + Q)||)” .\ 5152]1Ql
’ 1A4Q| L\ adQ 1AdQ]

Proof. Suppose that A, A4 and Q are given by (2), (3), and (5), respectively. If A is invertible when [|Q]| < 6,
then Ind(A) = 0 and A™ = 0. From Lemma 1.2, there exists a constant 6 > 0 such that A + Q is invertible.
Thus, (A+Q)™! = I+ A'Q) A~ and Ind(A + Q) = 0. Thus, we get the results. If A is quasinilpotent, then
A" =1, A2A™Q = A’Q = 0, and A™Q? = Q? = 0. Thus, (i) holds by using Theorem 2.1.

Next, we consider nontrivial cases. By A"Q(I — A™) = 0, we have Q1 =0 and

| Qu Qn _| A1+Qn Q2
Q_[ 0 sz]'A+Q_[ 0 Az + Qo 1)

with respect to the decomposition X = N(A™)®R(A™). Let A be GD-invertible with ind(A) > 0 and o(A) # {0},
i.e. Aisneither invertible nor quasinilpotent. By Lemma 1.1, 6(A) = 0(A1) U {0} and by Lemma 1.4, we have

dist(0, s(A)\{0}) = (A%~ > 0.

Now, we can conclude that there exist two disjoint closed subsets M; and M, such that g.(A;) = {A :
dist(A, 0(A1)) < €} € M; and 0.(Ay) = {A : dist(A, 0(A2)) < €} € M, for small enough € > 0. Applying
Lemma 1.2 and (21), for some constant 6 > 0 and [|Q|| < 6, we get

G(Al + Qll) C GE(Al) C Ml, O(Az + Q22) C UE(Az) C M2.
It shows that [|Q11]| < 6 and [|Q22]| < 6. Note that
0(A1 + Qll) N O(Az + sz) =0.

By Lemma 1.2, we conclude that

O'(A + Q) = O'(A1 + Qll) U G(Az + sz)

and there always exists a 6 > 0 such that A; + Qq; is invertible. By using (21) and Lemma 1.3, we note that
(A + Q)! exists if and only if (A + Q)Y exists. i.e. (A™(A + Q)) exists.
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Now, we give the proof of (i). Assume that A2A™Q = 0, implies A2Q2 = 0. Since A"Q? = 0, we get that
Q2, =0, Q3, = 0. From the existence of (A"AQ)", we have that (A2Q2,) exists. By Cline’s formula, we have
(szAz)d = sz[(Azsz)z]dAQ. If AnQ is GD-invertible and A%sz = 0, Q%Z = 0, by Theorem 21, we get

(A2 + Q) = ) (Qa((A42Q2))*! + ((A2Qm) ) A2) A7 AT (22)
j=0
Using Lemma 1.3, we have that B = A + Q is GD-invertible and

a_ | Ar+0m)™ Y
“A+Q) ‘[ 0 (Aa+Qn) |’ )

where

Y o= ) (A + Q) P Qu(As + Qn)'(A2 + Q)
n=0
—(A1 + Qu) ' Qu2(A2 + Q).
Note that
(A1 +Qu)'@0=(T+A"QuA'@0=(I+AQ) 'A% =0, (24)
Thus, we have

[A™(A + Q)

0@ (A2 + Qn)?

= 08 ) (Qn((AQ0)V*! + (A2Qm)")* A42)A7 AT
j=0

= i [QUAQY ™! + (AQ)y ™ A] A A™(AA™)"

=0

—.

and
[ o ] - {Z V" AAYQIA™(A + Q)]”}
P n=0
X [I-A™A+ Quw]—vQuw. (26)
From (23)—(26), we get (i).
By |IAYQAAY|| < 1, we obtain
IAT Quill < 1. (27)

Obviously, 0(A;'Q11) U {0} = 0(Qu1A;") U {0}, which implies that [|Q11 A}l < 1. By (27), we obtain

v = (I+A%Q)1AY = (I+A7'Qn) AT

(o]

Y @arQnyart =) (atQyal. (28)
n=0

n=0
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From (27) and (i), we obtain

(o)

(A+Q)-Ad= {Z v"2AAYQIAT(A + Q)]"} X [I- A™(A + Q)w]

n=0
+0+w—ovQuw — AY

n=0

= {Z 02 AAYQIAT(A + Q)]”} X [T - A™(A + Q)]

+ Z(AdQ)”Ad +w — vQuw — A%

n=0

= {Z 02 AAYQIAT(A + Q)]”} X [I - A™(A + Q)]

n=1

+ Z(AdQ)”Ad +w — vQuw.
n=0

Note that
. lA9[IASQI|
AdQ nAd < M2 XN s
nZ:f( : 1-jadQl
If [(AQ)lI1A?]] < 1, then
Y (i) -
ey —IAQ)AINIA2]|

From (25), (26), and (31), we obtain

llol| =

Y [QUAQY™ + (AQ)Y)*1A] AY A™(AA™Y"

j=0

(o8]

r‘—"“‘\

=0 =0

8

< Y 1IQ(AQ I (IAQ A1) 1A IAA™Y

o

+)lAQ) U(IAQ A TATATIIAA™

j=0

<20 (AQIAZ) TATIIAA™ [IQAQ) + IAQ A
j=0

IIAWIIII(AA”)”II [IIQ(AQ)dII + II(AQ)dIIIIAII]
1-1I(AQ)lIA2|

2/

Z IQUAQ Y IAZN + ) |I((AQ)d)f”AIIIIA2||f} AT IIAA™)™|

5186

(29)

(30)

(81)

(32)
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Y1l

{Z AAQIAT(A + Q)]"} X [I-A™A+ Quw] - vQu

n=0

n+2
< I -A™A + QuwllLIIAAYQIl Z (||AdQ||) I[A™(A + QI"Il + [lvQuwl|
B 51+ IA™(A + Q)l6)IIA] i (61||A"(A + Q)II) , 21020101
h |IA4Q]| = |A4Q| |IA4Q]|

= 0s.
The proof is completed. [

Theorem 2.4. Let A € B(X) be GD-invertible and any Q € B(X). Assume A*Q(I — A™) = 0 and AA™Q?

5187

(33)

=0, then

there exists 6 > 0 such that A + Q is GD-invertible, when ||Q|| < 0, if and only if A™(A + Q) is GD-invertible. If

A™AQ is GD-invertible and A™A? = 0, then
(i) (A+Q) =v+w—0vQuw+{Li, 0" 2AAIQIA™(A + Q") X [I - A™(A + Q).
(i) Further, if |AYQAAY|| < 1, IAQIIQY)II < 1, and I(AQ)UNIQ?II < 1, then

01
(A + Q) = A%l < &2(1 + 61lIQll) + = Aot
A+ Q) — Al _ K(A)IAQIIA + IA™(A + Q)ll22) i (51||A"(A + Q)II)
1Al B (1 -11A4QlN? |A4Q|

< (Al IlAdQIIIIQII) IIAdII Sall A QI
0 ,
" 2(7((1‘1) T1ojadQn) T 1o Al T T Al

where K(A) = ||AY||Al| and

e adoyigd s 1A%1AYQ)
v=(+A%Q) 144, &, = T IAT0]
@ = A" ) QY [(AQ"(AQ) + Q*(AQ)" (A Q)]

j=0
Z(Aﬂ "QY [QUAQYH ! + ((AQ)Y)*1A] AT,

IIA”IIII (AQ)l [IIQdII + IIQdIIZ] AT NIAAT)™ [IIQ(AQ)dII + II(AQ)dIIIIAII]

27 1-=11QH2IIIIAQII " 1 - 11(AQ)[IIIA] ’
_ 61(1 + 82llA™(A + Q)l)IIA] i (61||A”(A + Q)||)" .\ 515,]1Ql
’ IA4Q| — lA4QI| 1A4Q -

Theorem 2.5. Let A € B(X) be GD-invertible and any Q € B(X). Assume that AQ(I — A™) = 0 and A™Q?

= AmQ,

then there exists a constant 6 > 0 such that A + Q is GD-invertible, when ||Q|| < 6, if and only if A™(A + Q) is

GD-invertible. If (A*Q)4 is GD invertible and PA™A(1 — P) = 0, then
D) (A+Q) = LiLo(A'Q)"A% + w + t.
(i) Further, if |AYQAAY| < 1, |ATQ(A™Q)A|| < 1, then
(A + Q) = A%l < 61 + 62 + 63

IA+Q? Al _ QAT LAl
A9l = T-10a% T K@)

(5 + (53)
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where K(A) = ||A|l|AY]|, P is some idempotent operator, and

5 AdlIAY)|
v = AYI+QAYHY =Y AYQANH" S :”Q—,
(I +QA%) ZO QA% 01 = T o

(o)

Eo= ) 0"PQA + QAT - (A + Qw) - vQu,

n=0

w = Z& AMATQM A+ QT2 + T,

T = [(A"QU QYA +Q)]" = Z(A"Q(A"Q)dA)”,
n=0

5, o _larra+o i( Al )"+ !
(1 - IA"QUrQIAINE &4\ 1= TA"QUATQ)¥All) * T-TIATQ(A QAT

5 = IIQIIA”II(1+II(A+Q)||262)i( 1A+ QI )"+ Al
’ (1 - QAT L\ 1104 T 1T- QA

Proof. Suppose that A, A, and Q are given by (2), (3), and (5), respectively. From A*Q(I — A™) = 0, we get
that Q and B are presented by (21). If A is invertible or quasinilpotent, the proof follows as in the Theorem
2.3.

Suppose that A is GD-invertible with index(a) > 0 and o(A) # {0}, i.e. A is neither invertible nor
quasinilpotent. Similarly as in the proof of Theorem 2.3, we have that A; + Q1; is invertible and

(A1 + Q1) '@0 = (I + A%Q)4Ad = 0. (34)

According to (21) and (34), we obtain that (A + Q)¢ exists if and only if (Az + Q) exists, i.e., [A™(A + Q)]¢
exists.
Next, we consider the GD-invertibility of A; + Q2. By ATQ? = A™Q, we get ng = Q. It follows that

0(Q2) € {1,0}. If Q = 0204, = 02202, we get that Qy, is represented by

| I 0| | RU-Q RI-Q)
QZZ_[Xl 0]‘[1\1(1—@)]_)[1\1(1—@)]' (35)
From the above decomposition, A; has the form
| An A
A2 = [ Ay Ax ] (36)

Since PA™A(I — P) = 0, we obtain A = 0 and

| An O
A2 = [ An Ax ] (37)

From (35)-(37), we have

An +1 0 ] (38)

Ar+On = [ An+X1 Ap
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Since Q is an unit in Banach algebra B(N(A™)) and A; is quasinilpotent, we obtain that A1, A are both
quasinilpotent and Aj; + I is invertible. By lemma 1.3,

w =0 (A2 + Qu)*

(An+D1 0 ]

oa[ WD O

00

=) AMAQMA+ QT+ T, (39)

n=0

where

ZA (Axn + Xy) (An +1)” ]

= [(ATQA™Q)((A + Q)1 Z(A”Q(A”Q)dA)”

By the invertibility of A1 + Q11, Lemma 1.3, (39), and (34), we obtain

a_| Ar+0n)! Z
“+0) ‘[ 0 (A2+sz>d]

(A + Q)™ Z1 Z12
= 0 (A11 + I)_1 0
0 X 0
=v+w+t, (40)

where

z= Z(Al +Q11)"2Q12(Az + Q)" (A2 + Q)™ — (A1 + Qu1) 'Qu2(A2 + Q)Y,
n=0

(e8]

t= Z "2Q(A + Q)"A™(I — (A + Q)w) — vQuw.

n=0

Similarly, for the second equation of (39), we have the same result.
If A is quasinilpotent, then A"Q? = Q? = 0. It means that the proof of A + Q is similar to the section of
the depiction of A; + Q2 in this case. Now we completed the proof of (i).
If [AYQAAY < 1, then [|A;'Qull < 1. Thus, it proves that [|Q11 A}l < 1 (it is equivalent to [|QA%| < 1)
from
a(AYQAAY) U {0} = 6(QAY) U {0}

From (34), we obtain

v=(~1+A%)A% = (4 +Qu) ' ®0
=Y ATQuATY" = ) AdQAY)" (41)
n=0 n=0
Using the result in (i), we obtain

(A+Q -4l =

(AYQ)"AY +w + t — A1
Ad

Q'A% +t +w. (42)

n=1
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From (41) and ||QAY|| = ||Q11A1’1|| < 1, we obtain

IQAIIAY _

<= -
1 - [IQAY

01.

i Ad (QAd)n
n=1

By (39) and [|[A"Q(A™Q)?A|| < 1, we get

llwl| =

Y AATQM A+ QT + TH

n=0

< +[[7|

Y AMATQ (A + Q)T
n=0

< Z A" ICA™Q)™ (A + QT 121 + 171l
n=0

IA"Q"(A+ QI v 1A ’ 1
= 0.
= - 1A QAT QN AN Z‘ (1 - IIA”Q(A“Q)“‘AII) T jArQArQ Al -

n=0
In order to complete the proof of (ii), we do some calculations as bellows

(o)

lIEll = Z v"2Q(A + Q)"A™(I ~ (A + Q)w) ~ vQw

n=0
<) 720 + QAT - (A + Qyw)|| + IleQul
n=0
IQUATII(L + (A + Q)llads) (A +QIl ' _&allQll  _
=T A- QAR nz_é(l—llQAdll) T lQad T
According to (42)—(45), we have
A+ Q) - A%l = ||} A%YQAYY" +w + ¢
n=1
< |[X A%@aAy|| + lkoll + )
n=1
< 61 + (32 + 63.

From (46), the proof is completed. [
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