A New Application of Quasi Monotone Sequences and Quasi Power Increasing Sequences to Factored Infinite Series

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In this paper, we generalize a known theorem under more weaker conditions dealing with the generalized absolute Cesàro summability factors of infinite series by using quasi monotone sequences and quasi power increasing sequences. This theorem also includes some new results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence (c_{n}) and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [2]). A sequence (d_{n}) is said to be δ-quasi monotone, if $d_{n} \rightarrow 0, d_{n}>0$ ultimately, and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n+1}$ and $\delta=$ $\left(\delta_{n}\right)$ is a sequence of positive numbers (see [3]). A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left\{f_{n}(\sigma, \gamma)\right\}=\left\{n^{\sigma}(\log n)^{\gamma}, \gamma \geq 0,0<\sigma<1\right\}$ (see [12]). If we take $\gamma=0$, then we get a quasi- σ-power increasing sequence. It is known that every almost increasing sequence is a quasi- σ-power increasing sequence for any non-negative σ, but the converse is not true for $\sigma>0$ (see [11]). Let $\sum a_{n}$ be a given infinite series. We denote by $t_{n}^{\alpha, \beta}$ the nth Cesàro mean of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(n a_{n}\right)$, that is (see [8])

$$
\begin{equation*}
t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } n>0 \tag{2}
\end{equation*}
$$

Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined by (see [4])

$$
\theta_{n}^{\alpha, \beta}=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha, \beta}\right|, & \alpha=1, \beta>-1, \tag{3}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & 0<\alpha<1, \beta>-1 .
\end{array}\right.
$$

[^0]The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta|_{k}, k \geq 1$, if (see [9])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{4}
\end{equation*}
$$

If we take $\beta=0$, then $|C, \alpha, \beta|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability (see [10]). Also, if we take $\beta=0$ and $\alpha=1$, then we obtain $|C, 1|_{k}$ summability .

2. Known Result

The following theorem is known dealing with an application of δ-quasi monotone sequence and power increasing sequence.
Theorem 2.1 ([5]). Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (3). Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(X_{n} / n\right)$ and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi monotone with $\sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent, and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{5}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta|_{k}, 0<\alpha \leq 1, \alpha+\beta>0$, and $k \geq 1$.

3. Main Result

The aim of this paper is to generalize Theorem A under more weaker conditions. We shall prove the following theorem.
Theorem 3. 1 Let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (3). Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(A_{n}\right)$ such that it is δ-quasi-monotone with $\Delta A_{n} \leq \delta_{n}, \sum n \delta_{n} X_{n}<\infty, \sum A_{n} X_{n}$ is convergent, and $\left|\Delta \lambda_{n}\right| \leq\left|A_{n}\right|$ for all n. If the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{6}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta|_{k}, 0<\alpha \leq 1,(\alpha+\beta-1)>0$, and $k \geq 1$.
Remark 3. 2 It should be noted that the condition (6) is reduced to the condition (5) when $\mathrm{k}=1$. When $k>1$, condition (6) is weaker than condition (5) but the converse is not true. As in [13], we can show that if (5) is satisfied, then we get

$$
\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n}=O\left(X_{m}\right)
$$

To show that the converse is false when $k>1$, as in [6], the following example is sufficient. We can take $X_{n}=n^{\sigma}, 0<\sigma<1$, and then construct a sequence $\left(u_{n}\right)$ such that

$$
u_{n}=\frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}{ }^{k-1}}=X_{n}-X_{n-1}
$$

whence

$$
\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}{ }^{k-1}}=\sum_{n=1}^{m}\left(X_{n}-X_{n-1}\right)=X_{m}=m^{\sigma}
$$

and so

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n} & =\sum_{n=1}^{m}\left(X_{n}-X_{n-1}\right) X_{n}^{k-1}=\sum_{n=1}^{m}\left(n^{\sigma}-(n-1)^{\sigma}\right) n^{\sigma(k-1)} \\
& \geq \sigma \sum_{n=1}^{m} n^{\sigma-1} n^{\sigma(k-1)}=\sigma \sum_{n=1}^{m} n^{\sigma k-1} \sim \frac{m^{\sigma k}}{k} \text { as } m \rightarrow \infty
\end{aligned}
$$

It follows that

$$
\frac{1}{X_{m}} \sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n} \rightarrow \infty \quad \text { as } \quad m \rightarrow \infty
$$

provided $k>1$. This shows that (5) implies (6) but not conversely.
We need the following lemmas for the proof of our theorem.
Lemma 3. 3 (Abel transformation)([1]). Let $\left(a_{k}\right),\left(b_{k}\right)$ be complex sequences, and write $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} b_{k}=\sum_{k=1}^{n-1} s_{k} \Delta b_{k}+s_{n} b_{n} \tag{7}
\end{equation*}
$$

Lemma 3. 4 ([4]). If $0<\alpha \leq 1, \beta>-1$, and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{8}
\end{equation*}
$$

Lemma 3. 5 ([7]). Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If $\left(A_{n}\right)$ is a δ-quasi-monotone sequence with $\Delta A_{n} \leq \delta_{n}$ and $\sum n \delta_{n} X_{n}<\infty$, then we have the following

$$
\begin{align*}
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta A_{n}\right|<\infty \tag{9}\\
& n A_{n} X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{10}
\end{align*}
$$

Lemma 3. 6 ([7]). Under the conditions regarding $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ of the theorem, we have

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{11}
\end{equation*}
$$

4. Proof of Theorem 3.1

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the nth (C, α, β) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

First, applying Abel's transformation and then using Lemma 3. 4, we have that

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}
$$

$$
\begin{aligned}
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta}=T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}
\end{aligned}
$$

To complete the proof of Theorem 3. 1, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \quad \text { for } \quad r=1,2
$$

Firstly, using (2) and then applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$ and $k>1$, we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n}\left|\frac{1}{n^{\alpha+\beta}} \sum_{v=1}^{n-1} v^{(\alpha+\beta)} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta) k}}\left\{\sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left|A_{v}\right|^{k}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\} \times\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left|A_{v}\right|^{k}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left|A_{v} \| A_{v}\right|^{k-1}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{d x}{x^{2+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m}\left|A_{v}\right| v^{k-1} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1} X_{v}^{k-1}=O(1) \sum_{v=1}^{m} v\left|A_{v}\right| \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}}}
\end{aligned}
$$

Now, using Abel's transformation we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} & =O(1) \sum_{v=1}^{m} v\left|A_{v}\right| \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}}=O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|A_{v}\right|\right) \sum_{p=1}^{v} \frac{\left(\theta_{p}^{\alpha, \beta}\right)^{k}}{p X_{p}^{k-1}}+O(1) m\left|A_{m}\right| \sum_{v=1}^{m} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}|(v+1) \Delta| A_{v}\left|-\left|A_{v} \| X_{v}+O(1) m\right| A_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta A_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|A_{v}\right| X_{v}+O(1) m\left|A_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

in view of hypotheses of Theorem 3. 1 and Lemma 3.5. Again, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}^{\alpha, \beta}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n}=O(1) \sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}^{k-1}} \sum_{v=n}^{\infty}\left|\Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| \sum_{n=1}^{v} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}^{k-1}}=O(1) \sum_{v=1}^{\infty}\left|\Delta \lambda_{v}\right| X_{v}=O(1) \sum_{v=1}^{\infty}\left|A_{v}\right| X_{v}<\infty
\end{aligned}
$$

in view of the hypotheses of Theorem 3.1 and Lemma 3. 6. This completes the proof of Theorem 3.1. If we take $\beta=0$, then we get a new result for $|C, \alpha|_{k}$ summability factors. Also, if we take $\beta=0$ and $\alpha=1$, then we obtain a result dealing with $|C, 1|_{k}$ summability factors. Finally, if we take $\gamma=0$, then we get another new result dealing with quasi- σ-power increasing sequences.

Acknowledgement The author expresses his thanks to the referee for his/her useful comments and suggestions for the improvement of this paper.

References

[1] N. H. Abel, Untersuchungen über die Reihe $1+\frac{m}{1} x+\frac{m(m-1)}{2.1} x^{2}+\frac{m(m-1)(m-2)}{3.2 .1} x^{3}+\ldots$, J. Reine Angew. Math. 1 (1826) 311-339.
[2] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč. 5 (1956) 483-522 (Russian).
[3] R. P. Boas, Quasi positive sequences and trigonometric series, Proc. London Math. Soc. 14A (1965) 38-46.
[4] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci. 57 (2008) 205-209.
[5] H. Bor, On generalized absolute Cesàro summability, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N. S.) LVII (2011) 323-328.
[6] H. Bor, Quasi-monotone and almost increasing sequences and their new applications, Abstr. Appl. Anal. 2012 Art. ID 7935486 pp.
[7] H. Bor, On the quasi monotone and generalized power increasing sequences and their new applications, J. Classical Anal. 2 (2013) 139-144.
[8] D. Borwein, Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2) 9 (1958) 310-316.
[9] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc. 67 (1970) 321-326.
[10] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141.
[11] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen 58 (2001) 791-796.
[12] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224-1230.
[13] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010) 2645-2648.

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05, 40G99
 Keywords. Cesàro mean, power increasing sequences, quasi monotone sequences, infinite series, Hölder inequality, Minkowski inequality

 Received: 25 December 2016; Revised: 07 January 2017; Accepted: 09 January 2017
 Communicated by Eberhard Malkowsky
 Email address: hbor33@gmail.com (Hüseyin Bor)

