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Available at: http://www.pmf.ni.ac.rs/filomat

Inequalities for H-invex Functions with Applications for Uniformly
Convex and Superquadratic Functions

Marek Niezgodaa

a Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland

Abstract. In this paper, we introduce and study H-invex functions including the classes of convex, η-invex,
(F,G)-invex, c-strongly convex, ϕ-uniformly convex and superquadratic functions, respectively. Each H-
invex function attains its global minimum at an H-stationary point. For H-invex functions we prove Jensen,
Sherman and Hardy-Littlewood-Pólya-Karamata type inequalities, respectively. We also analyze such
inequalities when the control function H is convex. As applications, we give interpretations of the obtained
results for uniformly convex and superquadratic functions, respectively.

1. Introduction and Summary

In this paper we propose systematic study of the class of H-invex functions and its subclasses from the
point of view of majorization and weighted majorization. (See below and Section 2 for relevant definitions.)
It is essential for an H-invex function f that an H-stationary point of f is a global minimizer of f .

Our aim is to establish Jensen, Sherman and HLPK type inequalities for H-invex functions. Conse-
quently, we will obtain such inequalities for all classes (i)-(vii) of functions defined in Section 2.

We say that a vector y = (y1, y2, . . . , yn) ∈ Rn is majorized by a vector x = (x1, x2, . . . , xn) ∈ Rn, written as
y ≺ x, if

k∑
i=1

y[i] ≤

k∑
i=1

x[i] for k = 1, 2, . . . ,n

with equality for k = n (see [16, p. 8]). Throughout the symbols x[i] and y[i] stand for the ith largest entry of
x and y, respectively.

By Birkhoff’s and Rado’s Theorems [16, pp. 10,34,162], y ≺ x if and only if y = xP for some n× n doubly
stochastic matrix P.

In the forthcoming theorem we demonstrate Hardy-Littlewood-Pólya-Karamata’s result showing a
relationship between majorization and convexity [15, 16].

Theorem A [15, p. 75], [16, p. 92] (HLPK’s inequality) Let f : I→ R be a convex continuous function on an
interval I ⊂ R. Let x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, . . . , yn) ∈ In.
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If y ≺ x, then

n∑
k=1

f (yk) ≤
n∑

k=1

f (xk). (1)

If f is concave, then the inequality (1) is reversed.
We now present Sherman’s inequality (3) (cf. [22], see also [9, 11, 17]).
Theorem B [22] (Sherman’s inequality) Let f : I→ R be a convex function defined on an interval I ⊂ R. Let

x = (x1, x2, . . . , xm) ∈ Im, y = (y1, y2, . . . , yn) ∈ In, a = (a1, a2, . . . , am) ∈ Rm
+ and b = (b1, b2, . . . , bn) ∈ Rn

+.
If

y = xP and a = bPT (2)

for some m × n column stochastic matrix P = (pi j), then

n∑
j=1

b j f (y j) ≤
m∑

i=1

ai f (xi). (3)

If f is concave, then the inequality (3) is reversed.
The relation (2) is called weighted majorization of pairs (x,b) and (y, a) (see [9, 11]).
The paper is organized as follows. In Section 2 we introduce the class of H-invex functions. We also

present its subclasses as convex, η-invex, (F,G)-invex, c-strongly convex, uniformly convex with modulus
ϕ, and superquadratic functions, respectively. Thus Section 2 collects some important examples of H-invex
functions.

In Section 3 we establish some Jensen type inequalities for H-invex functions. Specifications for (F,G)-
invex and η-invex functions are also provided. In Section 4 we deal with Sherman type inequalities for
H-invex functions. We also show corollaries to (F,G)-invex and η-invex functions. As special case, we
demonstrate Hardy-Littlewood-Pólya-Karamata like theorems in Section 5. Sections 6 and 7 are devoted
to applications. Here we interpret the obtained results for uniformly convex and superquadratic functions,
respectively.

We end this summary with the remark that the results obtained for the class of H-invex functions (class
(iv) in the paper) introduced in Section 2 includes all the other results dealt with in this paper.

2. H-invex Functions

We begin with a review of some important classes of functions.
(i). Convex functions.
A function f : I → R defined on a convex set I ⊂ Rn is said to be convex on I, if for any points xi ∈ I and

scalars pi ≥ 0, i = 1, . . . ,m, with
m∑

i=1
pi = 1 and x̄ =

m∑
i=1

pixi, the following Jensen’s inequality holds:

f (x̄) ≤
m∑

i=1

pi f (xi). (4)

It is well known that if f : I→ R is a differentiable convex function then (sub)differential inequality holds, as
follows:

f (x) − f (y) ≥ 〈∇ f (y), x − y〉 for x, y ∈ I, (5)

where the symbol ∇ stands for the gradient, and 〈·, ·〉 is an inner product on Rn.
It is a consequence of (5) that each stationary point y ∈ I of f (i.e., ∇ f (y) = 0) is a global minimizer of f , that

is
f (x) ≥ f (y) for x ∈ I.
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(ii). η-invex functions.
Let η : I × I → Rn be a continuous function, where I ⊂ Rn is an (open) convex set. A differentiable

function f : I→ R is called η-invex, if for all x, y ∈ I,

f (x) − f (y) ≥ 〈∇ f (y), η(x, y)〉 (6)

(see [8, p. 1]).
It follows from (6) that each stationary point y ∈ I of f (i.e., ∇ f (y) = 0) is a global minimizer of f .
For applications of invex functions in optimization and mathematical programming, see [5, 8, 12, 14, 20].
(iii). (F,G)-invex functions.
Let V be a real linear space, and I, J ⊂ V be two convex sets in V. Let F : I × I → J and G : J × I → R

be two continuous functions, where I ⊂ Rn is a convex set and J ⊂ Rn. A function f : I → R is said to be
(F,G)-invex, if for all x, y ∈ I,

f (x) − f (y) ≥ Gy(F(x, y)), (7)

where Gy(z) = G(z, y) for y, z ∈ I.
By virtue of (7), if y ∈ I is a G-stationary point of f (i.e., Gy(·) ≡ 0) then f has a global minimum at y.
It is readily seen that an η-invex function is (F,G)-invex for F(x, y) = η(x, y) and Gy(·) = 〈∇ f (y), ·〉 with

V = J = Rn.
(iv). H-invex functions.
Let H : I × I → R be a continuous function, where I ⊂ V is a convex set in a real linear space V. A

function f : I→ R is called H-invex, if for all x, y ∈ I,

f (x) − f (y) ≥ Hy(x), (8)

where Hy(x) = H(x, y) for x, y ∈ I.
Similarly as above, if f is H-invex and y ∈ I is an H-stationary point of f (i.e., Hy(·) ≡ 0), then f has a

global minimum at y.
Evidently, each (F,H)-invex function is H-invex for Hy being the composition Gy ◦ Fy, i.e.,

H(x, y) = Hy(x) = (Gy ◦ Fy)(x) = G(F(x, y), y) for x, y ∈ I.

We now present some further special cases of the notion of H-invexity.
(v). Uniformly convex functions with modulus ϕ.
A function f : I → R defined on a convex set I ⊂ V = Rn is said to be uniformly convex with modulus

ϕ : R+ → R+, if the following inequality holds for all points x, y ∈ I and p ∈ [0, 1]:

f (px + (1 − p)y) + p(1 − p)ϕ(‖x − y‖) ≤ p f (x) + (1 − p) f (y), (9)

where ‖ · ‖ = 〈·, ·〉1/2 and 〈·, ·〉 is the standard inner product on V = Rn (see [23]).
In the case of differentiable f , condition (9) amounts to

f (x) − f (y) ≥ 〈∇ f (y), x − y〉 + ϕ(‖x − y‖) for x, y ∈ I. (10)

Thus a uniformly convex function with modulus ϕ is H-invex with

H(x, y) = 〈∇ f (y), x − y〉 + ϕ(‖x − y‖) for x, y ∈ I.

(vi). c-strongly convex functions.
A function f : I→ R defined on a convex set I ⊂ V = Rn is said to be c-strongly convex on I, where c ∈ R+,

if the following inequality holds for all points x, y ∈ I and p ∈ [0, 1]:

f (px + (1 − p)y) +
c
2

p(1 − p)‖x − y‖2 ≤ p f (x) + (1 − p) f (y), (11)
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where ‖ · ‖ = 〈·, ·〉1/2 and 〈·, ·〉 is the standard inner product on V = Rn (see [6, 21]).
For differentiable f , condition (11) becomes

f (x) − f (y) ≥ 〈∇ f (y), x − y〉 +
c
2
‖x − y‖2 for x, y ∈ I.

(see [6, p. 684]).
Therefore a c-strongly convex function f is H-invex with

H(x, y) = 〈∇ f (y), x − y〉 +
c
2
‖x − y‖2 for x, y ∈ I.

(vii). Superquadratic functions.
A function f : Rm

+ → R defined on the convex cone I = Rm
+ is said to be superquadratic, if for each point

y ∈ Rm
+ there exists a vector C(y) ∈ Rn such that the following condition is fulfilled:

f (x) − f (y) ≥ 〈C(y), x − y〉 + f (|x − y|) for x, y ∈ I, (12)

where |z| = (|z1|, . . . , |zm|) for z = (z1, . . . , zm) ∈ Rm = V (see [1]).
It is easy to check that a superquadratic function is H-invex with

H(x, y) = 〈C(y), x − y〉 + f (|x − y|) for x, y ∈ I = Rm
+ .

For further information on superquadratic functions, consult [1–3, 7].

3. Jensen Like Inequality for H-invex Functions

Unless stated otherwise, V is a real linear space, and I, J ⊂ V are (nonempty) convex sets in V. Addi-
tionally, � is a preorder on J. The assumptions just made shall be in force throughout the paper.

We say that a map Φ : I→ J is �-convex if

Φ(αv + (1 − α)w) � αΦ(v) + (1 − α)Φ(w) for v,w ∈ I and α ∈ [0, 1]. (13)

Likewise, we say that a map Ψ : J→ R is �-increasing if

v � w implies Ψ(v) ≤ Ψ(w) for v,w ∈ J. (14)

In what follows, the notation (w1, . . . ,wk) = (v1, . . . , vm)S for an m × k real matrix S = (sil) and vectors
w1, . . . ,wk, v1, . . . , vm ∈ V means that (see [18])

wl =

m∑
i=1

silvi for l = 1, . . . , k.

In this section we are interested in some results for H-invex functions f : I → R extending the classical
Jensen’s inequality for convex functions (see (4)). Special attention is paid to the case when the control
function H has the property that

the map x→ H(x, y), x ∈ I, is convex

for any (or fixed) point y ∈ I.

Theorem 3.1. Let H : I × I → R be a continuous function. Let f : I → R be an H-invex function. Let xi ∈ I and

pi ≥ 0, i = 1, . . . ,m, with
m∑

i=1
pi = 1. Denote x̄ =

m∑
i=1

pixi.
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Then the following Jensen type inequality holds:

f (x̄) +

m∑
i=1

piH(xi, x̄) ≤
m∑

i=1

pi f (xi). (15)

If in addition the function H(·, x̄) is convex on I, then

f (x̄) + H(x̄, x̄) ≤
m∑

i=1

pi f (xi). (16)

Proof. Since f : I→ R is H-invex, it follows that

f (xi) − f (x̄) ≥ Hx̄(xi) = H(xi, x̄)

(see (8) in the definition (iv) in Section 2). This implies

m∑
i=1

pi f (xi) − f (x̄) =

m∑
i=1

pi f (xi) −
m∑

i=1

pi f (x̄)

=

m∑
i=1

pi[ f (xi) − f (x̄)] ≥
m∑

i=1

piH(xi, x̄).

This completes the proof of (15).
If in addition the function H(·, x̄) is convex on I, then

m∑
i=1

piH(xi, x̄) ≥ H

 m∑
i=1

pixi, x̄

 = H(x̄, x̄). (17)

By combining (15) and (17) one gets (16).
Many inequalities of the form (15) and (16) have proved their worth, with f assumed H-invex.
We now interpret Theorem 3.1 for (F,G)-invex functions.

Proposition 3.2. Let F : I × I → J and G : J × I → R be continuous functions. Let f : I → R be an (F,G)-invex

function. Let xi ∈ I and pi ≥ 0, i = 1, . . . ,m, with
m∑

i=1
pi = 1. Denote x̄ =

m∑
i=1

pixi.

Then the following Jensen type inequality holds:

f (x̄) +

m∑
i=1

piG(F(xi, x̄), x̄) ≤
m∑

i=1

pi f (xi). (18)

If in addition the function F(·, x̄) is �-convex and G(·, x̄) is convex and �-increasing, then

f (x̄) + G(F(x̄, x̄), x̄) ≤
m∑

i=1

pi f (xi).

Proof. It is now enough to use Theorem 3.1 with H(x, y) = G(F(x, y), y) for x, y ∈ I.
The composition H(·, x̄) = Hx̄(·) = Gx̄ ◦ Fx̄(·) is convex, whenever Fx̄ is �-convex and Gx̄ is convex and

�-increasing.
In fact, the �-convexity of Fx̄ means that (see (13))

Fx̄(αv + (1 − α)w) � αFx̄(v) + (1 − α)Fx̄(w) for v,w ∈ I and α ∈ [0, 1].



M. Niezgoda / Filomat 31:15 (2017), 4781–4794 4786

Then the �-increasity of Gx̄ ensures that (see (14))

Gx̄Fx̄(αv + (1 − α)w) ≤ Gx̄ (αFx̄(v) + (1 − α)Fx̄(w)) for v,w ∈ I and α ∈ [0, 1].

Furthermore, the convexity of Gx̄ on J quarantees that

Gx̄ (αFx̄(v) + (1 − α)Fx̄(w)) ≤ αGx̄Fx̄(v) + (1 − α)Gx̄Fx̄(w) for v,w ∈ I and α ∈ [0, 1].

All of this shows the standard convexity of Hx̄ = Gx̄ ◦ Fx̄, as claimed.

Remark 3.3. In Proposition 3.2, in order to obtain (18), we do not need to assume that G(·, x̄) is �-increasing
provided that the function F(·, x̄) is affine.

Remind that a subset D ⊂ V is said to be a convex cone if v,w ∈ D implies v + w ∈ D, and if 0 ≤ α ∈ R and
v ∈ D imply αv ∈ D.

If D is a convex cone in V, then the cone preorder �D is defined for v,w ∈ V by

v �D w iff w − v ∈ D.

If V is equipped with a real inner product 〈·, ·〉, and D is a convex cone in V, then the dual cone of D is
defined as follows:

dual D = {v ∈ V : 〈u, v〉 ≥ 0 for all u ∈ D}.

Therefore,
v �dual D w iff w − v ∈ dual D iff 〈u,w − v〉 ≥ 0 for all u ∈ D.

The �dual D-convexity of a map Φ : I→ J means that

Φ(αv + (1 − α)w) �dual D αΦ(v) + (1 − α)Φ(w) for v,w ∈ I and α ∈ [0, 1]. (19)

Equivalently,

〈u,Φ(αv + (1 − α)w)〉 �dual D α〈u,Φ(v)〉 + (1 − α)〈u,Φ(w)〉 (20)

for v,w ∈ I, α ∈ [0, 1] and u ∈ D.
A specification of Proposition 3.2 for η-invex functions and V = J = Rn is demonstrated below.

Corollary 3.4 (Cf. Craven and Dragomir [13, Proposition 1]). Let η : I × I → Rn be a continuous function,
where I ⊂ Rn is an open convex set. Let f : I → R be an η-invex function. Let xi ∈ I and pi ≥ 0, i = 1, . . . ,m, with
m∑

i=1
pi = 1. Denote x̄ =

m∑
i=1

pixi.

Then the following Jensen type inequality holds:

f (x̄) +

m∑
i=1

pi〈∇ f (x̄), η(xi, x̄)〉 ≤
m∑

i=1

pi f (xi).

If ∇ f (x̄) ∈ D, where D is a convex cone in Rn, and the function η(·, x̄) is convex with respect to dual D, then

f (x̄) + 〈∇ f (x̄), η(x̄, x̄)〉 ≤
m∑

i=1

pi f (xi).

Proof. In order to prove Corollary 3.4, it suffices to apply Proposition 3.2 with

F(x, y) = η(x, y) and Gy(·) = G(·, y) = 〈∇ f (y), ·〉 for x, y ∈ I,

and with � being the cone preorder �dual D induced by the dual cone of D.
Indeed, the function F(·, x̄) = η(·, x̄) is convex with respect to dual D, i.e., it is �dual D-convex. Since

∇ f (x̄) ∈ D, the function Gx̄(·) = 〈∇ f (x̄), ·〉 is �dual D-increasing. Simultaneously, Gx̄(·) is linear, so it is also
convex.

In conclusion, the function Hx̄(·) = Gx̄ ◦ Fx̄(·) = 〈∇ f (x̄), η((·), x̄)〉 is convex in the standard sense.
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4. Sherman Like Theorem for H-invex Functions

As previously, V is a real linear space, and I, J ⊂ V are convex sets, and � is a preorder on J (unless
otherwise specified).

The following theorem is of fundamental importance.

Theorem 4.1. Let H : I × I → R be a continuous function. Let f : I → R be an H-invex function. Let
x = (x1, . . . , xm) ∈ Im, y = (y1, . . . , yn) ∈ In, a = (a1, . . . , am) ∈ Rm

+ and b = (b1, . . . , bn) ∈ Rn
+.

If

y = xP and a = bPT (21)

for some m × n column stochastic matrix P = (pi j), then

n∑
j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi jH(xi, y j) ≤
m∑

i=1

ai f (xi). (22)

If in addition for each y ∈ I the function Hy(·) is convex, then

n∑
j=1

b j f (y j) +

n∑
j=1

b jH(y j, y j) ≤
m∑

i=1

ai f (xi). (23)

Proof. Taking into account (21) we get

(y1, . . . , yn) = (x1, . . . , xm)P,

that is, y j =
m∑

i=1
pi jxi with

m∑
i=1

pi j = 1, j = 1, . . . ,n, and pi j ≥ 0. So, the H-invexity of f implies

f (y j) +

m∑
i=1

pi jH(xi, y j) ≤
m∑

i=1

pi j f (xi) for j = 1, 2, . . . ,n

(see (15) in Theorem 3.1). Therefore we can write

n∑
j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi jH(xi, y j) ≤
n∑

j=1

b j

m∑
i=1

pi j f (xi).

Equivalently,
n∑

j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi jH(xi, y j) ≤
m∑

i=1

n∑
j=1

b jpi j f (xi).

It follows from (21) that a = bPT. Hence ai =
n∑

j=1
b jpi j, i = 1, 2, . . . ,m.

In summary, we obtain

n∑
j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi jH(xi, y j) ≤
m∑

i=1

 n∑
j=1

b jpi j

 f (xi) =

m∑
i=1

ai f (xi),

which is (22), as required.
To see (23), we observe that the functions Hy j (·) are convex. So, for each j = 1, . . . ,n,

H(y j, y j) = H

 m∑
i=1

pi jxi, y j

 ≤ m∑
i=1

pi jH(xi, y j),
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and further
n∑

j=1

b jH(y j, y j) ≤
n∑

j=1

b j

m∑
i=1

pi jH(xi, y j).

This and (22) quarantee that (23) holds, as was to be proved.
Theorem 4.1 has an immediate consequence for (F,G)-invex functions.

Proposition 4.2. Let F : I × I → J and G : J × I → R be continuous functions. Let f : I → R be an (F,G)-invex
function. Let x = (x1, . . . , xm) ∈ Im, y = (y1, . . . , yn) ∈ In, a = (a1, . . . , am) ∈ Rm

+ and b = (b1, . . . , bn) ∈ Rn
+.

If y = xP and a = bPT for some m × n column stochastic matrix P = (pi j), then

n∑
j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi jG(F(xi, y j), y j) ≤
m∑

i=1

ai f (xi).

If in addition for each y ∈ I the function Fy(·) is �-convex and Gy(·) is convex and �-increasing, then

n∑
j=1

b j f (y j) +

n∑
j=1

b jG(F(y j, y j), y j) ≤
m∑

i=1

ai f (xi).

Proof. Clearly, it suffices to use Theorem 4.1 with convex Hy(x) = Gy(Fy(x)) for x, y ∈ I.
In the situation that for each y ∈ I the function Fy(·) is �-convex and Gy(·) is convex and �-increasing,

each composition Hy(·) = Gy(Fy(·)), y ∈ I, is convex. The reason is that the �-convexity of Fy gives (see (13))

Fy(αv + (1 − α)w) � αFy(v) + (1 − α)Fy(w) for v,w ∈ I and α ∈ [0, 1].

Next, the �-increasity of Gy implies that (see (14))

GyFy(αv + (1 − α)w) ≤ Gy

(
αFy(v) + (1 − α)Fy(w)

)
for v,w ∈ I and α ∈ [0, 1].

The convexity of Gy on J leads to

Gy

(
αFy(v) + (1 − α)Fy(w)

)
≤ αGyFy(v) + (1 − α)GyFy(w) for v,w ∈ I and α ∈ [0, 1].

Combining the last two inequalities yields the desired standard convexity of Hx̄ = Gx̄ ◦ Fx̄.
In the next result we illustrate Proposition 4.2 for η-invex functions. Here J = V = Rn.

Corollary 4.3. Let η : I× I→ Rn be a continuous function, where I ⊂ Rn is an open convex set. Let f : I→ R be an
η-invex function. Let x = (x1, . . . , xm) ∈ Im, y = (y1, . . . , yn) ∈ In, a = (a1, . . . , am) ∈ Rm

+ and b = (b1, . . . , bn) ∈ Rn
+.

If y = xP and a = bPT for some m × n column stochastic matrix P = (pi j), then

n∑
j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi j〈∇ f (y j), η(xi, y j)〉 ≤
m∑

i=1

ai f (xi).

If ∇ f (x̄) ∈ D, where D is a convex cone in Rn, and the function η(·, x̄) is convex with respect to dual D, then

n∑
j=1

b j f (y j) +

n∑
j=1

b j〈∇ f (y j), η(y j, y j)〉 ≤
m∑

i=1

ai f (xi).

Proof. It is evident that an η-function f is (F,G)-invex with

F(x, y) = η(x, y) and G(·, y) = Gy(·) = 〈∇ f (y), ·〉 for x, y ∈ I.

Now, it remains to employ Proposition 4.2.
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5. HLPK Like Theorem for H-invex Functions

We now specialize the results of the previous section to obtain some HLPK like inequalities for H-invex
functions.

Theorem 5.1. Let H : I × I → R be a continuous function. Let f : I → R be an H-invex function. Let
x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, . . . , yn) ∈ In.

If y ≺ x, that is, y = xP for some n × n doubly stochastic matrix P = (pi j), then

n∑
j=1

f (y j) +

n∑
j=1

n∑
i=1

pi jH(xi, y j) ≤
n∑

i=1

f (xi).

If in addition for each y ∈ I the function Hy(·) is convex, then

n∑
j=1

f (y j) +

n∑
j=1

H(y j, y j) ≤
n∑

i=1

f (xi).

Proof. It is sufficient to apply Theorem 4.1 for m = n and a = b = (1, . . . , 1) ∈ Rn.
Below we have a counterpart of the previous result for (F,G)-invex functions.

Proposition 5.2. Let F : I × I → J and G : J × I → R be continuous functions. Let f : I → R be an (F,G)-invex
function. Let x = (x1, . . . , xn) ∈ In and y = (y1, . . . , yn) ∈ In.

If y ≺ x, that is, y = xP for some n × n doubly stochastic matrix P = (pi j), then

n∑
j=1

f (y j) +

n∑
j=1

n∑
i=1

pi jG(F(xi, y j), y j) ≤
n∑

i=1

f (xi).

If in addition for each y ∈ I the function Fy(·) is �-convex and Gy(·) is convex and �-increasing, then

n∑
j=1

f (y j) +

n∑
j=1

G(F(y j, y j), y j) ≤
n∑

i=1

f (xi).

Proof. It is enough to utilize Proposition 4.2 for m = n and a = b = (1, . . . , 1) ∈ Rn.
We are now ready to give a version of Proposition 5.2 for η-invex functions.

Corollary 5.3. Let η : I × I → Rn be a continuous function, where I ⊂ Rn is an open convex set. Let f : I → R be
an η-invex function. Let x = (x1, . . . , xn) ∈ In and y = (y1, . . . , yn) ∈ In.

If y ≺ x, that is, y = xP for some n × n doubly stochastic matrix P = (pi j), then

n∑
j=1

f (y j) +

n∑
j=1

n∑
i=1

pi j〈∇ f (y j), η(xi, y j)〉 ≤
n∑

i=1

f (xi).

If ∇ f (x̄) ∈ D, where D is a convex cone in Rn, and the function η(·, x̄) is convex with respect to dual D, then

n∑
j=1

f (y j) +

n∑
j=1

〈∇ f (y j), η(y j, y j)〉 ≤
n∑

i=1

f (xi).

Proof. Making use of Corollary 4.3 with m = n and a = b = (1, . . . , 1) ∈ Rn yields the desired inequalities.
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6. Applications for Uniformly Convex Functions

In this section we utilize the previous results for uniformly convex functions with modulusϕ : R+ → R+.
By recalling the definition (v) in Section 2, we see that each uniformly convex function f with modulus ϕ
is H-invex for

H(x, y) = 〈∇ f (y), x − y〉 + ϕ(‖x − y‖) for x, y ∈ I (24)

with a convex set I ⊂ V = Rn.
Therefore we can state the following.

Proposition 6.1. Let f : I → R be a differentiable uniformly convex function with convex modulus ϕ. Let xi ∈ I

and pi ≥ 0, i = 1, . . . ,m, with
m∑

i=1
pi = 1. Denote x̄ =

m∑
i=1

pixi.

Then the following Jensen type inequality holds:

f (x̄) +

m∑
i=1

piϕ(‖xi − x̄‖) ≤
m∑

i=1

pi f (xi). (25)

If in addition the modulus ϕ is convex and increasing, then

f (x̄) + ϕ(0) ≤
m∑

i=1

pi f (xi). (26)

Proof. Because of (24) and Theorem 3.1 the following holds:

f (x̄) +

m∑
i=1

pi
(
〈∇ f (x̄), xi − x̄〉 + ϕ(‖xi − x̄‖)

)
≤

m∑
i=1

pi f (xi). (27)

However,

m∑
i=1

pi〈∇ f (x̄), xi − x̄〉 = 〈∇ f (y),
m∑

i=1

pi(xi − x̄)〉 (28)

= 〈∇ f (y),
m∑

i=1

pixi −

m∑
i=1

pix̄)〉 = 〈∇ f (y), x̄ − x̄)〉 = 0.

So, it follows from (27) and (28) that

f (x̄) +

m∑
i=1

piϕ(‖xi − x̄‖) ≤
m∑

i=1

pi f (xi),

which proves (25).
If ϕ is convex and increasing, then it is not hard to check that

ϕ(0) = ϕ

‖ m∑
i=1

pi(xi − x̄)‖

 ≤ ϕ
 m∑

i=1

pi‖xi − x̄‖

 ≤ m∑
i=1

piϕ(‖xi − x̄‖). (29)

So, the usage of (25) and (29) leads to (26), as desired.
Note that inequalities (25)-(26) are refinements of the standard Jensen’s inequality for uniformly convex

functions, since their moduli are nonnegative.
A version of Sherman type inequality for uniformly convex functions is incorporated in the next theorem.
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Theorem 6.2. Let f : I→ R be a differentiable uniformly convex function with modulusϕ. Let x = (x1, . . . , xm) ∈ Im,
y = (y1, . . . , yn) ∈ In, a = (a1, . . . , am) ∈ Rm

+ and b = (b1, . . . , bn) ∈ Rn
+.

If

y = xP and a = bPT (30)

for some m × n column stochastic matrix P = (pi j), then
n∑

j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi jϕ(‖xi − y j‖) ≤
m∑

i=1

ai f (xi). (31)

If in addition the modulus ϕ is convex and increasing, then
n∑

j=1

b j f (y j) + ϕ(0)
n∑

j=1

b j ≤

m∑
i=1

ai f (xi). (32)

Proof. Similarly as in the proof of Proposition 6.1, we see that f is H-invex with H(x, y) given by (24).
Accordingly, we have

m∑
i=1

pi jH(xi, y j) =

m∑
i=1

pi j

(
〈∇ f (y j), xi − y j〉 + ϕ(‖xi − y j‖)

)
=

m∑
i=1

pi j〈∇ f (y j), xi − y j〉 +

m∑
i=1

pi jϕ(‖xi − y j‖) (33)

= 〈∇ f (y j),
m∑

i=1

pi jxi −

m∑
i=1

pi jy j〉 +

m∑
i=1

pi jϕ(‖xi − y j‖).

Thanks to (30) we get
(y1, . . . , yn) = (x1, . . . , xm)P

for some m × n column stochastic matrix P = (pi j), Equivalently,

y j =

m∑
i=1

pi jxi for j = 1, . . . ,n.

This implies

〈∇ f (y j),
m∑

i=1

pi jxi −

m∑
i=1

pi jy j〉 = 〈∇ f (y j), y j − y j〉 = 0,

since
m∑

i=1
pi j = 1.

For this reason (33) gives
m∑

i=1

pi jH(xi, y j) =

m∑
i=1

pi jϕ(‖xi − y j‖).

Therefore inequality (31) is fulfilled by Theorem 4.1.
If ϕ is convex and increasing, then it is not hard to check that

ϕ(0) = ϕ

‖ m∑
i=1

pi j(xi − y j)‖

 ≤ ϕ
 m∑

i=1

pi j‖xi − y j‖

 ≤ m∑
i=1

pi jϕ(‖xi − y j‖). (34)

Now, it is a consequence of (31) and (34) that (32) is satisfied.
The standard Sherman’s inequality (see Theorem B in Section 1) is refined by inequalities (31)-(32) for

uniformly convex functions.
We provide the following corollary for uniformly convex functions.
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Corollary 6.3. Let f : I→ R be a differentiable uniformly convex function with modulusϕ. Let x = (x1, . . . , xn) ∈ In

and y = (y1, . . . , yn) ∈ In.
If y ≺ x, that is, y = xP for some n × n doubly stochastic matrix P = (pi j), then

n∑
j=1

f (y j) +

n∑
j=1

n∑
i=1

pi jϕ(‖xi − y j‖) ≤
n∑

i=1

f (xi). (35)

If in addition the modulus ϕ is convex and increasing, then

n∑
j=1

f (y j) + nϕ(0) ≤
n∑

i=1

f (xi).

Proof. Apply Theorem 6.2 for m = n and a = b = (1, . . . , 1) ∈ Rn.
Let f be a c-strongly convex function. Then f is an uniformly convex function with modulus ϕ(t) = c

2 t2.
Therefore it is obvious that inequalities (25), (31) and (35) take the following form, respectively,

f (x̄) +
c
2

m∑
i=1

pi‖xi − x̄‖2 ≤
m∑

i=1

pi f (xi),

n∑
j=1

b j f (y j) +
c
2

n∑
j=1

b j

m∑
i=1

pi j‖xi − y j‖
2
≤

m∑
i=1

ai f (xi),

n∑
j=1

f (y j) +
c
2

n∑
j=1

n∑
i=1

pi j‖xi − y j‖
2
≤

n∑
i=1

f (xi).

7. Applications for Superquadratic Functions

Recall that a superquadratic function f : Rm
+ → R on I = Rm

+ is H-invex for

H(x, y) = 〈C(y), x − y〉 + f (|x − y|) for x, y ∈ I (36)

(see (12)).

Proposition 7.1 (Cf. [1, Theorem 1]). Let f : Rm
+ → R be superquadratic on I = Rm

+ . Let xi ∈ I and pi ≥ 0,

i = 1, . . . ,m, with
m∑

i=1
pi = 1. Denote x̄ =

m∑
i=1

pixi.

Then the following Jensen type inequality holds:

f (x̄) +

m∑
i=1

pi f (|xi − x̄|) ≤
m∑

i=1

pi f (xi). (37)

If in addition the function f is convex on I, then

f (x̄) + f

 m∑
i=1

pi|xi − x̄|

 ≤ m∑
i=1

pi f (xi). (38)

Proof. Since f is H-invex function with H defined by (36), we find that

H(xi, x̄) = 〈C(x̄), xi − x̄〉 + f (|xi − x̄|).
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So we can write
m∑

i=1

piH(xi, x̄) =

m∑
i=1

pi〈C(x̄), xi − x̄〉 +
m∑

i=1

pi f (|xi − x̄|)

= 〈C(x̄),
m∑

i=1

pixi − x̄〉 +
m∑

i=1

pi f (|xi − x̄|) =

m∑
i=1

pi f (|xi − x̄|).

Thus we obtain
m∑

i=1

piH(xi, x̄) =

m∑
i=1

pi f (|xi − x̄|).

Now, the required inequality (37) is due to (15) in Theorem 3.1.
If f is convex then (37) forces (38) via the standard Jensen inequality for f .
It follows from (37) that nonnegative superquadratic functions must be convex. This is in accordance

with [3, Lemma 2.1]. In this case, statements (37)-(38) are refinements of the standard Jensen’s inequality
for convex functions.

We are now in a position to state a Sherman like inequality for superquadratic functions.

Theorem 7.2. Let f : Rm
+ → R be superquadratic on I = Rm

+ . Let x = (x1, . . . , xm) ∈ Im, y = (y1, . . . , yn) ∈ In,
a = (a1, . . . , am) ∈ Rm

+ and b = (b1, . . . , bn) ∈ Rn
+.

If y = xP and a = bPT for some m × n column stochastic matrix P = (pi j), then

n∑
j=1

b j f (y j) +

n∑
j=1

b j

m∑
i=1

pi j f (|xi − y j|) ≤
m∑

i=1

ai f (xi). (39)

If in addition the function f is convex, then

n∑
j=1

b j f (y j) +

n∑
j=1

b j f

 m∑
i=1

pi j|xi − y j|

 ≤ m∑
i=1

ai f (xi). (40)

Proof. In light of the remark at the beginning of this section we find that f : I→ R is H-invex with H given
by (36). Hence, by a similar proof to that of Proposition 7.1, we obtain

m∑
i=1

pi jH(xi, y j) =

m∑
i=1

pi j f (|xi − y j|). (41)

By making use of (41) and Theorem 4.1, eq. (22), we establish (39) and (40), completing the proof.
A HLPK type result for superquadratic functions is as follows.

Corollary 7.3. Let f : Rn
+ → R be superquadratic on I = Rn

+. Let x = (x1, . . . , xn) ∈ In and y = (y1, . . . , yn) ∈ In.
If y ≺ x, that is, y = xP for some n × n doubly stochastic matrix P = (pi j), then

n∑
j=1

f (y j) +

n∑
j=1

n∑
i=1

pi j f (|xi − y j|) ≤
n∑

i=1

f (xi). (42)

If in addition the function f is convex, then

n∑
j=1

f (y j) +

n∑
j=1

f

 n∑
i=1

pi j|xi − y j|

 ≤ n∑
i=1

f (xi). (43)
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Proof. In order to prove the required inequalities, it is sufficient to appeal to Theorem 7.2 with m = n and
a = b = (1, . . . , 1) ∈ Rn.

We conclude this section with the observation that if f is nonnegative superquadratic (and therefore,
convex) then statements (39)-(40) and (42)-(43) are refinements of the standard Sherman’s and HLPK’s
inequalities, respectively (see Theorem B and Theorem A in Section 1).
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