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Integer Powers of Certain Complex Tridiagonal Matrices
and Some Complex Factorizations
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Abstract. In this paper, we obtain a general expression for the entries of the rth power of a certain n × n
complex tridiagonal matrix where if n is even, r ∈ Z or if n is odd, r ∈ N. In addition, we get the complex
factorizations of Fibonacci polynomials, Fibonacci and Pell numbers.

1. Introduction

Arbitrary integer powers of a square matrix is used to solve some difference equations, differential and
delay differential equations and boundary value problems.

Recently, the calculations of integer powers and eigenvalues of tridiagonal matrices have been well
studied in the literature. For instance, Rimas [1-4] obtained the positive integer powers of certain tridiag-
onal matrices of odd and even order in terms of the Chebyshev polynomials. Öteleş and Akbulak [6,7]
generalized the results obtained in [1-4]. Gutiérrez [8,10] calculated the powers of tridiagonal matrices with
costant diagonal. For details on the powers and the eigenvalues of tridiagonal matrices, see [5,9].

In [12], Cahill et al. considered the following tridagonal matrix

H(n) =



h1,1 h1,2 0
h2,1 h2,2 h2,3

h3,2 h3,3
. . .

. . .
. . . hn−1,n

0 hn,n−1 hn,n


and using the succesive determinants they computed determinant of H(n) as

|H(n)| = hn,n |H(n − 1)| − hn−1,nhn,n−1 |H(n − 2)|

with initial conditions |H(1)| = h1,1, |H(2)| = h1,1h2,2 − h1,2h2,1.
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Let {H†(n),n = 1, 2, . . .} be the sequence of tridiagonal matrices as the following form

H†(n) =



h1,1 −h1,2
−h2,1 h2,2 −h2,3

−h3,2 h3,3
. . .

. . .
. . . −hn−1,n
−hn,n−1 hn,n


.

Then

det(H(n)) = det(H†(n)). (1)

Let T and T† be n × n tridiagonal matrices as the following

T :=



0 2
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
2 0


[1],

T† :=



1 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 1


[2].

By [1, p. 3] and [2, p. 2], the eigenvalues of T and T† are obtained as

µk = 2 cos
(

(k − 1)π
n − 1

)
, k = 1, . . . ,n [1, p.3]

and

µ†k = −2 cos
(

kπ
n

)
, k = 1, . . . ,n [2, p.2]

respectively.
Let

A :=



a 2b 0
b a −b
−b a −b

. . .
. . .

. . .
−b a b

0 2b a


(2)

and

A
†

:=



a + b b 0
b a −b

−b a −b
. . .

. . .
. . .

−b a b
0 b a + b


(3)
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be the tridiagonal matrices, where b , 0 and a, b ∈ C. In this paper, we obtain the eigenvalues and
eigenvectors of the n × n complex tridiagonal matrices in (2) and (3). Also, we will calculate the all integer
powers of the matrix in (2) for n is odd order and only will calculate the positive integer powers of the
matrix in (2) for n is even order. We also get the complex factorizations of Fibonacci polynomials, Fibonacci
and Pell numbers using the eigenvalues of the matrices A and A†

.

2. Eigenvalues and Eigenvectors of A and A†

In this section, we obtain the eigenvalues and eigenvectors of the n × n complex tridiagonal matrices A
and A†

in (2) and (3), respectively.

Theorem 2.1. Let A be an n × n complex tridiagonal matrix given by (2). Then the eigenvalues and eigenvectors of
A are

λk = a + 2b cos
(

(k − 1)π
n − 1

)
, k = 1, . . . ,n (4)

and

x jk =

{
T j−1(mk), j = 1, 2,n − 1,n
(−1) jT j−1(mk), j = 3, . . . ,n − 2 ; k = 1, . . . ,n

where mk = λk−a
2b ,Ts(.) is the s−th degree Chebyshev polynomial of the first kind [11, p. 14].

Proof. Let B be the following n × n tridiagonal matrix

B :=



c 2
1 c −1
−1 c −1

. . .
. . .

. . .
−1 c 1

2 c


(5)

where c = a
b . Then the characteristic polynomials of B are

pn(t) = (t2
− 4)∆n−2(t) (6)

where t = λ − c and

∆n(t) = t∆n−1(t) − ∆n−2(t) (7)

with initial conditions ∆0(t) = 1,∆1(t) = t and ∆2(t) = t2
−1.Note that the solution of the difference equation

in (7) is obtained as ∆n(t) = Un( t
2 ), where Un is the n−th degree Chebyshev polynomial of the second kind

[11, p.15]. i.e.

Un(x) =
sin((n + 1) arccos x)

sin(arccos x)
, −1 ≤ x ≤ 1.

All the roots of the polynomial Un(x) are included in the interval [−1, 1] and can be found using the relation

xnk = cos
(

kπ
n + 1

)
, k = 1, . . . ,n.
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Therefore the characteristic polynomial in (6) can be written as

pn(t) = (t2
− 4)Un−2( t

2 ).

From [6, p. 2], the eigenvalues of the matrix B are

tk = 2 cos
(

(k − 1)π
n − 1

)
, k = 1, . . . ,n.

Then we get the eigenvalues of the matrix A as

λk = a + 2b cos
(

(k − 1)π
n − 1

)
.

Now we compute eigenvectors of the matrix A. All eigenvectors of A are obtained as the solutions of the
following homogeneous linear equations system

(λkIn − A)x = 0 (8)

where λk is the kth eigenvalue of the matrix A (k = 1,n). The equations system (8) is clearly written as

(λk − a)x1 − 2bx2 = 0
−bx1 + (λk − a)x2 + bx3 = 0

bx2 + (λk − a)x3 + bx4 = 0
...

bxn−2 + (λk − a)xn−1 − bxn = 0
−2bxn−1 + (λk − a)xn = 0


(9)

Dividing all terms of the each equation in the system (9) by b , 0, substituting mk = λk−a
2b , choosing x1 = 1

and solving the sets of the system (9), we find the jth component of kth eigenvector of the matrix A as

x jk =

{
T j−1(mk), j = 1, 2,n − 1,n
(−1) jT j−1(mk), j = 3, . . . ,n − 2 ; k = 1, . . . ,n (10)

where mk = λk−a
2b and Ts(.) is the s−th degree Chebyshev polynomial of the first kind.

Theorem 2.2. Let A† be an n× n complex tridiagonal matrix given by (3). Then the eigenvalues and eigenvectors of
A† are

λ†k = a − 2b cos
(

kπ
n

)
, k = 1, . . . ,n

and

y†jk =

 T 2 j−1
2

(m†k), j = 1, 2,n − 1,n
(−1) jT 2 j−1

2
(m†k), j = 3, . . . ,n − 2 ; k = 1, . . . ,n

where m†k =
λ†k−a

2b and Ts(.) is the s−th degree Chebyshev polynomial of the first kind [11, p. 14].

Proof. Let

S :=



a
b + 1 1 0

1 a
b −1

−1
. . .

. . .
. . . a

b −1
−1 a

b 1
0 1 a

b + 1


.
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From [7, Lemma 2, p. 65], we have the eigenvalues of the matrix S as

δk =
a
b
− 2 cos

(
kπ
n

)
, for k = 1, . . . ,n

Since the eigenvalues of A† are equal to λ†k = bδk, the proof of theorem is completed.
The eigenvectors of A† are obtained as the solution of the following linear homogeneous equations

system:

(λ†j In − A†)y jk = 0 (11)

where λ†j and y jk
(
1 ≤ j, k ≤ n

)
are the jth eigenvalues and kth eigenvectors of the matrix A†, respectively.

Then the solution of the equations system in (11) is

y jk =

 T 2 j−1
2

(m†k), j = 1, 2,n − 1,n
(−1) jT 2 j−1

2
(m†k), j = 3, . . . ,n − 2 ; k = 1, . . . ,n

where m†k =
λ†k−a

2b and Ts(.) is the s−th degree Chebyshev polynomial of the first kind.

3. The Integer Powers of A

In this section, we want to calculate the integer powers of the n × n complex matrix A in (2), where n is
positive odd integer. We first recall that the well-known expression Ar = PJrP−1, where J is the Jordan’s
form and P is the transforming matrix of A, respectively.

Since all the eigenvalues λk (k = 1, . . . ,n) are simple, each eigenvalue λk corresponds single Jordan cells
J1( λk) in the matrix J. Then, we write down the Jordan′s form of the matrix A as

J = dia1(λ1, λ2, λ3, ..., λn).

If n is even, the matrix A hasn’t inverse for some a and b (for example a = b = 1). Therefore there aren’t the
negative powers of the matrix A for n is even. Then, we get r ∈N for n is even and r ∈ Z for n is odd.

In order to derive the expressions for the rth power of A, we also need to transforming matrix P and its
inverse P−1. From (10), we have the transforming matrix P as

P = [x jk] =

{
T j−1(mk), j = 1, 2,n − 1,n
(−1) jT j−1(mk), j = 3, . . . ,n − 2 ; k = 1, . . . ,n

where Ts(.) is the s−th degree Chebyshev polynomial of the first kind.
We now obtain the inverse of transforming matrix. Denoting jth column of the matrix P−1 by p j, we

have

p j =



2T j−1(m1)
T j−1(m2)
T j−1(m3)
2T j−1(m4)

...
2T j−1(mn)


, j = 1,n

and

p j =



(−1) j4T j−1(m1)
(−1) j2T j−1(m2)
(−1) j2T j−1(m3)
(−1) j4T j−1(m4)

...
(−1) j4T j−1(mn)


, j = 2, . . . ,n − 1.



D. Bozkurt, Ş. Burcu Bozkurt Altındağ / Filomat 31:15 (2017), 4715–4724 4720

Therefore we obtain

P−1 =
1

2n − 2
(p1, p2, . . . , pn).

Let

Ar = PJrP−1 = U(r) = (ui j(r)).

Then

PJr =

{
λr

kT j−1(mk), j = 1, 2,n − 1,n
(−1) jλr

kT j−1(mk), j = 3, . . . ,n − 2 ; k = 1, . . . ,n.

Hence we get

ui j(r) =
1

2n − 2

(
λr

2Ti−1(m2)T j−1(m2) + λr
3Ti−1(m3)T j−1(m3) (1)

+2
n∑

k=1
k,2,3

λr
kTi−1(mk)T j−1(mk))

where i = 1, . . . ,n; j = 1,n and

ui j(r) =
1

n − 1

(
(−1) j(λr

2Ti−1(m2)T j−1(m2) + λr
3Ti−1(m3)T j−1(m3)) (2)

+(−1) j2
n∑

k=1
k,2,3

λr
kTi−1(mk)T j−1(mk)


where i = 1, . . . ,n; j = 2, . . . ,n − 1.

4. Numerical Examples

Considering the Eqs. (12) and (13), we can find the arbitrary integer powers of the n × n complex
tridiagonal matrix A in (2), where n is positive odd integer.

Example 4.1. Let n = 3, r = 3, a = 1 and b = 3. Then we have

J = dia1(λ1, λ2, λ3) = dia1(a, a + 2b, a − 2b) = dia1(1, 7,−5).

Therefore we get

A3 = (qi j(r)) = (qi j(3)) =

 55 234 54
117 109 117
54 234 55

 .
Example 4.2. For n = 3, r = −2, a = 1 and b = 3, we obtain

A−2 =
1

1225

 631 −12 −594
−6 37 −6
−594 −12 631

 .
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Example 4.3. If n = 5, r = 4, a = 1 and b = 3, then

J = dia1(λ1, λ2, λ3, λ4, λ5)

= dia1(1, 7,−5, 1 + 3
√

2, 1 − 3
√

2).

Therefore

A4 = qi j(4) =


595 672 −756 216 162
336 973 −444 540 108
−378 −444 757 −444 −378

108 540 −444 973 336
162 216 −756 672 595

 .
Example 4.4. For n = 4, r = 3, a = 1 and b = 1, we obtain

J = dia1(λ1, λ2, λ3, λ4)
= dia1(−1, 0, 2, 3).

Then we have

A3 = qi j(3) =


7 12 −6 −2
6 10 −8 −3
−3 −8 10 6
−2 −6 12 7

 .
5. Complex Factorizations

Fibonacci and Pell numbers are defined by

Fn = Fn−1 + Fn−2, (F0 = 0,F1 = 1,n ≥ 2)

and

Pn = 2Pn−1 + Pn−2, (P0 = 0,P1 = 1,n ≥ 2),

respectively. The generalized order-k Fibonacci-Pell numbers are defined by

ui
n = 2mui

n−1 + ui
n−2 + · · · + ui

n−k

with initial condition

ui
n =

{
1, if i = 1 − n
0, otherwise

for n > 0,m ≥ 0 and 1 ≤ i ≤ k [13, p. 135].
The well-known F(x) = {Fn(x)}∞n=1 Fibonacci polynomials are defined by Fn(x) = xFn−1(x) + Fn−2(x) with

initial conditions F0(x) = 0 and F1(x) = 1. For instance, if x = 1 and x = 2, then we obtain the Fibonacci and
Pell numbers sequences as

{Fn} = Fn(1) = {0, 1, 1, 2, 3, 5, 8, . . .}

and

{Pn} = Fn(2) = {0, 1, 2, 5, 12, 29, . . .},

respectively.
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Theorem 5.1. Let A be an n × n complex tridiagonal matrix given by (2). If a := x and b := i, then

det(A) = (x2 + 4)Fn−1(x).

where i =
√
−1.

Proof. Applying Laplace expansion according to the first two and last two rows of the determinant of A,
we have

det(A) = x2Dn−2 + 4xDn−3 + 4Dn−4

where Dn = det(tridia1n(−i, x,−i)). Since

det(tridia1n(−i, x,−i)) = Fn+1(x),

we arrive at

det(A) = x2Fn−1(x) + 4xFn−2(x) + 4Fn−3(x)
= x2(xFn−2(x) + Fn−3(x)) + 4xFn−2(x) + 4Fn−3(x)
= (x2 + 4)(xFn−2(x) + Fn−3(x)) = (x2 + 4)Fn−1(x).

Hence, the proof of theorem is completed.

Corollary 5.2. Let A be an n × n complex tridiagonal matrix given by (2). If a := x and b := i, then the complex
factorization of generalized Fibonacci-Pell numbers is the following form:

Fn−1(x) =
1

x2 + 4

n∏
k=1

(
x + 2i cos

(
(k − 1)π

n − 1

))
Proof. Since the eigenvalues of the matrix A from (4)

λ j = x + 2i cos
(

( j − 1)π
n − 1

)
, j = 1,n,

the determinant of the matrix A can be obtained as

det(A) =

n∏
k=1

(
x + 2i cos

(
(k − 1)π

n − 1

))
. (14)

By considering (14) and Theorem 5, the complex factorization of generalized Fibonacci-Pell numbers is
obtained.

Theorem 5.3. Let A† be an n × n complex tridiagonal matrix given by (3). Then

det(A†) =

{
(1 + 2i)Fn, if a = 1 and b = i
(2 + 2i)Pn, if a = 2 and b = i

where i =
√
−1 and Fn and Pn denote the nth Fibonacci and Pell numbers, respectively.

Proof. Applying Laplace expansion according to the first two and last two rows of the determinant of A†,
we have

det(A†) = (a + b)2 det(tridia1n−2(−b, a,−b)) (3)
−2b2(a + b) det(tridia1n−3(−b, a,−b))
+b4 det(tridia1n−4(−b, a,−b)).
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If we take a = 1 and b = i in (15), then we get

det(A†) = (1 + i)2 det(tridia1n−2(−i, 1,−i))
+2(1 + i) det(tridia1n−3(−i, 1,−i))
+ det(tridia1n−4(−i, 1,−i)).

Considering the equality det(tridia1n(i, 1, i)) = det(tridia1n(−i, 1,−i)) and Eq. (1), we obtain

det(A†) = (1 + i)2Fn−1 + 2(1 + i)Fn−2 + Fn−3

= (1 + 2i)Fn.

Similar to the above, we can easily obtain Pell numbers.

Corollary 5.4. Let A† be an n × n complex tridiagonal matrix given by (3). If a := 2 and b := i, then the complex
factorizations of Fibonacci and Pell numbers are

Fn =

n−1∏
k=1

(
1 − 2i cos

(
kπ
n

))
and

Pn =

n−1∏
k=1

(
2 − 2i cos

(
kπ
n

))
.

Proof. Since the eigenvalues of the matrix A† are

λk = a − 2b cos cos
(

kπ
n

)
, k = 1,n

and the determinant of the matrix A† is equal to multiplication of its eigenvalues, we get

Fn =
1

1 + 2i

n∏
k=1

(
1 − 2i cos

(
kπ
n

))

=

n−1∏
k=1

(
1 − 2i cos

(
kπ
n

))
and

Pn =
1

2 + 2i

n∏
k=1

(
2 − 2i cos

(
kπ
n

))

=

n−1∏
k=1

(
2 − 2i cos

(
kπ
n

))
.

Thus, the proof is completed.

Acknowledgement. The authors are partially supported by TUBITAK and the Office of Selçuk Univer-
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