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Abstract. In the present paper, we give some sufficient conditions for a matrix belongs to the class
B
(
αn, βn;γn, δn;ϕ

)
when ϕ ∈ ∆

(
p, q

)
. Our results generalize the result of Das [4] and Yu [13]. Some

applications of the main results are given.

1. Introduction

Let {sn} be the partial sums of the infinite series
∑
∞

n=0 an, The Cesàro means of order α of the series
∑
∞

n=0 an
are defined by

σαn :=
1

Aα
n

n∑
j=0

Aα−1
n− j s j, n = 0, 1, · · · ,

where

Aα
n :=

Γ (n + α + 1)
Γ (α + 1) Γ (n + 1)

, n = 0, 1, · · · .

Let (C, α) be the Cesàro matrix of order α, that is, (C, α) be the lower triangular matrix
(
Aα−1

n−ν/A
α
n

)
.

Das [4] defined a matrix T :=
(
tnj

)
to be absolutely kth-power conservative for k ≥ 1, denoted by

T ∈ B (Ak) , that is, if {sn} satisfies

∞∑
n=1

nk−1
|sn − sn−1|

k < ∞,

then

∞∑
n=1

nk−1
|tn − tn−1|

k < ∞,

2010 Mathematics Subject Classification. Primary 40F05, 40D25.
Keywords. conservative matrices, absolute summability.
Received: 09 May 2016; Accepted: 19 December 2016
Communicated by Dragan S. Djordjević
Email address: dsyu_math@163.com (Dansheng Yu)



D. Yu / Filomat 31:15 (2017), 4703–4713 4704

where

tn =

n∑
j=0

tnjs j.

Flett [5] introduced the concept of absolute summability of order k. A series
∑
∞

n=0 an is summable
|C, α|k , k ≥ 1, α > −1, if

∞∑
n=0

nk−1
∣∣∣σαn−1 − σ

α
n

∣∣∣k < ∞.
Flett [5] established the following inclusion theorem for |C, α|k. If the series

∑
∞

n=0 an is summable |C, α|k ,
it is also summable for |C, α|r for each r ≥ k ≥ 1, α > −1, β > α + 1

k −
1
r . Especially, a series

∑
∞

n=0 an which is
|C, α|k summability is also

∣∣∣C, β∣∣∣k summability for k ≥ 1, β > α > −1.
If one sets α = 0, from the above inclusion result, we have
Theorem A. Let k ≥ 1, then (C, α) ∈ B (Ak) for α > 0.
As we know, the k−th power conservative matrices actually are results of comparison of summability

fields of absolute summability methods. Many mathematicians have obtained a lot of important results by
comparing different absolute summability methods. Here we remind readers some interesting papers of
Sarigöl ([8]-[11]). For example, take av = sv − sv−1, s0 = 0. Denoted by tn and Tn the Riesz means (R, pn)
and (R, qn) of the sequence {sv}, respectively. It is called that a series

∑
av or a sequence sv is summable∣∣∣R, pn

∣∣∣
k (k ≥ 1) (see [10]), if {t∗n} ∈ lk, where

t∗n := n1/k∗ (tn − tn−1) =
n1/k∗pn

PnPn−1

n∑
v=1

Pv−1av.

Since

Tn =
1

Qn

n−1∑
v=1

∆

(
qv

pv

)
Pvtv +

qnPn

Qnpn
tn =

n∑
v=1

dnvtv,

where

dnv =


qnPvPv−1

QnQn−1pv
∆

(
Qv−1
Pv−1

)
, 1 ≤ v < n,

qnPn

Qnpn
, v = n,

0, v > n.

It is easy to see that D ∈ B(Ak) iff
∣∣∣R, pn

∣∣∣
k ⇒

∣∣∣R, qn

∣∣∣
k. The author is indebted to Professor Sarigöl in Pamukkale

University for providing this nice example.
There are many works have done to generalize the results of Das [4] and Flett [5](see [1]-[3], [12]-[16],

for examples). Among them, we [13] generalized the concept of the absolutely kth-power conservative to
the following

Definition 1.1. Let ϕ (x) be a nonnegative function defined on [0,∞) , {αn},
{
βn

}
,
{
γn

}
and {δn} be nonnegative

sequences. We say that a matrix

T :=
(
tnj

)
∈ B

(
αn, βn;γn, δn;ϕ

)
,

if
∞∑

n=1

αnϕ
(
βn |sn − sn−1|

)
< ∞

implies that
∞∑

n=1

γnϕ (δn |tn − tn−1|) < ∞.
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If αn = γn = n−1, βn = δn = n, ϕ (x) = xk, k ≥ 1, then B
(
αn, βn;γn, δn;ϕ

)
reduces to B (Ak) .

Let T :=
(
tnj

)
be a lower triangular matrix, λ = {λn} be a positive sequence. Set

t̃ni :=
{ ∑n

j=i tnj −
∑n−1

j=i tn−1, j, 0 ≤ i ≤ n − 1,
tnn, i = n,

T̃n (λ) :=
n∑

j=1

∣∣∣̃tni

∣∣∣
λi
.

We [13] established the following general result:

Theorem 1.2. Let ϕ (x) be a nonnegative convex function defined on [0,∞), T :=
(
tnj

)
be a lower triangular matrix

satisfying
∑n

j=0 tnj = 1, and let {αn} be a nonnegative sequence. If λ = {λn} is a positive sequence such that

λ−1
n

∞∑
j=n

α j

∣∣∣̃t jn

∣∣∣ (T̃ j (λ)
)−1

= O (An) , n ≥ 1,

then

T ∈ B
(
An, λn;αn,

(
T̃n (λ)

)−1
;ϕ

)
.

Theorem 1.2 can be applied to test whether a Cesàro matrix or a Riesz matrix belong to B
(
αn, βn, γn, δn, ϕ

)
or not. Especially, we [13] generalized Theorem A by applying Theorem 1.2 (see Theorem 3.3 in [13]).

Denote by ∆
(
p, q

) (
0 ≤ q ≤ p

)
the set of all nonnegative functions ϕ (x) defined on [0,∞) such that ϕ (0) =

0, ϕ (x) /xp is nonincreasing and ϕ (x) /xq is nondecreasing. It is clear that ∆
(
p, q

)
⊂ ∆

(
p, 0

)
for 0 < q ≤ p.

For example, ∆
(
p, 0

)
contains the function ϕ (x) = log (1 + x) , tp

∈ ∆
(
p, p

)
and tp log (1 + t) ⊂ ∆

(
p + 1, p

)
for

p > 0.
We will establish two general results similar to Theorem 1.2 when ϕ ∈ ∆

(
p, q

)
in section 2 (Theorem 2.1

and Theorem 2.3), some applications of these two general results will be given in section 3.
Throughout the paper Cα denotes a positive constant depending only on α, their values may be different

even in the same line. αn ' βn means that there is a positive constant C such that C−1βn ≤ αn ≤ Cβn.

2. Main Results

Firstly, we have

Theorem 2.1. Let ϕ (x) ∈ ∆
(
p, q

) (
0 ≤ q ≤ p

)
, T :=

(
tnj

)
be a lower triangular matrix satisfying

∑n
j=0 tnj = 1.

Assume that {αn} ,
{
βn

}
and λ = {λn} are positive sequences satisfying the following conditions:

(A) There is a positive constant K1 such that at least one of the conditions inf βn ≥ K1 and sup βn ≤ K1 holds;
(B) There is a positive constant K2 such that infλn ≥ K2 > 0;
(C)
∞∑

n=i

αnβ
θ
n

(
T̃n (λ)

)p∗−1 ∣∣∣̃tni

∣∣∣q−p∗+1
= O

(
λ

q−p∗+1

i γi

)
, i ≥ 1, (1)

where p∗ := max
(
1, p

)
and

θ :=
{

q, if inf βn = 0,
p, otherwise.

Then

T ∈ B
(
αn, βn;γn, λn;ϕ

)
. (2)
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To prove Theorem 2.1, we need some properties of ∆
(
p, q

)
:

Lemma 2.2. ([7]) Let Φ (x) ∈ ∆
(
p, q

) (
0 ≤ q ≤ p

)
and t j ≥ 0, j = 1, 2, · · · . Then

(a) ηpΦ (t) ≤ Φ
(
ηt

)
≤ ηqΦ (t) for 0 ≤ η ≤ 1, t ≥ 0;

(b) Φ
(
ηt

)
≤ ηpΦ (t) for η ≥ 1, t ≥ 0;

(c) Φ
(∑n

j=1 t j

)
≤

(∑n
j=1 Φ1/p∗

(
t j

))p∗
;

(d) Φ (x) is nondecreasing.

Remark. From (a) and (b) in Lemma 2.2, we have

Φ(βnt) = O(1)βq
nΦ(t),

when sup βn ≤ K1, and
Φ(βnt) = O(1)βp

nΦ(t),

when inf βn ≥ K1. In other words, we have

Φ(βnt) = O(1)βθnΦ(t).

Proof of Theorem 2.1 Since (set s−1 := 0)

tn =

n∑
j=0

tnjs j =

n∑
j=0

tnj

 j∑
i=0

(si − si−1)


=

n∑
i=0

(si − si−1)

 n∑
j=i

tnj

 ,
then

tn − tn−1 =

n∑
i=0

(si − si−1)

 n∑
j=i

tnj

 − n−1∑
i=0

(si − si−1)

n−1∑
j=i

tn−1, j


=

n∑
i=0

t̃ni (si − si−1) =

n∑
i=1

t̃ni (si − si−1) ,

where in the last inequality, we used the fact t̃n0 = 0, which follows from
∑n

j=0 tnj = 1 and the definition of
t̃n0.

Since infλn ≥ K2 > 0 and T is a lower triangular matrix satisfying
∑n

j=0 tnj = 1, we see that |̃
tni|
λi

= O (1) .
Then, by Lemma 2.2 and (1), we get

∞∑
n=1

αnϕ
(
βn |tn − tn−1|

)
≤

∞∑
n=1

αnϕ

βn

n∑
i=1

λ−1
i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|)


= O (1)

∞∑
n=1

αnβ
θ
nϕ

 n∑
i=1

λ−1
i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|)


= O (1)

∞∑
n=1

αnβ
θ
n

 n∑
i=1

ϕ1/p∗
(
λ−1

i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|)
)

p∗
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= O (1)
∞∑

n=1

αnβ
θ
n

 n∑
i=1


∣∣∣̃tni

∣∣∣
λi


q/p∗

ϕ1/p∗ (λi |si − si−1|)


p∗

= O (1)
∞∑

n=1

αnβ
θ
n

 n∑
i=1

∣∣∣̃tni

∣∣∣
λi


p∗−1  n∑

i=1


∣∣∣̃tni

∣∣∣
λi


q−p∗+1

ϕ (λi |si − si−1|)


(by Hölder’s inequality)

=

∞∑
i=1

ϕ (λi |si − si−1|)λ
p∗−q−1
i

∞∑
n=i

αnβ
θ
n

(
T̃n (λ)

)p∗−1 ∣∣∣̃tni

∣∣∣q−p∗+1

= O (1)
∞∑

i=1

γiϕ (λi |si − si−1|) ,

which implies (2).

Theorem 2.3. Let T =
(
tnj

)
be a lower triangular matrix with the entries tnj having the form p j

Pn
, where p j ≥ 0

for 0 ≤ j ≤ n and Pn =
∑n

j=0 p j > 0. Let ϕ ∈ ∆
(
p, q

) (
0 ≤ q ≤ p

)
and {αn} , λ = {λn} be positive sequences. If

∞∑
i=n

αi

(
T̃i (λ)

PiPi−1

pi

)−q

= O
(
nαn

(
T̃n (λ)

PnPn−1

pn

)−q)
, (3)

then

T ∈ B
(
Bn, λn;αn,

(
T̃n (λ)

)−1
;ϕ

)
where

Bn = np∗αn

(
T̃n (λ)

Pn

pn

)−q

λ−q
n .

Lemma 2.4. ([6]) Let p ≥ 1, αn ≥ 0, λn > 0, then

∞∑
n=1

λn

 n∑
k=1

αk


p

≤ pp
∞∑

n=1

λ1−p
n

 ∞∑
k=n

λk


p

αp
n.

Proof of Theorem 2.3 First, we have

t̃ni =

n∑
j=i

tnj −

n−1∑
j=i

tnj

=
pn

Pn
+

( 1
Pn
−

1
Pn−1

) n−1∑
j=i

p j

=
pn

Pn
−

pn

PnPn−1
(Pn−1 − Pi−1)

=
pnPi−1

PnPn−1
, 1 ≤ i ≤ n − 1, (4)

and

t̃n0 = 0, t̃nn =
pn

Pn
. (5)
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Noting that

(
T̃n (λ)

)−1

∣∣∣̃tni

∣∣∣
λi
≤ 1, 0 ≤ i ≤ n,

by Lemma 2.2 and Lemma 2.4, we have

∞∑
n=0

αnϕ
((

T̃n (λ)
)−1
|tn − tn−1|

)
≤

∞∑
n=1

αnϕ

(T̃n (λ)
)−1

n∑
i=1

λ−1
i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|)


≤

∞∑
n=1

αn

 n∑
i=1

ϕ1/p∗
((

T̃n (λ)
)−1

λ−1
i

∣∣∣̃tni

∣∣∣ (λi |si − si−1|)
)

p∗

≤

∞∑
n=1

αn

 n∑
i=1

(
T̃n (λ)λi

)−q/p∗ ∣∣∣̃tni

∣∣∣q/p∗ ϕ1/p∗ (λi |si − si−1|)


p∗

= O (1)
∞∑

n=1

αn

(
T̃n (λ)

PnPn−1

pn

)−q

×

 n∑
i=1

(
λ−1

i Pi−1

)q/p∗
ϕ1/p∗ (λi |si − si−1|)


p∗

= O (1)
∞∑

n=1

(
αn

(
T̃n (λ)

PnPn−1

pn

)−q)1−p∗

×

(
λ−1

n Pn−1

)q
ϕ (λn |sn − sn−1|) ×

 ∞∑
i=n

αi

(
T̃i (λ)

PiPi−1

pi

)−q


p∗

= O (1)
∞∑

n=1

np∗αn

(
T̃n (λ)

Pn

pn

)−q

λ−q
n ϕ (λn |sn − sn−1|) ,

which completes the proof of Theorem 2.3.

3. Applications of The Main Results

We will use the following estimate frequently (see [17]):

Aα
n '

nα

Γ (α + 1)
, α > −1. (6)

Theorem 3.1. Let ϕ (x) ∈ ∆
(
p, q

) (
0 ≤ q ≤ p

)
, {αn} ,

{
βn

}
be positive sequences satisfying

(i) There is a positive constant K such that at least one of the conditions inf βn ≥ K and sup βn ≤ K holds;
(ii) αm ' αn, βm ' βn for any n ≤ m ≤ 2n;
(iii)

∑
∞

n=2i+1 n−2(q−p∗+1)+µ(1−p∗)αnβθn = O
(
i−2(q−p∗+1)+µ(1−p∗)+1αiβθi

)
.

Then

(C, α) ∈ B
(
αn, βn;γn,nµ;ϕ

)
, α > 0, 0 ≤ µ < 2,

where

γn :=


n−(1+µ)q+p∗αnβθn , α

(
p∗ − q − 1

)
< p∗ − q,

n−(1+µ)q+p∗ (log n
)
αnβθn , α

(
p∗ − q − 1

)
= p∗ − q,

nα(p∗−q−1)−µqαnβθn , α
(
p∗ − q − 1

)
> p∗ − q.
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Proof. Let

tnj :=
Aα−1

n− j

Aα
n
, j = 0, 1, · · · ,n; α > −1.

Then for 0 ≤ i ≤ n − 1,

t̃ni =
1

Aα
n

n∑
j=i

Aα−1
n− j −

1
Aα

n−1

n∑
j=i

Aα−1
n−1− j

=
1

Aα
n

n−i∑
j=0

Aα−1
j −

1
Aα

n−1

n−1−i∑
j=0

Aα−1
j

=
Aα

n−i

Aα
n
−

Aα
n−1−i

Aα
n−1

=
i
n

Aα−1
n−i

Aα
n
, (7)

and

t̃nn =
Aα−1

0

Aα
n

=
1

Aα
n
. (8)

Taking λn = nµ, n ≥ 1, 0 ≤ µ < 2, by (6)-(8), we have
n∑

i=1

λ−1
i

∣∣∣̃tni

∣∣∣ =

n∑
i=1

∣∣∣̃tni

∣∣∣
iµ

=
1

nAα
n

n∑
i=1

i1−µAα−1
n−v

= O
(
n−1−α

) nα−1
n/2∑
i=1

i1−µ + n1−µ
n∑

i=n/2+1

(n − v + 1)α−1


= O

(
n−µ

)
. (9)

Therefore,

∞∑
n=i

αnβ
θ
n

 n∑
v=1

∣∣∣̃tnv

∣∣∣
λv


p∗−1 ∣∣∣̃tni

∣∣∣q−p∗+1
= O

 ∞∑
n=i

αnβ
θ
nn−µ(p∗−1) ∣∣∣̃tni

∣∣∣q−p∗+1


= O
(
iq−p∗+1

)  ∞∑
n=i

αnβ
θ
nn−µ(p∗−1)


∣∣∣Aα−1

n−i

∣∣∣
nAα

n

q−p∗+1
= O

(
iq−p∗+1

)  2i∑
n=i

+

∞∑
n=2i+1


=: I1 + I2. (10)

By (6) and (ii), we have

I1 = O
(
iq−p∗+1

) 2i∑
n=i

αnβ
θ
nn−µ(p∗−1)


∣∣∣Aα−1

n−i

∣∣∣
nAα

n

q−p∗+1

= O
(
iq−p∗+1αiβ

θ
i i−µ(p∗−1)

) 2i∑
n=i


∣∣∣Aα−1

n−i

∣∣∣
nAα

n

q−p∗+1

= O
(
iq−p∗+1+(1+α)(p∗−q−1)+µ(1−p∗)αiβ

θ
i

) 2i∑
n=i

(n + 1 − i)(q−p∗+1)(α−1)

= O
(
iα(p∗−q−1)+µ(1−p∗)αiβ

θ
i Ai

)
, (11)
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where

Ai :=


i(q−p∗+1)(α−1)+1,

(
q − p∗ + 1

)
(α − 1) > −1,

log i,
(
q − p∗ + 1

)
(α − 1) = −1,

1
(
q − p∗ + 1

)
(α − 1) < −1.

(12)

By (6) and (iii), we have

I2 = O
(
iq−p∗+1

) ∞∑
n=2i+1

(n − i)(q−p∗+1)(α−1)

n(q−p∗+1)(α+1)
αnβ

θ
nnµ(1−p∗)

= O
(
iq−p∗+1

) ∞∑
n=2i+1

n−2(q−p∗+1)+µ(1−p∗)αnβ
θ
n

= O
(
ip
∗
−q+µ(1−p∗)αiβ

θ
i

)
. (13)

Therefore, by (10)-(13) and Theorem 2.1, we prove Theorem 3.1.

A non-negative sequence {an} is said to be almost decreasing, if there is a positive constant K such that
an ≥ Kam for all n ≤ m, and it is said to be quasi-β−power increasing with some real number β, if

Corollary 3.2. Let ϕ (x) = xp, then
(a) If {αn} is quasi-ε-power decreasing with some ε > 0 and satisfies the condition (ii) in Theorem 3.1, then

(C, α) ∈ B
(
αn,n;αn,n;ϕ

)
(14)

for α > 0, p ≥ 1. Especially, if δ < 1
p , γ ∈ R, then

(C, α) ∈ B
(
nδp−1 logγ n,n; nδp−1 logγ n,n;ϕ

)
(15)

for α > 0, p ≥ 1.
(b) If {αn} is quasi-ε-power decreasing for some ε > 1− p and satisfies the condition (ii) in Theorem 3.1, then (14)

holds for α > 0, 0 < p < 1. Especially, if δ < 1, γ ∈ R, then (15) holds for α > 0, 0 < p < 1.

Proof. (a) Since ϕ (x) = xp, p ≥ 1, we may take q = p = p∗. To prove (14), by Theorem 2.3, we only need
to verify that (iii) in Theorem 3.1 holds with βn = n, µ = 1 (θ = p in this case). Since {αn} is quasi-ε-power
decreasing with ε > 0, then

∞∑
n=2i+1

n−2(q−p∗+1)+µ(1−p∗)αnβ
θ
n = O (1)

∞∑
n=2i+1

n−1−εαnnε

= O (αiiε)
∞∑

n=2i+1

n−1−ε

= O
(
i−1αi

)
,

which means (iii).
If δ < 1

p , then there is an ε > 0 such that δp − 1 + ε < 0, hence
{
nδp−1 logγ n

}
is quasi-ε−power decreasing

for any γ ∈ R. Now, applying (14), we get (15).
(b) Since ϕ (x) = xp, 0 < p < 1, we may take q = p, p∗ = 1. Let βn = n, µ = 1 (θ = p again), then

∞∑
n=2i+1

n−2(q−p∗+1)+µ(1−p∗)αnβ
θ
n = O (1)

∞∑
n=2i+1

n−p−εnεαn

= O (iεαi)
∞∑

n=2i+1

n−p−ε

= O
(
i1−pai

)
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for ε > 1 − p, which implies (iii), and hence (14).
If δ < 1, then δp− 1 + 1− p < 0,which implies that there exists an ε > 1− p such that δp− 1 + ε < 0. Thus{

nδp−1 logγ n
}

is quasi-ε−power decreasing for any γ ∈ R. (15) is proved.

Remark. Theorem A is the special case when δ = γ = 0 in (15).

Theorem 3.3. Let ϕ (x) ∈ ∆
(
p, q

) (
0 ≤ q ≤ p

)
, {αn} ,

{
βn

}
be nonnegative sequences satisfying (i), (ii) in Theorem

3.1 and
(iv)

∑
∞

n=2i+1 n−2(q−p∗+1)+(µ+α)(1−p∗)αnβθn = O
(
i−2(q−p∗+1)+(µ+α)(1−p∗)+1αiβθi

)
.

Then

(C, α) ∈ B
(
αn, βn;γn,nµ;ϕ

)
, −1 < α < 0, 0 ≤ µ < 2,

where

γn :=


n(1−α)p∗−(1+µ)q+ααnβθn , α

(
p∗ − q − 1

)
< p∗ − q,

n(1−α)p∗−(1+µ)q+α (
log n

)
αnβθn , α

(
p∗ − q − 1

)
= p∗ − q,

n−(µ+α)qαnβθn , α
(
p∗ − q − 1

)
> p∗ − q.

Proof. Similar to (9), we have

n∑
i=1

λ−1
i

∣∣∣̃tni

∣∣∣ = O
(
n−1−α

) nα−1
n/2∑
i=1

i1−µ + n1−µ
n∑

i=n/2+1

(n − v + 1)α−1

 = O
(
n−µ−α

)
,

hence

∞∑
n=i

αnβ
θ
n

 n∑
v=1

∣∣∣̃tnv

∣∣∣
λv


p∗−1 ∣∣∣̃tni

∣∣∣q−p∗+1
= O

 ∞∑
n=i

αnβ
θ
nn−(µ+α)(p∗−1) ∣∣∣̃tni

∣∣∣q−p∗+1


= O
(
iq−p∗+1

)  ∞∑
n=i

αnβ
θ
nn(µ+α)(1−p∗)


∣∣∣Aα−1

n−i

∣∣∣
nAα

n

q−p∗+1
= O

(
iq−p∗+1

)  2i∑
n=i

+

∞∑
n=2i+1


=: J1 + J2. (16)

Similar to (11) and (13), we have

J1 = O
(
iq−p∗+1

) 2i∑
n=i

αnβ
θ
nn(µ+α)(1−p∗)


∣∣∣Aα−1

n−i

∣∣∣
nAα

n

q−p∗+1

= O
(
iq−p∗+1+(µ+α)(1−p∗)αiβ

θ
i Ai

)
, (17)

and

J2 = O
(
iq−p∗+1

) ∞∑
n=2i+1

n−2(q−p∗+1)+(µ+α)(1−p∗)αnβ
θ
n

= O
(
ip
∗
−q+(µ+α)(1−p∗)αiβ

θ
i

)
. (18)

where Ai is defined by (12). Therefore, we prove Theorem 3.3 by (16)-(18) and Theorem 2.3.
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Corollary 3.4. Let ϕ (x) = xp, then
(a) If {αn} is quasi-ε-power decreasing for some ε > α − αp and satisfies the condition (iv) in Theorem 3.3, then

(14) holds for all −1 < α < 0, p ≥ 1. Especially, if δ <
1+αp−α

p , γ ∈ R, then (15) holds for all −1 < α < 0, p ≥ 1.
(b) If {αn} is quasi-ε-power decreasing for some ε > 1 − αp and satisfies the condition (iv) in Theorem 3.3, then

(14) holds for −1 < α < 0, 0 < p < 1. Especially, if δ < 1, γ ∈ R, then (15) holds for −1 < α < 0, 0 < p < 1.

Proof. It can be proved in a way similar to Corollary 3.2, we omit the details here.

Theorem 3.5. Let ϕ (x) ∈ ∆
(
p, q

) (
0 ≤ q ≤ p

)
, T =

(
tnj

)
be a lower triangular matrix with the members tnj having

the form p j

Pn
, where p j ≥ 0 for 0 ≤ j ≤ n and Pn =

∑n
j=0 p j > 0, λ = {λn} be a positive sequence. If

(v) npn ' Pn,

(vi)
∑n

v=1
Pv−1
λv

= O
(

nPn−1
λn

)
,

(vii)
∑
∞

n=i αnβθnλ
1−p∗
n np∗−q−1Pp∗−q−1

n−1 = O
(
αiβθi λ

1−p∗

i ip∗−qPp∗−q−1
i−1

)
,

then

T ∈ B
(
αn, βn;γn, λn;ϕ

)
,

where γn = αiβθi λ
−q
i ip∗−q.

Proof. By (4), (5) and (vi), we have

n∑
v=1

∣∣∣̃tnv

∣∣∣
λv

=
pn

PnPn−1

n∑
v=1

Pv−1

λv
= O

( npn

Pnλn

)
.

Therefore, by (v) and (vii), we get

∞∑
n=i

αnβ
θ
n

 n∑
v=1

∣∣∣̃tnv

∣∣∣
λv


p∗−1 ∣∣∣̃tni

∣∣∣q−p∗+1

= O
(
Pq−p∗+1

i−1

) ∞∑
n=i

αnβ
θ
n

( npn

Pnλn

)p∗−1 ( pn

PnPn−1

)q−p∗+1

= O
(
Pq−p∗+1

i−1

) ∞∑
n=i

αnβ
θ
nλ

1−p∗
n np∗−q−1Pp∗−q−1

n−1

= O
(
αiβ

θ
i λ

1−p∗

i ip
∗
−q

)
= O

(
λq−p∗+1

i

(
αiβ

θ
i λ
−q
i ip

∗
−q

))
,

which together with Theorem 2.3 implies Theorem 3.5.

Corollary 3.6. Let ϕ (x) = xp, p > 0, T =
(
tnj

)
be a lower triangular matrix with the members tnj having the form

p j

Pn
, where p j ≥ 0 for 0 ≤ j ≤ n and Pn =

∑n
j=0 p j > 0. If

{
pn

}
and {αn} satisfy (v), (vi) in Theorem 3.5 with λn = n,

and
∞∑

n=i

αnP−1
n−1 = O

(
iαiP−1

i−1

)
, when p ≥ 1, (19)

and
∞∑

n=i

αnP−q
n−1 = O

(
iαiP

−q
i−1

)
, when 0 < p < 1, (20)

Then

T ∈ B
(
αn,n;γn,n;ϕ

)
, (21)

where γn = αn when p ≥ 1 and γn = n1−pαn.
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Proof. We only prove the case when p ≥ 1, the case when 0 < p < 1 can be proved similarly. Let βn = λn = n,
by (19), we have

∞∑
n=i

αnβ
θ
nλ

1−p∗
n np∗−q−1Pp∗−q−1

n−1 =

∞∑
n=i

αnP−1
n−1 = O

(
iαiP−1

i−1

)
,

which means that the condition (vii) of Theorem 3.5 holds, and thus (21) is proved.

Corollary 3.7. Under the conditions of Corollary 3.6 with pn = (n + 1)α , α > −1, we have
(a) if δ < 1+α

p , p ≥ 1, then

T ∈ B
(
nδp−1,n; nδp−1,n;ϕ

)
.

(b) if δ < 1 + α, 0 < p < 1, then

T ∈ B
(
nδp−1,n; nδp−p,n;ϕ

)
.

Proof. It is easy to verify that (19) and (20) are satisfied under the condition of (a) and the condition of (b)
respectively.
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