On Conservative Matrices in Summability of Series

Dansheng Yu ${ }^{\text {a }}$

${ }^{a}$ Department of Mathematics, Hangzhou Normal University, Hangzhou Zhejiang 310036 China.

Abstract

In the present paper, we give some sufficient conditions for a matrix belongs to the class $B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)$ when $\varphi \in \Delta(p, q)$. Our results generalize the result of Das [4] and Yu [13]. Some applications of the main results are given.

1. Introduction

Let $\left\{s_{n}\right\}$ be the partial sums of the infinite series $\sum_{n=0}^{\infty} a_{n}$, The Cesàro means of order α of the series $\sum_{n=0}^{\infty} a_{n}$ are defined by

$$
\sigma_{n}^{\alpha}:=\frac{1}{A_{n}^{\alpha}} \sum_{j=0}^{n} A_{n-j}^{\alpha-1} s_{j}, n=0,1, \cdots
$$

where

$$
A_{n}^{\alpha}:=\frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1) \Gamma(n+1)}, \quad n=0,1, \cdots
$$

Let (C, α) be the Cesàro matrix of order α, that is, (C, α) be the lower triangular matrix $\left(A_{n-v}^{\alpha-1} / A_{n}^{\alpha}\right)$.
Das [4] defined a matrix $T:=\left(t_{n j}\right)$ to be absolutely k th-power conservative for $k \geq 1$, denoted by $T \in B\left(A_{k}\right)$, that is, if $\left\{s_{n}\right\}$ satisfies

$$
\sum_{n=1}^{\infty} n^{k-1}\left|s_{n}-s_{n-1}\right|^{k}<\infty
$$

then

$$
\sum_{n=1}^{\infty} n^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

[^0]where
$$
t_{n}=\sum_{j=0}^{n} t_{n j} s_{j}
$$

Flett [5] introduced the concept of absolute summability of order k. A series $\sum_{n=0}^{\infty} a_{n}$ is summable $|C, \alpha|_{k}, k \geq 1, \alpha>-1$, if

$$
\sum_{n=0}^{\infty} n^{k-1}\left|\sigma_{n-1}^{\alpha}-\sigma_{n}^{\alpha}\right|^{k}<\infty
$$

Flett [5] established the following inclusion theorem for $|C, \alpha|_{k}$. If the series $\sum_{n=0}^{\infty} a_{n}$ is summable $|C, \alpha|_{k}$, it is also summable for $|C, \alpha|_{r}$ for each $r \geq k \geq 1, \alpha>-1, \beta>\alpha+\frac{1}{k}-\frac{1}{r}$. Especially, a series $\sum_{n=0}^{\infty} a_{n}$ which is $|C, \alpha|_{k}$ summability is also $|C, \beta|_{k}$ summability for $k \geq 1, \beta>\alpha>-1$.

If one sets $\alpha=0$, from the above inclusion result, we have
Theorem A. Let $k \geq 1$, then $(C, \alpha) \in B\left(A_{k}\right)$ for $\alpha>0$.
As we know, the k-th power conservative matrices actually are results of comparison of summability fields of absolute summability methods. Many mathematicians have obtained a lot of important results by comparing different absolute summability methods. Here we remind readers some interesting papers of Sarigöl ([8]-[11]). For example, take $a_{v}=s_{v}-s_{v-1}, s_{0}=0$. Denoted by t_{n} and T_{n} the Riesz means (R, p_{n}) and $\left(R, q_{n}\right)$ of the sequence $\left\{s_{v}\right\}$, respectively. It is called that a series $\sum a_{v}$ or a sequence s_{v} is summable $\left|R, p_{n}\right|_{k}(k \geq 1)$ (see [10]), if $\left\{t_{n}^{*}\right\} \in l_{k}$, where

$$
t_{n}^{*}:=n^{1 / k^{*}}\left(t_{n}-t_{n-1}\right)=\frac{n^{1 / k^{*}} p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} .
$$

Since

$$
T_{n}=\frac{1}{Q_{n}} \sum_{v=1}^{n-1} \Delta\left(\frac{q_{v}}{p_{v}}\right) P_{v} t_{v}+\frac{q_{n} P_{n}}{Q_{n} p_{n}} t_{n}=\sum_{v=1}^{n} d_{n v} t_{v}
$$

where

$$
d_{n v}= \begin{cases}\frac{q_{n} P_{v} P_{v-1}}{Q_{n} Q_{n-1} p_{v}} \Delta\left(\frac{Q_{v-1}}{P_{v-1}}\right), & 1 \leq v<n, \\ \frac{q_{n} P_{n}}{Q_{n} p_{n}}, & v=n, \\ 0, & v>n .\end{cases}
$$

It is easy to see that $D \in B\left(A_{k}\right)$ iff $\left|R, p_{n}\right|_{k} \Rightarrow\left|R, q_{n}\right|_{k}$. The author is indebted to Professor Sarigöl in Pamukkale University for providing this nice example.

There are many works have done to generalize the results of Das [4] and Flett [5](see [1]-[3], [12]-[16], for examples). Among them, we [13] generalized the concept of the absolutely k th-power conservative to the following
Definition 1.1. Let $\varphi(x)$ be a nonnegative function defined on $[0, \infty),\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be nonnegative sequences. We say that a matrix

$$
T:=\left(t_{n j}\right) \in B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)
$$

if

$$
\sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\beta_{n}\left|s_{n}-s_{n-1}\right|\right)<\infty
$$

implies that

$$
\sum_{n=1}^{\infty} \gamma_{n} \varphi\left(\delta_{n}\left|t_{n}-t_{n-1}\right|\right)<\infty
$$

If $\alpha_{n}=\gamma_{n}=n^{-1}, \beta_{n}=\delta_{n}=n, \varphi(x)=x^{k}, k \geq 1$, then $B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \delta_{n} ; \varphi\right)$ reduces to $B\left(A_{k}\right)$.
Let $T:=\left(t_{n j}\right)$ be a lower triangular matrix, $\lambda=\left\{\lambda_{n}\right\}$ be a positive sequence. Set

$$
\begin{aligned}
& \widetilde{t}_{n i}:=\left\{\begin{array}{cc}
\sum_{j=i}^{n} t_{n j}-\sum_{j=i}^{n-1} t_{n-1, j}, & 0 \leq i \leq n-1, \\
t_{n n}, & i=n,
\end{array}\right. \\
& \widetilde{T_{n}}(\lambda):=\sum_{j=1}^{n} \frac{\left|\widehat{t}_{n i}\right|}{\lambda_{i}} .
\end{aligned}
$$

We [13] established the following general result:
Theorem 1.2. Let $\varphi(x)$ be a nonnegative convex function defined on $[0, \infty), T:=\left(t_{n j}\right)$ be a lower triangular matrix satisfying $\sum_{j=0}^{n} t_{n j}=1$, and let $\left\{\alpha_{n}\right\}$ be a nonnegative sequence. If $\lambda=\left\{\lambda_{n}\right\}$ is a positive sequence such that

$$
\lambda_{n}^{-1} \sum_{j=n}^{\infty} \alpha_{j}\left|\widetilde{t}_{j n}\right|\left(\widetilde{T}_{j}(\lambda)\right)^{-1}=O\left(A_{n}\right), n \geq 1
$$

then

$$
T \in B\left(A_{n}, \lambda_{n} ; \alpha_{n},\left(\widetilde{T}_{n}(\lambda)\right)^{-1} ; \varphi\right)
$$

Theorem 1.2 can be applied to test whether a Cesàro matrix or a Riesz matrix belong to $B\left(\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}, \varphi\right)$ or not. Especially, we [13] generalized Theorem A by applying Theorem 1.2 (see Theorem 3.3 in [13]).

Denote by $\Delta(p, q)(0 \leq q \leq p)$ the set of all nonnegative functions $\varphi(x)$ defined on $[0, \infty)$ such that $\varphi(0)=$ $0, \varphi(x) / x^{p}$ is nonincreasing and $\varphi(x) / x^{q}$ is nondecreasing. It is clear that $\Delta(p, q) \subset \Delta(p, 0)$ for $0<q \leq p$. For example, $\Delta(p, 0)$ contains the function $\varphi(x)=\log (1+x), t^{p} \in \Delta(p, p)$ and $t^{p} \log (1+t) \subset \Delta(p+1, p)$ for $p>0$.

We will establish two general results similar to Theorem 1.2 when $\varphi \in \Delta(p, q)$ in section 2 (Theorem 2.1 and Theorem 2.3), some applications of these two general results will be given in section 3 .

Throughout the paper C_{α} denotes a positive constant depending only on α, their values may be different even in the same line. $\alpha_{n} \simeq \beta_{n}$ means that there is a positive constant C such that $C^{-1} \beta_{n} \leq \alpha_{n} \leq C \beta_{n}$.

2. Main Results

Firstly, we have
Theorem 2.1. Let $\varphi(x) \in \Delta(p, q)(0 \leq q \leq p), T:=\left(t_{n j}\right)$ be a lower triangular matrix satisfying $\sum_{j=0}^{n} t_{n j}=1$. Assume that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\lambda=\left\{\lambda_{n}\right\}$ are positive sequences satisfying the following conditions:
(A) There is a positive constant K_{1} such that at least one of the conditions $\inf \beta_{n} \geq K_{1}$ and $\sup \beta_{n} \leq K_{1}$ holds;
(B) There is a positive constant K_{2} such that inf $\lambda_{n} \geq K_{2}>0$;
(C)

$$
\begin{equation*}
\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\widetilde{T_{n}}(\lambda)\right)^{p^{*}-1}\left|\widetilde{t}_{n i}\right|^{q-p^{*}+1}=O\left(\lambda_{i}^{q-p^{*}+1} \gamma_{i}\right), i \geq 1 \tag{1}
\end{equation*}
$$

where $p^{*}:=\max (1, p)$ and

$$
\theta:=\left\{\begin{array}{lc}
q, \quad \text { if } \inf \beta_{n}=0 \\
p, \quad \text { otherwise }
\end{array}\right.
$$

Then

$$
\begin{equation*}
T \in B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \lambda_{n} ; \varphi\right) \tag{2}
\end{equation*}
$$

To prove Theorem 2.1, we need some properties of $\Delta(p, q)$:
Lemma 2.2. ([7]) Let $\Phi(x) \in \Delta(p, q)(0 \leq q \leq p)$ and $t_{j} \geq 0, j=1,2, \cdots$. Then
(a) $\eta^{p} \Phi(t) \leq \Phi(\eta t) \leq \eta^{q} \Phi(t)$ for $0 \leq \eta \leq 1, t \geq 0$;
(b) $\Phi(\eta t) \leq \eta^{p} \Phi(t)$ for $\eta \geq 1, t \geq 0$;
(c) $\Phi\left(\sum_{j=1}^{n} t_{j}\right) \leq\left(\sum_{j=1}^{n} \Phi^{1 / p^{*}}\left(t_{j}\right)\right)^{p^{*}}$;
(d) $\Phi(x)$ is nondecreasing.

Remark. From (a) and (b) in Lemma 2.2, we have

$$
\Phi\left(\beta_{n} t\right)=O(1) \beta_{n}^{q} \Phi(t)
$$

when $\sup \beta_{n} \leq K_{1}$, and

$$
\Phi\left(\beta_{n} t\right)=O(1) \beta_{n}^{p} \Phi(t)
$$

when $\inf \beta_{n} \geq K_{1}$. In other words, we have

$$
\Phi\left(\beta_{n} t\right)=O(1) \beta_{n}^{\theta} \Phi(t)
$$

Proof of Theorem 2.1 Since ($\operatorname{set} s_{-1}:=0$)

$$
\begin{aligned}
t_{n} & =\sum_{j=0}^{n} t_{n j} s_{j}=\sum_{j=0}^{n} t_{n j}\left(\sum_{i=0}^{j}\left(s_{i}-s_{i-1}\right)\right) \\
& =\sum_{i=0}^{n}\left(s_{i}-s_{i-1}\right)\left(\sum_{j=i}^{n} t_{n j}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
t_{n}-t_{n-1} & =\sum_{i=0}^{n}\left(s_{i}-s_{i-1}\right)\left(\sum_{j=i}^{n} t_{n j}\right)-\sum_{i=0}^{n-1}\left(s_{i}-s_{i-1}\right)\left(\sum_{j=i}^{n-1} t_{n-1, j}\right) \\
& =\sum_{i=0}^{n} \widetilde{t}_{n i}\left(s_{i}-s_{i-1}\right)=\sum_{i=1}^{n} \widetilde{t}_{n i}\left(s_{i}-s_{i-1}\right),
\end{aligned}
$$

where in the last inequality, we used the fact $\widetilde{t}_{n 0}=0$, which follows from $\sum_{j=0}^{n} t_{n j}=1$ and the definition of $\widetilde{t}_{n 0}$.

Since $\inf \lambda_{n} \geq K_{2}>0$ and T is a lower triangular matrix satisfying $\sum_{j=0}^{n} t_{n j}=1$, we see that $\frac{\left|\overleftarrow{t r i n}_{n i}\right|}{\lambda_{i}}=O(1)$. Then, by Lemma 2.2 and (1), we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\beta_{n}\left|t_{n}-t_{n-1}\right|\right) & \leq \sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\beta_{n} \sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right) \\
& =O(1) \sum_{n=1}^{\infty} \alpha_{n} \beta_{n}^{\theta} \varphi\left(\sum_{i=1}^{n} \lambda_{i}^{-1}\left|t_{n i}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right) \\
& =O(1) \sum_{n=1}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\sum_{i=1}^{n} \varphi^{1 / p^{*}}\left(\lambda_{i}^{-1}\left|\overleftarrow{t}_{n i}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right)\right)^{p^{*}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\sum_{i=1}^{n}\left(\frac{\left|\widehat{t}_{n i}\right|}{\lambda_{i}}\right)^{q / p^{*}} \varphi^{1 / p^{*}}\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right)^{p^{*}} \\
& =O(1) \sum_{n=1}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\sum_{i=1}^{n} \frac{\left|t_{n i}\right|}{\lambda_{i}}\right)^{p^{*}-1}\left(\sum_{i=1}^{n}\left(\frac{\left|\widehat{t}_{n i}\right|}{\lambda_{i}}\right)^{q-p^{*}+1} \varphi\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right)
\end{aligned}
$$

(by Hölder's inequality)
$=\sum_{i=1}^{\infty} \varphi\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right) \lambda_{i}^{p^{*}-q-1} \sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\widetilde{T_{n}}(\lambda)\right)^{p^{*}-1}\left|t_{n i}\right|^{q-p^{*}+1}$
$=O(1) \sum_{i=1}^{\infty} \gamma_{i} \varphi\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)$,
which implies (2).
Theorem 2.3. Let $T=\left(t_{n j}\right)$ be a lower triangular matrix with the entries $t_{n j}$ having the form $\frac{p_{j}}{P_{n}}$, where $p_{j} \geq 0$ for $0 \leq j \leq n$ and $P_{n}=\sum_{j=0}^{n} p_{j}>0$. Let $\varphi \in \Delta(p, q)(0 \leq q \leq p)$ and $\left\{\alpha_{n}\right\}, \lambda=\left\{\lambda_{n}\right\}$ be positive sequences. If

$$
\begin{equation*}
\sum_{i=n}^{\infty} \alpha_{i}\left(\widetilde{T}_{i}(\lambda) \frac{P_{i} P_{i-1}}{p_{i}}\right)^{-q}=O\left(n \alpha_{n}\left(\widetilde{T}_{n}(\lambda) \frac{P_{n} P_{n-1}}{p_{n}}\right)^{-q}\right) \tag{3}
\end{equation*}
$$

then

$$
T \in B\left(B_{n}, \lambda_{n} ; \alpha_{n},\left(\widetilde{T}_{n}(\lambda)\right)^{-1} ; \varphi\right)
$$

where

$$
B_{n}=n^{p^{*}} \alpha_{n}\left(\widetilde{T_{n}}(\lambda) \frac{P_{n}}{p_{n}}\right)^{-q} \lambda_{n}^{-q}
$$

Lemma 2.4. ([6]) Let $p \geq 1, \alpha_{n} \geq 0, \lambda_{n}>0$, then

$$
\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k=1}^{n} \alpha_{k}\right)^{p} \leq p^{p} \sum_{n=1}^{\infty} \lambda_{n}^{1-p}\left(\sum_{k=n}^{\infty} \lambda_{k}\right)^{p} \alpha_{n}^{p}
$$

Proof of Theorem 2.3 First, we have

$$
\begin{align*}
\widetilde{t}_{n i} & =\sum_{j=i}^{n} t_{n j}-\sum_{j=i}^{n-1} t_{n j} \\
& =\frac{p_{n}}{P_{n}}+\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) \sum_{j=i}^{n-1} p_{j} \\
& =\frac{p_{n}}{P_{n}}-\frac{p_{n}}{P_{n} P_{n-1}}\left(P_{n-1}-P_{i-1}\right) \\
& =\frac{p_{n} P_{i-1}}{P_{n} P_{n-1}}, 1 \leq i \leq n-1, \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{t}_{n 0}=0, \widetilde{t}_{n n}=\frac{p_{n}}{P_{n}} \tag{5}
\end{equation*}
$$

Noting that

$$
\left(\widetilde{T_{n}}(\lambda)\right)^{-1} \frac{\left|\widetilde{t_{n i}}\right|}{\lambda_{i}} \leq 1,0 \leq i \leq n
$$

by Lemma 2.2 and Lemma 2.4, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \alpha_{n} \varphi\left(\left(\widetilde{T_{n}}(\lambda)\right)^{-1}\left|t_{n}-t_{n-1}\right|\right) \\
& \leq \sum_{n=1}^{\infty} \alpha_{n} \varphi\left(\left(\widetilde{T_{n}}(\lambda)\right)^{-1} \sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widetilde{t}_{n i}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right) \\
& \leq \sum_{n=1}^{\infty} \alpha_{n}\left(\sum_{i=1}^{n} \varphi^{1 / p^{*}}\left(\left(\widetilde{T_{n}}(\lambda)\right)^{-1} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right|\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right)\right)^{p^{*}} \\
& \leq \sum_{n=1}^{\infty} \alpha_{n}\left(\sum_{i=1}^{n}\left(\widetilde{T_{n}}(\lambda) \lambda_{i}\right)^{-q / p^{*}}\left|t_{n i}\right|^{q / p^{*}} \varphi^{1 / p^{*}}\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right)^{p^{*}} \\
& =O(1) \sum_{n=1}^{\infty} \alpha_{n}\left(\widetilde{T_{n}}(\lambda) \frac{P_{n} P_{n-1}}{p_{n}}\right)^{-q} \times\left(\sum_{i=1}^{n}\left(\lambda_{i}^{-1} P_{i-1}\right)^{q / p^{*}} \varphi^{1 / p^{*}}\left(\lambda_{i}\left|s_{i}-s_{i-1}\right|\right)\right)^{p^{*}} \\
& =O(1) \sum_{n=1}^{\infty}\left(\alpha_{n}\left(\widetilde{T_{n}}(\lambda) \frac{P_{n} P_{n-1}}{p_{n}}\right)^{-q}\right)^{1-p^{*}} \\
& \quad \times\left(\lambda_{n}^{-1} P_{n-1}\right)^{q} \varphi\left(\lambda_{n}\left|s_{n}-s_{n-1}\right|\right) \times\left(\sum_{i=n}^{\infty} \alpha_{i}\left(\widetilde{T}_{i}(\lambda) \frac{P_{i} P_{i-1}}{p_{i}}\right)^{-q}\right)^{p^{*}} \\
& =O(1) \sum_{n=1}^{\infty} n^{p^{*}} \alpha_{n}\left(\widetilde{T_{n}}(\lambda) \frac{P_{n}}{p_{n}}\right)^{-q} \lambda_{n}^{-q} \varphi\left(\lambda_{n}\left|s_{n}-s_{n-1}\right|\right),
\end{aligned}
$$

which completes the proof of Theorem 2.3.

3. Applications of The Main Results

We will use the following estimate frequently (see [17]):

$$
\begin{equation*}
A_{n}^{\alpha} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}, \alpha>-1 \tag{6}
\end{equation*}
$$

Theorem 3.1. Let $\varphi(x) \in \Delta(p, q)(0 \leq q \leq p),\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be positive sequences satisfying
(i) There is a positive constant K such that at least one of the conditions $\inf \beta_{n} \geq K$ and $\sup \beta_{n} \leq K$ holds;
(ii) $\alpha_{m} \simeq \alpha_{n}, \beta_{m} \simeq \beta_{n}$ for any $n \leq m \leq 2 n$;
(iii) $\sum_{n=2 i+1}^{\infty} n^{-2\left(q-p^{*}+1\right)+\mu\left(1-p^{*}\right)} \alpha_{n} \beta_{n}^{\theta}=O\left(i^{-2\left(q-p^{*}+1\right)+\mu\left(1-p^{*}\right)+1} \alpha_{i} \beta_{i}^{\theta}\right)$.

Then
$(C, \alpha) \in B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, n^{\mu} ; \varphi\right), \quad \alpha>0,0 \leq \mu<2$,
where

$$
\gamma_{n}:=\left\{\begin{array}{cl}
n^{-(1+\mu) q+p^{*}} \alpha_{n} \beta_{n}^{\theta}, & \alpha\left(p^{*}-q-1\right)<p^{*}-q \\
n^{-(1+\mu) q+p^{*}}(\log n) \alpha_{n} \beta_{n}^{\theta}, & \alpha\left(p^{*}-q-1\right)=p^{*}-q, \\
n^{\alpha\left(p^{*}-q-1\right)-\mu q} \alpha_{n} \beta_{n}^{\theta}, & \alpha\left(p^{*}-q-1\right)>p^{*}-q .
\end{array}\right.
$$

Proof. Let

$$
t_{n j}:=\frac{A_{n-j}^{\alpha-1}}{A_{n}^{\alpha}}, j=0,1, \cdots, n ; \alpha>-1 .
$$

Then for $0 \leq i \leq n-1$,

$$
\begin{align*}
\widetilde{t}_{n i} & =\frac{1}{A_{n}^{\alpha}} \sum_{j=i}^{n} A_{n-j}^{\alpha-1}-\frac{1}{A_{n-1}^{\alpha}} \sum_{j=i}^{n} A_{n-1-j}^{\alpha-1} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{j=0}^{n-i} A_{j}^{\alpha-1}-\frac{1}{A_{n-1}^{\alpha}} \sum_{j=0}^{n-1-i} A_{j}^{\alpha-1} \\
& =\frac{A_{n-i}^{\alpha}}{A_{n}^{\alpha}}-\frac{A_{n-1-i}^{\alpha}}{A_{n-1}^{\alpha}}=\frac{i}{n} \frac{A_{n-i}^{\alpha-1}}{A_{n}^{\alpha}}, \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{t}_{n n}=\frac{A_{0}^{\alpha-1}}{A_{n}^{\alpha}}=\frac{1}{A_{n}^{\alpha}} \tag{8}
\end{equation*}
$$

Taking $\lambda_{n}=n^{\mu}, n \geq 1,0 \leq \mu<2$, by (6)-(8), we have

$$
\begin{align*}
\sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right| & =\sum_{i=1}^{n} \frac{\left|\widehat{t}_{n i}\right|}{i^{\mu}}=\frac{1}{n A_{n}^{\alpha}} \sum_{i=1}^{n} i^{1-\mu} A_{n-v}^{\alpha-1} \\
& =O\left(n^{-1-\alpha}\right)\left(n^{\alpha-1} \sum_{i=1}^{n / 2} i^{1-\mu}+n^{1-\mu} \sum_{i=n / 2+1}^{n}(n-v+1)^{\alpha-1}\right) \\
& =O\left(n^{-\mu}\right) \tag{9}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\left.\sum_{v=1}^{n} \frac{\left.\left|\frac{t_{n v}}{}\right|\right|^{p^{*}-1}}{\lambda_{v}} \widehat{t}_{n i}\right|^{q-p^{*}+1}\right. & =O\left(\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} n^{-\mu\left(p^{*}-1\right)}\left|\widehat{t}_{n i}\right|^{q-p^{*}+1}\right) \\
& =O\left(i^{q-p^{*}+1}\right)\left(\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} n^{-\mu\left(p^{*}-1\right)}\left(\frac{\left|A_{n-i}^{\alpha-1}\right|}{n A_{n}^{\alpha}}\right)^{q-p^{*}+1}\right) \\
& =O\left(i^{q-p^{*}+1}\right)\left(\sum_{n=i}^{2 i}+\sum_{n=2 i+1}^{\infty}\right) \\
& =: I_{1}+I_{2} \tag{10}
\end{align*}
$$

By (6) and (ii), we have

$$
\begin{align*}
I_{1} & =O\left(i^{q-p^{*}+1}\right) \sum_{n=i}^{2 i} \alpha_{n} \beta_{n}^{\theta} n^{-\mu\left(p^{*}-1\right)}\left(\frac{\left|A_{n-i}^{\alpha-1}\right|}{n A_{n}^{\alpha}}\right)^{q-p^{*}+1} \\
& =O\left(i^{q-p^{*}+1} \alpha_{i} \beta_{i}^{\theta} i^{-\mu\left(p^{*}-1\right)}\right) \sum_{n=i}^{2 i}\left(\frac{\left|A_{n-i}^{\alpha-1}\right|}{n A_{n}^{\alpha}}\right)^{q-p^{*}+1} \\
& =O\left(i^{q-p^{*}+1+(1+\alpha)\left(p^{*}-q-1\right)+\mu\left(1-p^{*}\right)} \alpha_{i} \beta_{i}^{\theta}\right) \sum_{n=i}^{2 i}(n+1-i)^{\left(q-p^{*}+1\right)(\alpha-1)} \\
& =O\left(i^{\alpha\left(p^{*}-q-1\right)+\mu\left(1-p^{*}\right)} \alpha_{i} \beta_{i}^{\theta} A_{i}\right) \tag{11}
\end{align*}
$$

where

$$
A_{i}:=\left\{\begin{array}{cl}
i^{\left(q-p^{*}+1\right)(\alpha-1)+1}, & \left(q-p^{*}+1\right)(\alpha-1)>-1 \tag{12}\\
\log i, & \left(q-p^{*}+1\right)(\alpha-1)=-1 \\
1 & \left(q-p^{*}+1\right)(\alpha-1)<-1
\end{array}\right.
$$

By (6) and (iii), we have

$$
\begin{align*}
I_{2} & =O\left(i^{q-p^{*}+1}\right) \sum_{n=2 i+1}^{\infty} \frac{(n-i)^{\left(q-p^{*}+1\right)(\alpha-1)}}{n^{\left(q-p^{*}+1\right)(\alpha+1)}} \alpha_{n} \beta_{n}^{\theta} n^{\mu\left(1-p^{*}\right)} \\
& =O\left(i^{q-p^{*}+1}\right) \sum_{n=2 i+1}^{\infty} n^{-2\left(q-p^{*}+1\right)+\mu\left(1-p^{*}\right)} \alpha_{n} \beta_{n}^{\theta} \\
& =O\left(i^{p^{*}-q+\mu\left(1-p^{*}\right)} \alpha_{i} \beta_{i}^{\theta}\right) \tag{13}
\end{align*}
$$

Therefore, by (10)-(13) and Theorem 2.1, we prove Theorem 3.1.
A non-negative sequence $\left\{a_{n}\right\}$ is said to be almost decreasing, if there is a positive constant K such that $a_{n} \geq K a_{m}$ for all $n \leq m$, and it is said to be quasi- β-power increasing with some real number β, if

Corollary 3.2. Let $\varphi(x)=x^{p}$, then
(a) If $\left\{\alpha_{n}\right\}$ is quasi- ε-power decreasing with some $\varepsilon>0$ and satisfies the condition (ii) in Theorem 3.1, then

$$
\begin{equation*}
(C, \alpha) \in B\left(\alpha_{n}, n ; \alpha_{n}, n ; \varphi\right) \tag{14}
\end{equation*}
$$

for $\alpha>0, p \geq 1$. Especially, if $\delta<\frac{1}{p}, \gamma \in R$, then

$$
\begin{equation*}
(C, \alpha) \in B\left(n^{\delta p-1} \log ^{\gamma} n, n ; n^{\delta p-1} \log ^{\gamma} n, n ; \varphi\right) \tag{15}
\end{equation*}
$$

for $\alpha>0, p \geq 1$.
(b) If $\left\{\alpha_{n}\right\}$ is quasi- ε-power decreasing for some $\varepsilon>1$ - p and satisfies the condition (ii) in Theorem 3.1, then (14) holds for $\alpha>0,0<p<1$. Especially, if $\delta<1, \gamma \in R$, then (15) holds for $\alpha>0,0<p<1$.
Proof. (a) Since $\varphi(x)=x^{p}, p \geq 1$, we may take $q=p=p^{*}$. To prove (14), by Theorem 2.3, we only need to verify that (iii) in Theorem 3.1 holds with $\beta_{n}=n, \mu=1$ ($\theta=p$ in this case). Since $\left\{\alpha_{n}\right\}$ is quasi- ε-power decreasing with $\varepsilon>0$, then

$$
\begin{aligned}
\sum_{n=2 i+1}^{\infty} n^{-2\left(q-p^{*}+1\right)+\mu\left(1-p^{*}\right)} \alpha_{n} \beta_{n}^{\theta} & =O(1) \sum_{n=2 i+1}^{\infty} n^{-1-\varepsilon} \alpha_{n} n^{\varepsilon} \\
& =O\left(\alpha_{i} i^{\varepsilon}\right) \sum_{n=2 i+1}^{\infty} n^{-1-\varepsilon} \\
& =O\left(i^{-1} \alpha_{i}\right)
\end{aligned}
$$

which means (iii).
If $\delta<\frac{1}{p}$, then there is an $\varepsilon>0$ such that $\delta p-1+\varepsilon<0$, hence $\left\{n^{\delta p-1} \log ^{\gamma} n\right\}$ is quasi- $\varepsilon-$ power decreasing for any $\gamma \in R$. Now, applying (14), we get (15).
(b) Since $\varphi(x)=x^{p}, 0<p<1$, we may take $q=p, p^{*}=1$. Let $\beta_{n}=n, \mu=1$ ($\theta=p$ again $)$, then

$$
\begin{aligned}
\sum_{n=2 i+1}^{\infty} n^{-2\left(q-p^{*}+1\right)+\mu\left(1-p^{*}\right)} \alpha_{n} \beta_{n}^{\theta} & =O(1) \sum_{n=2 i+1}^{\infty} n^{-p-\varepsilon} n^{\varepsilon} \alpha_{n} \\
& =O\left(i^{\varepsilon} \alpha_{i}\right) \sum_{n=2 i+1}^{\infty} n^{-p-\varepsilon} \\
& =O\left(i^{1-p} a_{i}\right)
\end{aligned}
$$

for $\varepsilon>1-p$, which implies (iii), and hence (14).
If $\delta<1$, then $\delta p-1+1-p<0$, which implies that there exists an $\varepsilon>1-p$ such that $\delta p-1+\varepsilon<0$. Thus $\left\{n^{\delta p-1} \log ^{\gamma} n\right\}$ is quasi- $\varepsilon-$ power decreasing for any $\gamma \in R$. (15) is proved.

Remark. Theorem A is the special case when $\delta=\gamma=0$ in (15).

Theorem 3.3. Let $\varphi(x) \in \Delta(p, q)(0 \leq q \leq p),\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be nonnegative sequences satisfying (i), (ii) in Theorem 3.1 and
(iv) $\sum_{n=2 i+1}^{\infty} n^{-2\left(q-p^{*}+1\right)+(\mu+\alpha)\left(1-p^{*}\right)} \alpha_{n} \beta_{n}^{\theta}=O\left(i^{-2\left(q-p^{*}+1\right)+(\mu+\alpha)\left(1-p^{*}\right)+1} \alpha_{i} \beta_{i}^{\theta}\right)$.

Then

$$
(C, \alpha) \in B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, n^{\mu} ; \varphi\right),-1<\alpha<0,0 \leq \mu<2
$$

where

$$
\gamma_{n}:=\left\{\begin{array}{cl}
n^{(1-\alpha) p^{*}-(1+\mu) q+\alpha} \alpha_{n} \beta_{n,}^{\theta} & \alpha\left(p^{*}-q-1\right)<p^{*}-q, \\
n^{(1-\alpha) p^{*}-(1+\mu) q+\alpha}(\log n) \alpha_{n} \beta_{n,}^{\theta,} & \alpha\left(p^{*}-q-1\right)=p^{*}-q, \\
n^{-(\mu+\alpha) q} \alpha_{n} \beta_{n}^{\theta}, & \alpha\left(p^{*}-q-1\right)>p^{*}-q .
\end{array}\right.
$$

Proof. Similar to (9), we have

$$
\sum_{i=1}^{n} \lambda_{i}^{-1}\left|\widehat{t}_{n i}\right|=O\left(n^{-1-\alpha}\right)\left(n^{\alpha-1} \sum_{i=1}^{n / 2} i^{1-\mu}+n^{1-\mu} \sum_{i=n / 2+1}^{n}(n-v+1)^{\alpha-1}\right)=O\left(n^{-\mu-\alpha}\right)
$$

hence

$$
\begin{align*}
\left.\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\sum_{v=1}^{n} \frac{\left|\widehat{t}_{n v}\right|}{\lambda_{v}}\right)^{p^{*}-1} \sqrt{t_{n i}}\right|^{q-p^{*}+1} & =O\left(\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} n^{-(\mu+\alpha)\left(p^{*}-1\right)}\left|\widehat{t}_{n i}\right|^{q-p^{*}+1}\right) \\
& =O\left(i^{q-p^{*}+1}\right)\left(\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} n^{(\mu+\alpha)\left(1-p^{*}\right)}\left(\frac{\left|A_{n-i}^{\alpha-1}\right|}{n A_{n}^{\alpha}}\right)^{q-p^{*}+1}\right) \\
& =O\left(i^{q-p^{*}+1}\right)\left(\sum_{n=i}^{2 i}+\sum_{n=2 i+1}^{\infty}\right) \\
& =: J_{1}+J_{2} . \tag{16}
\end{align*}
$$

Similar to (11) and (13), we have

$$
\begin{align*}
J_{1} & =O\left(i^{q-p^{*}+1}\right) \sum_{n=i}^{2 i} \alpha_{n} \beta_{n}^{\theta} n(\mu+\alpha)\left(1-p^{*}\right)\left(\frac{\left|A_{n-i}^{\alpha-1}\right|}{n A_{n}^{\alpha}}\right)^{q-p^{*}+1} \\
& =O\left(i^{q-p^{*}+1+(\mu+\alpha)\left(1-p^{*}\right)} \alpha_{i} \beta_{i}^{\theta} A_{i}\right) \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
J_{2} & =O\left(i^{q-p^{*}+1}\right) \sum_{n=2 i+1}^{\infty} n^{-2\left(q-p^{*}+1\right)+(\mu+\alpha)\left(1-p^{*}\right)} \alpha_{n} \beta_{n}^{\theta} \\
& =O\left(i^{p^{*}-q+(\mu+\alpha)\left(1-p^{*}\right)} \alpha_{i} \beta_{i}^{\theta}\right) \tag{18}
\end{align*}
$$

where A_{i} is defined by (12). Therefore, we prove Theorem 3.3 by (16)-(18) and Theorem 2.3.

Corollary 3.4. Let $\varphi(x)=x^{p}$, then
(a) If $\left\{\alpha_{n}\right\}$ is quasi- ε-power decreasing for some $\varepsilon>\alpha-\alpha p$ and satisfies the condition (iv) in Theorem 3.3, then (14) holds for all $-1<\alpha<0, p \geq 1$. Especially, if $\delta<\frac{1+\alpha p-\alpha}{p}, \gamma \in R$, then (15) holds for all $-1<\alpha<0, p \geq 1$.
(b) If $\left\{\alpha_{n}\right\}$ is quasi- ε-power decreasing for some $\varepsilon>1-\alpha p$ and satisfies the condition (iv) in Theorem 3.3, then (14) holds for $-1<\alpha<0,0<p<1$. Especially, if $\delta<1, \gamma \in R$, then (15) holds for $-1<\alpha<0,0<p<1$.

Proof. It can be proved in a way similar to Corollary 3.2, we omit the details here.
Theorem 3.5. Let $\varphi(x) \in \Delta(p, q)(0 \leq q \leq p), T=\left(t_{n j}\right)$ be a lower triangular matrix with the members $t_{n j}$ having the form $\frac{p_{j}}{P_{n}}$, where $p_{j} \geq 0$ for $0 \leq j \leq n$ and $P_{n}=\sum_{j=0}^{n} p_{j}>0, \lambda=\left\{\lambda_{n}\right\}$ be a positive sequence. If
(v) $n p_{n} \simeq P_{n}$,
(vi) $\sum_{v=1}^{n} \frac{P_{v-1}}{\lambda_{v}}=O\left(\frac{n P_{n-1}}{\lambda_{n}}\right)$,
(vii) $\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} \lambda_{n}^{1-p^{*}} n^{p^{*}-q-1} P_{n-1}^{p^{*}-q-1}=O\left(\alpha_{i} \beta_{i}^{\theta} \lambda_{i}^{1-p^{*}} i^{p^{*}-q} P_{i-1}^{p^{*}-q-1}\right)$,
then

$$
T \in B\left(\alpha_{n}, \beta_{n} ; \gamma_{n}, \lambda_{n} ; \varphi\right)
$$

where $\gamma_{n}=\alpha_{i} \beta_{i}^{\theta} \lambda_{i}^{-q} i^{p^{*}-q}$.
Proof. By (4), (5) and (vi), we have

$$
\sum_{v=1}^{n} \frac{\left|t_{n v}\right|}{\lambda_{v}}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1}}{\lambda_{v}}=O\left(\frac{n p_{n}}{P_{n} \lambda_{n}}\right)
$$

Therefore, by (v) and (vii), we get

$$
\begin{aligned}
& \sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\sum_{v=1}^{n} \frac{\left|\widetilde{t_{n v}}\right|}{\lambda_{v}}\right)^{p^{*}-1}\left|\widehat{t}_{n i}\right|^{q-p^{*}+1} \\
& =O\left(P_{i-1}^{q-p^{*}+1}\right) \sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta}\left(\frac{n p_{n}}{P_{n} \lambda_{n}}\right)^{p^{*}-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{q-p^{*}+1} \\
& =O\left(P_{i-1}^{q-p^{*}+1}\right) \sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} \lambda_{n}^{1-p^{*}} n^{p^{*}-q-1} P_{n-1}^{p^{*}-q-1} \\
& =O\left(\alpha_{i} \beta_{i}^{\theta} \lambda_{i}^{1-p^{*}} i^{p^{*}-q}\right)=O\left(\lambda_{i}^{q-p^{*}+1}\left(\alpha_{i} \beta_{i}^{\theta} \lambda_{i}^{-q} i^{p^{*}-q}\right)\right)
\end{aligned}
$$

which together with Theorem 2.3 implies Theorem 3.5.
Corollary 3.6. Let $\varphi(x)=x^{p}, p>0, T=\left(t_{n j}\right)$ be a lower triangular matrix with the members $t_{n j}$ having the form $\frac{p_{j}}{P_{n}}$, where $p_{j} \geq 0$ for $0 \leq j \leq n$ and $P_{n}=\sum_{j=0}^{n} p_{j}>0$. If $\left\{p_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ satisfy (v), (vi) in Theorem 3.5 with $\lambda_{n}=n$, and

$$
\begin{equation*}
\sum_{n=i}^{\infty} \alpha_{n} P_{n-1}^{-1}=O\left(i \alpha_{i} P_{i-1}^{-1}\right), \text { when } p \geq 1 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=i}^{\infty} \alpha_{n} P_{n-1}^{-q}=O\left(i \alpha_{i} P_{i-1}^{-q}\right), \text { when } 0<p<1 \tag{20}
\end{equation*}
$$

Then

$$
\begin{equation*}
T \in B\left(\alpha_{n}, n ; \gamma_{n}, n ; \varphi\right) \tag{21}
\end{equation*}
$$

where $\gamma_{n}=\alpha_{n}$ when $p \geq 1$ and $\gamma_{n}=n^{1-p} \alpha_{n}$.

Proof. We only prove the case when $p \geq 1$, the case when $0<p<1$ can be proved similarly. Let $\beta_{n}=\lambda_{n}=n$, by (19), we have

$$
\sum_{n=i}^{\infty} \alpha_{n} \beta_{n}^{\theta} \lambda_{n}^{1-p^{*}} n^{p^{*}-q-1} P_{n-1}^{p^{*}-q-1}=\sum_{n=i}^{\infty} \alpha_{n} P_{n-1}^{-1}=O\left(i \alpha_{i} P_{i-1}^{-1}\right)
$$

which means that the condition (vii) of Theorem 3.5 holds, and thus (21) is proved.
Corollary 3.7. Under the conditions of Corollary 3.6 with $p_{n}=(n+1)^{\alpha}, \alpha>-1$, we have
(a) if $\delta<\frac{1+\alpha}{p}, p \geq 1$, then

$$
T \in B\left(n^{\delta p-1}, n ; n^{\delta p-1}, n ; \varphi\right)
$$

(b) if $\delta<1+\alpha, 0<p<1$, then
$T \in B\left(n^{\delta p-1}, n ; n^{\delta p-p}, n ; \varphi\right)$.
Proof. It is easy to verify that (19) and (20) are satisfied under the condition of (a) and the condition of (b) respectively.

Acknowledgement: The author is very grateful to Professor Ali Sarigöl for his valuable suggestions.

References

[1] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98(1986), 81-84.
[2] H. Bor, A new factor theorem for generalized Cesàro summability, Filomat, 28(2014), 1205-1209.
[3] H. Bor, A new application of quasi power increasing sequences, II, Fixed Point Theory and Applications, 2013:75, doi: 10.1186/1687-1812-2013-75.
[4] G. Das, A tauberian theorem for absolute summability, Proc. Cambridge. Philos. Soc. 67(1970), 321-326.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[6] L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math., 31(1970), 279-285.
[7] M. Mateljevic and M. Pavlovic, L^{p}-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc., 87 (1983), 309-316.
[8] M. Ali. Sarigol, Necessary and sufficient conditions for the equivalence of the summability methods $\left|\bar{N}, p_{n}\right|_{k}$ and $|C, 1|_{k}$, Indian J. Pure Appl. Math., 22(1991), 483-489.
[9] M. Ali. Sarigol, On absolute weighted mean summability methods, Proc. Amer. Math. Soc., 115(1992), 157-160.
[10] M. Ali. Sarigol, On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc., 118(1993), 485-488.
[11] M. Ali. Sarigol, On inclusion relations for absolute weighted mean summability, J. Math. Anal. Appl., 181(1994), 762-767.
[12] M. Ali. Sarigol, Matrix operators on sequence A_{k}, Math. Comput. Modelling, 55(2012), 1763-1769.
[13] D. S. Yu, Conservative matrices in summability of series, Filomat, 29(2015), 1085-1092.
[14] D. S. Yu, On a result of Flett for Cesàro matrices, Appl. Math. Letter, 22(2009), 1803-1809.
[15] D. S. Yu and P. Zhou, A new class of Matrices and its applications to absolute summability factors theorem, Math. Comput. Modelling, 57(2013), 401-412.
[16] D. S. Yu and G. Z. Zhou, A summability factors theorem for generalized absolute Cesàro summability, Math. Comput. Modelling, 53(2011), 832-838.
[17] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1977.

[^0]: 2010 Mathematics Subject Classification. Primary 40F05, 40D25.
 Keywords. conservative matrices, absolute summability.
 Received: 09 May 2016; Accepted: 19 December 2016
 Communicated by Dragan S. Djordjević
 Email address: dsyu_math@163.com (Dansheng Yu)

