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Abstract. Loxodromes in Euclidean 3-space are often used in navigation. We study time-like loxodromes
which cut all meridians on helicoidal surfaces at a constant Lorentzian angle in Minkowski 3-space.

1. Introduction

A curve which cuts all meridians on a rotational surface (or a helicoidal surface) at a constant angle is
called as a loxodrome. The equations of the loxodromes on the rotational surfaces in Euclidean 3-space
were obtained by Noble [8]. Babaarslan and Munteanu [1] studied time-like loxodromes on the rotational
surfaces in Minkowski 3-space. Also the equations of space-like loxodromes on the rotational surfaces in
same space were obtained by Babaarslan and Yayli [2]. A natural generalization of the rotational surfaces
is helicoidal surfaces. Loxodromes on helicoidal surfaces in Euclidean 3-space were studied by Babaarslan
and Yayli [3]. Also they gave some important applications of them. Differential equations of the space-like
loxodromes on helicoidal surfaces in Minkowski 3-space were found by Babaarslan and Kayacik [4].

In this paper, by using similar differential geometry methods, we obtain the equations of time-like
loxodromes which cut all meridians on helicoidal surfaces at a constant Lorentzian angle in Minkowski
3-space. Also we give some examples of time-like loxodromes via Mathematica computer program.

2. Preliminaries

Let E3
1 be Minkowski 3-space. For two arbitrary vectors u = (u1,u2,u3) and v = (v1, v2, v3) in E3

1, the
Lorentzian scalar product is given by

< u, v >= u1v1 + u2v2 − u3v3. (1)

Also the pseudo-norm of the vector u ∈ E3
1 is defined by

‖u‖ =
√
|〈u,u〉|. (2)

In E3
1, an arbitrary vector u has one of the following causal characters;
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i. it is space-like if 〈u,u〉 > 0 or u = 0,

ii. it is time-like if 〈u,u〉 < 0,

iii. it is light-like if 〈u,u〉 = 0 and u , 0.

Let α : I→ E3
1 be a regular curve in E3

1, where I ⊂ R is an open interval. The regular curve α is called;
i. space-like if 〈α̇, α̇〉 > 0,

ii. time-like if 〈α̇, α̇〉 < 0,

iii. light-like if 〈α̇, α̇〉 = 0 (see [7]).

Let S : U→ E3
1 be a smooth immersed surface inE3

1, where U ⊂ R2 is an open set. S is non-degenerate if
the induced metric on its tangent plane (its first fundamental form) is non-degenerate. The non-degenerate
surface S is called;

i. space-like if its first fundamental form is a Riemannian metric,

ii. time-like if its first fundamental form is a Lorentzian metric (see [9]).

A helicoidal surface H in E3
1 is defined as the orbit of a plane curve (profile curve) under a Lorentzian

screw motion (Lorentzian rotation about an axis together with a translation in the direction of the axis) [6].
By using the Lorentzian screw motions, three different types of helicoidal surfaces can be obtained in E3

1 as
follows:

Case i. Taking profile curve β = β(u) = ( f (u), 0, 1(u)), u ∈ I ⊂ R, we can obtain the following helicoidal
surface whose rotation axis is space-like;

H(u, v) = ( f (u) + λv, 1(u) sinh v, 1(u) cosh v), (3)

where 1(u) , 0 and λ ∈ R+.
Case ii. Taking profile curve β = β(u) = (0, f (u), 1(u)), u ∈ I ⊂ R, we can obtain the following helicoidal

surface whose rotation axis is time-like;

H(u, v) = (− f (u) sin v, f (u) cos v, 1(u) + λv), (4)

where f (u) , 0 and λ ∈ R+.
Case iii. Taking profile curve β = β(u) = (0, f (u), 1(u)), we can obtain the following helicoidal surface

whose rotation axis is light-like;

H(u, v) =
(
( f (u) − 1(u))v, (1(u) − f (u))

v2

2
+ f (u) + λv, (1(u) − f (u))

v2

2
+ 1(u) + λv

)
, (5)

where f (u) , 1(u) and λ ∈ R+.
If we take λ = 0 in the equations (3)-(5), then we have the rotational surfaces in E3

1 (see [4], [5]).
A basis of the tangent plane at each point of helicoidal surface H can be given by {Hu,Hv}. Thus the first

fundamental form of H is

I = ds2 = Edu2 + 2Fdudv + Gdv2, (6)

where E = 〈Hu,Hu〉, F = 〈Hu,Hv〉 and G = 〈Hv,Hv〉 are the coefficients of first fundamental form of H.
By using these coefficients, one can give the causal characters of the non-degenerate surfaces. For

example; H is a space-like or time-like surface if and only if det(I) = EG − F2 > 0 or det(I) = EG − F2 < 0,
respectively (see [7], [11]).

Also the arc-length of any curve on the helicoidal surface H between u1 and u2 can be defined by

s =

∫ u2

u1

√∣∣∣∣∣E + 2F
dv
du

+ G(
dv
du

)2

∣∣∣∣∣du (7)

(see [4]).
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3. Time-like Loxodromes on the Helicoidal Surfaces Having Space-like Meridians

In this section, we obtain the equations of time-like loxodromes on the helicoidal surfaces having space-
like meridians with space-like, time-like and light-like axis, respectively. Firstly, we give the following
definition:

Definition 3.1. If u is a space-like vector and v is a time-like vector in E3
1. Then

|〈u, v〉| = ‖u‖‖v‖ sinhϕ,

where ϕ ∈ R+
∪ {0} is the Lorentzian time-like angle between u and v [10].

3.1. Time-like loxodromes on the helicoidal surfaces having space-like meridians with space-like axis
Let us consider the helicoidal surface H which is given by (3). Also assume that f ′2(u)− 1′2(u) = 1 for all

u ∈ J ⊂ R. The meridian curve (v = constant) is given by

H(u) = ( f (u) + λv, 1(u) sinh v, 1(u) cosh v).

If we derivative with respect to u, then we have

Hu(u) = ( f ′(u), 1′(u) sinh v, 1′(u) cosh v).

Since the meridian curve is space-like, we have

〈Hu(u),Hu(u)〉 = f ′2(u) − 1′2(u) = 1

for all u ∈ J ⊂ R.
The coefficients of first fundamental form of helicoidal surface H are

E = 〈Hu,Hu〉 = 1, F = 〈Hu,Hv〉 = λ f ′(u) and G = 〈Hv,Hv〉 = 12(u) + λ2. (8)

By using (6) and (8), the first fundamental form of H is given by

ds2 = du2 + 2λ f ′(u)dudv + (12(u) + λ2)dv2.

The helicoidal surface H is time-like if and only if EG − F2 = 12(u) − λ21′2(u) < 0 for all u ∈ J ⊂ R.
Let us assume that the time-like loxodrome α(t) is the image of a curve (u(t), v(t)) lying on (uv)-plane

under H. At the point H(u, v) where the time-like loxodrome cuts the space-like meridians at a constant
Lorentzian time-like angle ϕ, we have

ε sinhϕ =
Edu + Fdv

√

−E2du2 − 2EFdudv − EGdv2

=
du + λ f ′(u)dv√

−du2 − 2λ f ′(u)dudv − (12(u) + λ2)dv2
. (9)

From (9), we obtain the following differential equation of the time-like loxodrome:(
sinh2 ϕ(12(u) + λ2) + λ2 f ′2(u)

)
(
dv
du

)2 + 2λ cosh2 ϕ f ′(u)
dv
du

= − cosh2 ϕ. (10)

The general solution of (10) is

v =

∫ u

u0

−2λ cosh2 ϕ f ′(u) + ε
√

sinh2 2ϕ
(
−12(u) + λ2( f ′2(u) − 1)

)
2 sinh2 ϕ

(
12(u) + λ2) + 2λ2 f ′2(u)

du, (11)

where ε = ±1.
Now we give an example.
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Example 3.2. Taking f (u) = 2u, 1(u) =
√

3u, λ = 2, ε = 1, ϕ = 2, u ∈ (−1, 1) and u0 = 0, we have
v ∈ (−0.139041, 0.139041). Thus the arc-length of the time-like loxodrome is equal to 0.845363. Also we can
draw the time-like helicoidal surface, the space-like meridian (v = 0) and the time-like loxodrome in Figure
1.

Figure 1: Time-like loxodrome (blue), space-like meridian (green)

3.2. Time-like loxodromes on the helicoidal surfaces having space-like meridians with time-like axis
Let us consider the helicoidal surface H which is given by (4). Thus the meridian curve is

H(u) = (− f (u) sin v, f (u) cos v, 1(u) + λv).

Differentiating with respect to u yields

Hu(u) = (− f ′(u) sin v, f ′(u) cos v, 1′(u)).

The meridian curve H(u) and the profile curve β(u) have same causal character, because

〈Hu(u),Hu(u)〉 = f ′2(u) − 1′2(u) = 1

for all u ∈ J ⊂ R.
The coefficients of first fundamental form of H are

E = 1, F = −λ1′(u) and G = f 2(u) − λ2. (12)

Thus we have

ds2 = du2
− 2λ1′(u)dudv + ( f 2(u) − λ2)dv2.

The helicoidal surface H is time-like if and only if f 2(u) − λ2 f ′2(u) < 0 for all u ∈ J ⊂ R.
The Lorentzian time-like angleϕ between the time-like loxodrome α(t) and the space-like meridian H(u)

is defined by the angle ϕ between their tangent vectors at the point H(u, v) and it is given by

ε sinhϕ =
du − λ1′(u)dv√

−du2 + 2λ1′(u)dudv − ( f 2(u) − λ2)dv2
. (13)
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If we arrange this equation, then we obtain the following differential equation(
sinh2 ϕ( f 2(u) − λ2) + λ21′2(u)

)
(
dv
du

)2
− 2λ cosh2 ϕ1′(u)

dv
du

= − cosh2 ϕ. (14)

Thus the general solution of this differential equation is given by

v =

∫ u

u0

2λ cosh2 ϕ1′(u) + ε
√

sinh2 2ϕ
(
− f 2(u) + λ2(1′2(u) + 1)

)
2 sinh2 ϕ

(
f 2(u) − λ2) + 2λ21′2(u)

du, (15)

where ε = ±1.
Also the following example can be given.

Example 3.3. Taking f (u) = u, 1(u) = 2, λ = 2, ε = 1, ϕ = 1, u ∈ (−2, 2) and u0 = 0, we have v ∈
(−2.06251, 2.06251). Also the arc-length of the time-like loxodrome is equal to 0.70184. We can draw the
time-like helicoidal surface, the space-like meridian (v = 0) and the time-like loxodrome in Figure 2.

Figure 2: Time-like loxodrome (blue), space-like meridian (green)

3.3. Time-like loxodromes on the helicoidal surfaces having space-like meridians with light-like axis
Let us consider the helicoidal surface H which is given by (5). The meridian curve is

H(u) =
(
( f (u) − 1(u))v, (1(u) − f (u))

v2

2
+ f (u) + λv, (1(u) − f (u))

v2

2
+ 1(u) + λv

)
,

and it is space-like if and only if f ′2(u) − 1′2(u) = 1 for all u ∈ J ⊂ R.
The coefficients of first fundamental form of H are given by

E = 1, F = λ( f ′(u) − 1′(u)) and G = ( f (u) − 1(u))2. (16)

Substituting these equations into (6), the first fundamental form of H is found as

ds2 = du2 + 2λ( f ′(u) − 1′(u))dudv + ( f (u) − 1(u))2dv2.

The helicoidal surface H is time-like if and only if

( f (u) − 1(u))2
− λ2( f ′(u) − 1′(u))2 < 0
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for all u ∈ J ⊂ R.
The Lorentzian time-like angle ϕ between time-like loxodrome and space-like meridian is given by the

following equation

ε sinhϕ =
du + λ( f ′(u) − 1′(u))dv√

−du2 − 2λ( f ′(u) − 1′(u))dudv − ( f (u) − 1(u))2dv2
. (17)

Thus the differential equation of the time-like loxodrome is(
sinh2 ϕ( f (u) − 1(u))2 + λ2( f ′(u) − 1′(u))2

)
(
dv
du

)2 + 2λ cosh2 ϕ( f ′(u) − 1′(u))
dv
du

= − cosh2 ϕ, (18)

and its general solution is

v =

∫ u

u0

−2λ cosh2 ϕ( f ′(u) − 1′(u)) + ε
√

sinh2 2ϕ
(
−( f (u) − 1(u))2 + λ2( f ′(u) − 1′(u))2)

2 sinh2 ϕ( f (u) − 1(u))2 + 2λ2( f ′(u) − 1′(u))2
du, (19)

where ε = ±1.

Example 3.4. Taking f (u) = sinh u, 1(u) = cosh u, λ = 2, ε = 1, ϕ = 1, u ∈ (−1, 1) and u0 = 0, we get
v ∈ (−0.192045, 0.505886). Thus the arc-length of the time-like loxodrome is equal to 0.338181. We can draw
the time-like helicoidal surface, the space-like meridian (v = 0.2) and the time-like loxodrome in Figure 3.

Figure 3: Time-like loxodrome (blue), space-like meridian (green)

4. Time-like Loxodromes on the Helicoidal Surfaces Having Time-like Meridians

In this section, we study time-like loxodromes on the helicoidal surfaces having time-like meridians
with space-like, time-like and light-like axis, respectively. Firstly, we give the following definition:

Definition 4.1. If u and v are positive (negative) time-like vectors in E3
1. Then

〈u, v〉 = −‖u‖‖v‖ coshθ,

where θ ∈ R+ is the Lorentzian time-like angle between u and v [10].
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4.1. Time-like loxodromes on the helicoidal surfaces having time-like meridians with space-like axis
Let us consider the helicoidal surface H which is given by (3). Since the profile curve β(u) is parametrized

by arc-length, we have

f ′2(u) − 1′2(u) = −1

for all u ∈ J ⊂ R. The meridian curve is given by

H(u) = ( f (u) + λv, 1(u) sinh v, 1(u) cosh v).

Differentiating with respect to u, we have

Hu(u) = ( f ′(u), 1′(u) sinh v, 1′(u) cosh v).

The meridian curve H(u) and the profile curve β(u) have same causal character, because

〈Hu(u),Hu(u)〉 = f ′2(u) − 1′2(u) = −1

for all u ∈ J ⊂ R.
The coefficients of first fundamental form of H are given by

E = −1, F = λ f ′(u) and G = 12(u) + λ2. (20)

Thus we get

ds2 = −du2 + 2λ f ′(u)dudv + (12(u) + λ2)dv2.

The helicoidal surface H is time-like, because EG − F2 = −12(u) − λ21′2(u) < 0 for all u ∈ J ⊂ R.
The Lorentzian time-like angle θ between time-like loxodrome α(t) and time-like meridian H(u) is given

by the following formulation of differential geometry

− coshθ =
−du + λ f ′(u)dv√

du2 − 2λ f ′(u)dudv − (12(u) + λ2)dv2
. (21)

From this equation, we obtain(
cosh2 θ(12(u) + λ2) + λ2 f ′2(u)

)
(
dv
du

)2 + 2λ sinh2 θ f ′(u)
dv
du

= sinh2 θ (22)

whose general solution is

v =

∫ u

u0

−2λ sinh2 θ f ′(u) + ε
√

sinh2 2θ
(
12(u) + λ2( f ′2(u) + 1)

)
2 cosh2 θ

(
12(u) + λ2) + 2λ2 f ′2(u)

du, (23)

where ε = ±1.
Let us give the following example.

Example 4.2. Taking f (u) = 1, 1(u) = u, λ = 1, ε = 1, θ = 1/2, u ∈ (0, 1) and u0 = 0, we have v ∈ (0, 0.407298).
Thus the arc-length of the time-like loxodrome is equal to 0.886819. Also we can draw the time-like
helicoidal surface, the time-like meridian (v = 0.25) and the time-like loxodrome in Figure 4.
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Figure 4: Time-like loxodrome (blue), time-like meridian (green)

4.2. Time-like loxodromes on the helicoidal surfaces having time-like meridians with time-like axis
Let us consider the helicoidal surface H which is given by (4). The meridian curve H(u) is

H(u) = (− f (u) sin v, f (u) cos v, 1(u) + λv).

H(u) is time-like if and only if

〈Hu(u),Hu(u)〉 = f ′2(u) − 1′2(u) = −1

for all u ∈ J ⊂ R.
The coefficients of first fundamental form of H are

E = −1, F = −λ1′(u) and G = f 2(u) − λ2. (24)

Substituting these equations into (6), the first fundamental form of H is

ds2 = −du2
− 2λ1′(u)dudv + ( f 2(u) − λ2)dv2.

The helicoidal surface H is time-like, because EG − F2 = − f 2(u) − λ2 f ′2(u) < 0 for all u ∈ J ⊂ R.
The Lorentzian time-like angle θ between the time-like loxodrome α(t) and the time-like meridian H(u)

is given by

− coshθ =
−du − λ1′(u)dv√

du2 + 2λ1′(u)dudv − ( f 2(u) − λ2)dv2
. (25)

From (25), the differential equation of the time-like loxodrome is(
cosh2 θ( f 2(u) − λ2) + λ21′2(u)

)
(
dv
du

)2
− 2λ sinh2 θ1′(u)

dv
du

= sinh2 θ, (26)

and its general solution is

v =

∫ u

u0

2λ sinh2 θ1′(u) + ε
√

sinh2 2θ
(

f 2(u) + λ2(1′2(u) − 1)
)

2 cosh2 θ
(

f 2(u) − λ2) + 2λ21′2(u)
du, (27)
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where ε = ±1.
Also the following example can be given.

Example 4.3. Taking f (u) = u, 1(u) =
√

2u, λ = 1, ε = −1, θ = 1/4, u ∈ (0, 1/4) and u0 = 0, we have
v ∈ (−0.07159, 0). Also the arc-length of the time-like loxodrome is equal to 0.129974. We can draw the
time-like helicoidal surface, the time-like meridian (v = −0.04) and the time-like loxodrome in Figure 5.

Figure 5: Time-like loxodrome (blue), time-like meridian (green)

4.3. Time-like loxodromes on the helicoidal surfaces having time-like meridians with light-like axis
Let us consider the helicoidal surface H which is given by (5). The meridian curve is given by

H(u) =
(
( f (u) − 1(u))v, (1(u) − f (u))

v2

2
+ f (u) + λv, (1(u) − f (u))

v2

2
+ 1(u) + λv

)
,

and it is time-like if and only if f ′2(u) − 1′2(u) = −1 for all u ∈ J ⊂ R.
The coefficients of first fundamental form of H are

E = −1, F = λ( f ′(u) − 1′(u)) and G = ( f (u) − 1(u))2. (28)

Substituting the equations in (28) into (6), we find

ds2 = −du2 + 2λ( f ′(u) − 1′(u))dudv + ( f (u) − 1(u))2dv2.

The helicoidal surface H is time-like, because

EG − F2 = −( f (u) − 1(u))2
− λ2( f ′(u) − 1′(u))2 < 0

for all u ∈ J ⊂ R.
As it was mentioned earlier, at the intersection point H(u, v), we get

− coshθ =
−du + λ( f ′(u) − 1′(u))dv√

du2 − 2λ( f ′(u) − 1′(u))dudv − ( f (u) − 1(u))2dv2
. (29)

From this equation, the differential equation of the time-like loxodrome is(
cosh2 θ( f (u) − 1(u))2 + λ2( f ′(u) − 1′(u))2

)
(
dv
du

)2 + 2λ sinh2 θ( f ′(u) − 1′(u))
dv
du

= sinh2 θ. (30)
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The general solution of (30) is

v =

∫ u

u0

−2λ sinh2 θ( f ′(u) − 1′(u)) + ε
√

sinh2 2θ
(
( f (u) − 1(u))2 + λ2( f ′(u) − 1′(u))2)

2 cosh2 θ( f (u) − 1(u))2 + 2λ2( f ′(u) − 1′(u))2
du, (31)

where ε = ±1.
Finally, we give the following example.

Example 4.4. Taking f (u) = cosh u, 1(u) = sinh u, λ = 1, ε = 1, θ = 1, u ∈ (1, 2) and u0 = 0, we get
v ∈ (0.601447, 2.23635). Thus the arc-length of the time-like loxodrome is equal to 1.256. We can draw the
time-like helicoidal surface, the time-like meridian (v = 1.5) and the time-like loxodrome in Figure 6.

Figure 6: Time-like loxodrome (blue), time-like meridian (green)

Remark 4.5. If we take λ = 0 in the equations (23), (27) and (31), respectively, then we find the equations of the
time-like loxodromes on the rotational surfaces having time-like meridians in Minkowski 3-space. In other words,
these equations coincide with the equations in [1].
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