Time-like Loxodromes on Helicoidal Surfaces in Minkowski 3-Space

Murat Babaarslan ${ }^{\text {a }}$, Mustafa Kayacik ${ }^{\text {b }}$
${ }^{a}$ Bozok University, Department of Mathematics, 66100, Yozgat, Turkey
${ }^{b}$ Bozok University, Graduate School of Natural and Applied Sciences, Department of Mathematics, 66100, Yozgat, Turkey

Abstract

Loxodromes in Euclidean 3-space are often used in navigation. We study time-like loxodromes which cut all meridians on helicoidal surfaces at a constant Lorentzian angle in Minkowski 3-space.

1. Introduction

A curve which cuts all meridians on a rotational surface (or a helicoidal surface) at a constant angle is called as a loxodrome. The equations of the loxodromes on the rotational surfaces in Euclidean 3-space were obtained by Noble [8]. Babaarslan and Munteanu [1] studied time-like loxodromes on the rotational surfaces in Minkowski 3-space. Also the equations of space-like loxodromes on the rotational surfaces in same space were obtained by Babaarslan and Yayli [2]. A natural generalization of the rotational surfaces is helicoidal surfaces. Loxodromes on helicoidal surfaces in Euclidean 3-space were studied by Babaarslan and Yayli [3]. Also they gave some important applications of them. Differential equations of the space-like loxodromes on helicoidal surfaces in Minkowski 3-space were found by Babaarslan and Kayacik [4].

In this paper, by using similar differential geometry methods, we obtain the equations of time-like loxodromes which cut all meridians on helicoidal surfaces at a constant Lorentzian angle in Minkowski 3-space. Also we give some examples of time-like loxodromes via Mathematica computer program.

2. Preliminaries

Let \mathbb{E}_{1}^{3} be Minkowski 3-space. For two arbitrary vectors $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ in \mathbb{E}_{1}^{3}, the Lorentzian scalar product is given by

$$
\begin{equation*}
<u, v>=u_{1} v_{1}+u_{2} v_{2}-u_{3} v_{3} \tag{1}
\end{equation*}
$$

Also the pseudo-norm of the vector $u \in \mathbb{E}_{1}^{3}$ is defined by

$$
\begin{equation*}
\|u\|=\sqrt{|\langle u, u\rangle|} \tag{2}
\end{equation*}
$$

In \mathbb{E}_{1}^{3}, an arbitrary vector u has one of the following causal characters;

[^0]i. it is space-like if $\langle u, u\rangle>0$ or $u=0$,
ii. it is time-like if $\langle u, u\rangle<0$,
iii. it is light-like if $\langle u, u\rangle=0$ and $u \neq 0$.

Let $\alpha: I \rightarrow \mathbb{E}_{1}^{3}$ be a regular curve in \mathbb{E}_{1}^{3}, where $I \subset \mathbb{R}$ is an open interval. The regular curve α is called;
i. space-like if $\langle\dot{\alpha}, \dot{\alpha}\rangle>0$,
ii. time-like if $\langle\dot{\alpha}, \dot{\alpha}\rangle<0$,
iii. light-like if $\langle\dot{\alpha}, \dot{\alpha}\rangle=0$ (see [7]).

Let $S: U \rightarrow \mathbb{E}_{1}^{3}$ be a smooth immersed surface in \mathbb{E}_{1}^{3}, where $U \subset \mathbb{R}^{2}$ is an open set. S is non-degenerate if the induced metric on its tangent plane (its first fundamental form) is non-degenerate. The non-degenerate surface S is called;
i. space-like if its first fundamental form is a Riemannian metric,
ii. time-like if its first fundamental form is a Lorentzian metric (see [9]).

A helicoidal surface H in \mathbb{E}_{1}^{3} is defined as the orbit of a plane curve (profile curve) under a Lorentzian screw motion (Lorentzian rotation about an axis together with a translation in the direction of the axis) [6]. By using the Lorentzian screw motions, three different types of helicoidal surfaces can be obtained in \mathbb{E}_{1}^{3} as follows:

Case i. Taking profile curve $\beta=\beta(u)=(f(u), 0, g(u)), u \in I \subset \mathbb{R}$, we can obtain the following helicoidal surface whose rotation axis is space-like;

$$
\begin{equation*}
H(u, v)=(f(u)+\lambda v, g(u) \sinh v, g(u) \cosh v) \tag{3}
\end{equation*}
$$

where $g(u) \neq 0$ and $\lambda \in \mathbb{R}^{+}$.
Case ii. Taking profile curve $\beta=\beta(u)=(0, f(u), g(u)), u \in I \subset \mathbb{R}$, we can obtain the following helicoidal surface whose rotation axis is time-like;

$$
\begin{equation*}
H(u, v)=(-f(u) \sin v, f(u) \cos v, g(u)+\lambda v) \tag{4}
\end{equation*}
$$

where $f(u) \neq 0$ and $\lambda \in \mathbb{R}^{+}$.
Case iii. Taking profile curve $\beta=\beta(u)=(0, f(u), g(u))$, we can obtain the following helicoidal surface whose rotation axis is light-like;

$$
\begin{equation*}
H(u, v)=\left((f(u)-g(u)) v,(g(u)-f(u)) \frac{v^{2}}{2}+f(u)+\lambda v,(g(u)-f(u)) \frac{v^{2}}{2}+g(u)+\lambda v\right), \tag{5}
\end{equation*}
$$

where $f(u) \neq g(u)$ and $\lambda \in \mathbb{R}^{+}$.
If we take $\lambda=0$ in the equations (3)-(5), then we have the rotational surfaces in \mathbb{E}_{1}^{3} (see [4], [5]).
A basis of the tangent plane at each point of helicoidal surface H can be given by $\left\{H_{u}, H_{v}\right\}$. Thus the first fundamental form of H is

$$
\begin{equation*}
I=d s^{2}=E d u^{2}+2 F d u d v+G d v^{2} \tag{6}
\end{equation*}
$$

where $E=\left\langle H_{u}, H_{u}\right\rangle, F=\left\langle H_{u}, H_{v}\right\rangle$ and $G=\left\langle H_{v}, H_{v}\right\rangle$ are the coefficients of first fundamental form of H.
By using these coefficients, one can give the causal characters of the non-degenerate surfaces. For example; H is a space-like or time-like surface if and only if $\operatorname{det}(I)=E G-F^{2}>0 \operatorname{or} \operatorname{det}(I)=E G-F^{2}<0$, respectively (see [7], [11]).

Also the arc-length of any curve on the helicoidal surface H between u_{1} and u_{2} can be defined by

$$
\begin{equation*}
s=\int_{u_{1}}^{u_{2}} \sqrt{\left|E+2 F \frac{d v}{d u}+G\left(\frac{d v}{d u}\right)^{2}\right|} d u \tag{7}
\end{equation*}
$$

(see [4]).

3. Time-like Loxodromes on the Helicoidal Surfaces Having Space-like Meridians

In this section, we obtain the equations of time-like loxodromes on the helicoidal surfaces having spacelike meridians with space-like, time-like and light-like axis, respectively. Firstly, we give the following definition:

Definition 3.1. If u is a space-like vector and v is a time-like vector in \mathbb{E}_{1}^{3}. Then

$$
|\langle u, v\rangle|=\|u\|\|\mid v\| \sinh \varphi,
$$

where $\varphi \in \mathbb{R}^{+} \cup\{0\}$ is the Lorentzian time-like angle between u and v [10].

3.1. Time-like loxodromes on the helicoidal surfaces having space-like meridians with space-like axis

Let us consider the helicoidal surface H which is given by (3). Also assume that $f^{\prime 2}(u)-g^{\prime 2}(u)=1$ for all $u \in J \subset \mathbb{R}$. The meridian curve ($v=$ constant) is given by

$$
H(u)=(f(u)+\lambda v, g(u) \sinh v, g(u) \cosh v) .
$$

If we derivative with respect to u, then we have

$$
H_{u}(u)=\left(f^{\prime}(u), g^{\prime}(u) \sinh v, g^{\prime}(u) \cosh v\right) .
$$

Since the meridian curve is space-like, we have

$$
\left\langle H_{u}(u), H_{u}(u)\right\rangle=f^{\prime 2}(u)-g^{\prime 2}(u)=1
$$

for all $u \in J \subset \mathbb{R}$.
The coefficients of first fundamental form of helicoidal surface H are

$$
\begin{equation*}
E=\left\langle H_{u}, H_{u}\right\rangle=1, F=\left\langle H_{u}, H_{v}\right\rangle=\lambda f^{\prime}(u) \text { and } G=\left\langle H_{v}, H_{v}\right\rangle=g^{2}(u)+\lambda^{2} . \tag{8}
\end{equation*}
$$

By using (6) and (8), the first fundamental form of H is given by

$$
d s^{2}=d u^{2}+2 \lambda f^{\prime}(u) d u d v+\left(g^{2}(u)+\lambda^{2}\right) d v^{2} .
$$

The helicoidal surface H is time-like if and only if $E G-F^{2}=g^{2}(u)-\lambda^{2} g^{\prime 2}(u)<0$ for all $u \in J \subset \mathbb{R}$.
Let us assume that the time-like loxodrome $\alpha(t)$ is the image of a curve $(u(t), v(t))$ lying on $(u v)$-plane under H. At the point $H(u, v)$ where the time-like loxodrome cuts the space-like meridians at a constant Lorentzian time-like angle φ, we have

$$
\begin{align*}
\varepsilon \sinh \varphi & =\frac{E d u+F d v}{\sqrt{-E^{2} d u^{2}-2 E F d u d v-E G d v^{2}}} \\
& =\frac{d u+\lambda f^{\prime}(u) d v}{\sqrt{-d u^{2}-2 \lambda f^{\prime}(u) d u d v-\left(g^{2}(u)+\lambda^{2}\right) d v^{2}}} . \tag{9}
\end{align*}
$$

From (9), we obtain the following differential equation of the time-like loxodrome:

$$
\begin{equation*}
\left(\sinh ^{2} \varphi\left(g^{2}(u)+\lambda^{2}\right)+\lambda^{2} f^{\prime 2}(u)\right)\left(\frac{d v}{d u}\right)^{2}+2 \lambda \cosh ^{2} \varphi f^{\prime}(u) \frac{d v}{d u}=-\cosh ^{2} \varphi \tag{10}
\end{equation*}
$$

The general solution of (10) is

$$
\begin{equation*}
v=\int_{u_{0}}^{u} \frac{-2 \lambda \cosh ^{2} \varphi f^{\prime}(u)+\varepsilon \sqrt{\sinh ^{2} 2 \varphi\left(-g^{2}(u)+\lambda^{2}\left(f^{\prime 2}(u)-1\right)\right)}}{2 \sinh ^{2} \varphi\left(g^{2}(u)+\lambda^{2}\right)+2 \lambda^{2} f^{\prime 2}(u)} d u, \tag{11}
\end{equation*}
$$

where $\varepsilon= \pm 1$.
Now we give an example.

Example 3.2. Taking $f(u)=2 u, g(u)=\sqrt{3} u, \lambda=2, \varepsilon=1, \varphi=2, u \in(-1,1)$ and $u_{0}=0$, we have $v \in(-0.139041,0.139041)$. Thus the arc-length of the time-like loxodrome is equal to 0.845363 . Also we can draw the time-like helicoidal surface, the space-like meridian $(v=0)$ and the time-like loxodrome in Figure 1.

Figure 1: Time-like loxodrome (blue), space-like meridian (green)
3.2. Time-like loxodromes on the helicoidal surfaces having space-like meridians with time-like axis Let us consider the helicoidal surface H which is given by (4). Thus the meridian curve is

$$
H(u)=(-f(u) \sin v, f(u) \cos v, g(u)+\lambda v) .
$$

Differentiating with respect to u yields

$$
H_{u}(u)=\left(-f^{\prime}(u) \sin v, f^{\prime}(u) \cos v, g^{\prime}(u)\right) .
$$

The meridian curve $H(u)$ and the profile curve $\beta(u)$ have same causal character, because

$$
\left\langle H_{u}(u), H_{u}(u)\right\rangle=f^{\prime 2}(u)-g^{\prime 2}(u)=1
$$

for all $u \in J \subset \mathbb{R}$.
The coefficients of first fundamental form of H are

$$
\begin{equation*}
E=1, F=-\lambda g^{\prime}(u) \text { and } G=f^{2}(u)-\lambda^{2} . \tag{12}
\end{equation*}
$$

Thus we have

$$
d s^{2}=d u^{2}-2 \lambda g^{\prime}(u) d u d v+\left(f^{2}(u)-\lambda^{2}\right) d v^{2}
$$

The helicoidal surface H is time-like if and only if $f^{2}(u)-\lambda^{2} f^{\prime 2}(u)<0$ for all $u \in J \subset \mathbb{R}$.
The Lorentzian time-like angle φ between the time-like loxodrome $\alpha(t)$ and the space-like meridian $H(u)$ is defined by the angle φ between their tangent vectors at the point $H(u, v)$ and it is given by

$$
\begin{equation*}
\varepsilon \sinh \varphi=\frac{d u-\lambda g^{\prime}(u) d v}{\sqrt{-d u^{2}+2 \lambda g^{\prime}(u) d u d v-\left(f^{2}(u)-\lambda^{2}\right) d v^{2}}} . \tag{13}
\end{equation*}
$$

If we arrange this equation, then we obtain the following differential equation

$$
\begin{equation*}
\left(\sinh ^{2} \varphi\left(f^{2}(u)-\lambda^{2}\right)+\lambda^{2} g^{\prime 2}(u)\right)\left(\frac{d v}{d u}\right)^{2}-2 \lambda \cosh ^{2} \varphi g^{\prime}(u) \frac{d v}{d u}=-\cosh ^{2} \varphi \tag{14}
\end{equation*}
$$

Thus the general solution of this differential equation is given by

$$
\begin{equation*}
v=\int_{u_{0}}^{u} \frac{2 \lambda \cosh ^{2} \varphi g^{\prime}(u)+\varepsilon \sqrt{\sinh ^{2} 2 \varphi\left(-f^{2}(u)+\lambda^{2}\left(g^{\prime 2}(u)+1\right)\right)}}{2 \sinh ^{2} \varphi\left(f^{2}(u)-\lambda^{2}\right)+2 \lambda^{2} g^{\prime 2}(u)} d u \tag{15}
\end{equation*}
$$

where $\varepsilon= \pm 1$.
Also the following example can be given.
Example 3.3. Taking $f(u)=u, g(u)=2, \lambda=2, \varepsilon=1, \varphi=1, u \in(-2,2)$ and $u_{0}=0$, we have $v \in$ ($-2.06251,2.06251$). Also the arc-length of the time-like loxodrome is equal to 0.70184 . We can draw the time-like helicoidal surface, the space-like meridian $(v=0)$ and the time-like loxodrome in Figure 2.

Figure 2: Time-like loxodrome (blue), space-like meridian (green)
3.3. Time-like loxodromes on the helicoidal surfaces having space-like meridians with light-like axis Let us consider the helicoidal surface H which is given by (5). The meridian curve is

$$
H(u)=\left((f(u)-g(u)) v,(g(u)-f(u)) \frac{v^{2}}{2}+f(u)+\lambda v,(g(u)-f(u)) \frac{v^{2}}{2}+g(u)+\lambda v\right),
$$

and it is space-like if and only if $f^{\prime 2}(u)-g^{\prime 2}(u)=1$ for all $u \in J \subset \mathbb{R}$.
The coefficients of first fundamental form of H are given by

$$
\begin{equation*}
E=1, F=\lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) \text { and } G=(f(u)-g(u))^{2} . \tag{16}
\end{equation*}
$$

Substituting these equations into (6), the first fundamental form of H is found as

$$
d s^{2}=d u^{2}+2 \lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) d u d v+(f(u)-g(u))^{2} d v^{2} .
$$

The helicoidal surface H is time-like if and only if

$$
(f(u)-g(u))^{2}-\lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}<0
$$

for all $u \in J \subset \mathbb{R}$.
The Lorentzian time-like angle φ between time-like loxodrome and space-like meridian is given by the following equation

$$
\begin{equation*}
\varepsilon \sinh \varphi=\frac{d u+\lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) d v}{\sqrt{-d u^{2}-2 \lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) d u d v-(f(u)-g(u))^{2} d v^{2}}} . \tag{17}
\end{equation*}
$$

Thus the differential equation of the time-like loxodrome is

$$
\begin{equation*}
\left(\sinh ^{2} \varphi(f(u)-g(u))^{2}+\lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}\right)\left(\frac{d v}{d u}\right)^{2}+2 \lambda \cosh ^{2} \varphi\left(f^{\prime}(u)-g^{\prime}(u)\right) \frac{d v}{d u}=-\cosh ^{2} \varphi \tag{18}
\end{equation*}
$$

and its general solution is

$$
\begin{equation*}
v=\int_{u_{0}}^{u} \frac{-2 \lambda \cosh ^{2} \varphi\left(f^{\prime}(u)-g^{\prime}(u)\right)+\varepsilon \sqrt{\sinh ^{2} 2 \varphi\left(-(f(u)-g(u))^{2}+\lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}\right)}}{2 \sinh ^{2} \varphi(f(u)-g(u))^{2}+2 \lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}} d u \tag{19}
\end{equation*}
$$

where $\varepsilon= \pm 1$.
Example 3.4. Taking $f(u)=\sinh u, g(u)=\cosh u, \lambda=2, \varepsilon=1, \varphi=1, u \in(-1,1)$ and $u_{0}=0$, we get $v \in(-0.192045,0.505886)$. Thus the arc-length of the time-like loxodrome is equal to 0.338181 . We can draw the time-like helicoidal surface, the space-like meridian $(v=0.2)$ and the time-like loxodrome in Figure 3.

Figure 3: Time-like loxodrome (blue), space-like meridian (green)

4. Time-like Loxodromes on the Helicoidal Surfaces Having Time-like Meridians

In this section, we study time-like loxodromes on the helicoidal surfaces having time-like meridians with space-like, time-like and light-like axis, respectively. Firstly, we give the following definition:

Definition 4.1. If u and v are positive (negative) time-like vectors in \mathbb{E}_{1}^{3}. Then

$$
\langle u, v\rangle=-\|u\|\|v\| \cosh \theta
$$

where $\theta \in \mathbb{R}^{+}$is the Lorentzian time-like angle between u and v [10].

4.1. Time-like loxodromes on the helicoidal surfaces having time-like meridians with space-like axis

Let us consider the helicoidal surface H which is given by (3). Since the profile curve $\beta(u)$ is parametrized by arc-length, we have

$$
f^{\prime 2}(u)-g^{\prime 2}(u)=-1
$$

for all $u \in J \subset \mathbb{R}$. The meridian curve is given by

$$
H(u)=(f(u)+\lambda v, g(u) \sinh v, g(u) \cosh v) .
$$

Differentiating with respect to u, we have

$$
H_{u}(u)=\left(f^{\prime}(u), g^{\prime}(u) \sinh v, g^{\prime}(u) \cosh v\right) .
$$

The meridian curve $H(u)$ and the profile curve $\beta(u)$ have same causal character, because

$$
\left\langle H_{u}(u), H_{u}(u)\right\rangle=f^{\prime 2}(u)-g^{\prime 2}(u)=-1
$$

for all $u \in J \subset \mathbb{R}$.
The coefficients of first fundamental form of H are given by

$$
\begin{equation*}
E=-1, F=\lambda f^{\prime}(u) \text { and } G=g^{2}(u)+\lambda^{2} . \tag{20}
\end{equation*}
$$

Thus we get

$$
d s^{2}=-d u^{2}+2 \lambda f^{\prime}(u) d u d v+\left(g^{2}(u)+\lambda^{2}\right) d v^{2}
$$

The helicoidal surface H is time-like, because $E G-F^{2}=-g^{2}(u)-\lambda^{2} g^{\prime 2}(u)<0$ for all $u \in J \subset \mathbb{R}$.
The Lorentzian time-like angle θ between time-like loxodrome $\alpha(t)$ and time-like meridian $H(u)$ is given by the following formulation of differential geometry

$$
\begin{equation*}
-\cosh \theta=\frac{-d u+\lambda f^{\prime}(u) d v}{\sqrt{d u^{2}-2 \lambda f^{\prime}(u) d u d v-\left(g^{2}(u)+\lambda^{2}\right) d v^{2}}} . \tag{21}
\end{equation*}
$$

From this equation, we obtain

$$
\begin{equation*}
\left(\cosh ^{2} \theta\left(g^{2}(u)+\lambda^{2}\right)+\lambda^{2} f^{\prime 2}(u)\right)\left(\frac{d v}{d u}\right)^{2}+2 \lambda \sinh ^{2} \theta f^{\prime}(u) \frac{d v}{d u}=\sinh ^{2} \theta \tag{22}
\end{equation*}
$$

whose general solution is

$$
\begin{equation*}
v=\int_{u_{0}}^{u} \frac{-2 \lambda \sinh ^{2} \theta f^{\prime}(u)+\varepsilon \sqrt{\sinh ^{2} 2 \theta\left(g^{2}(u)+\lambda^{2}\left(f^{\prime 2}(u)+1\right)\right)}}{2 \cosh ^{2} \theta\left(g^{2}(u)+\lambda^{2}\right)+2 \lambda^{2} f^{\prime 2}(u)} d u \tag{23}
\end{equation*}
$$

where $\varepsilon= \pm 1$.
Let us give the following example.
Example 4.2. Taking $f(u)=1, g(u)=u, \lambda=1, \varepsilon=1, \theta=1 / 2, u \in(0,1)$ and $u_{0}=0$, we have $v \in(0,0.407298)$. Thus the arc-length of the time-like loxodrome is equal to 0.886819 . Also we can draw the time-like helicoidal surface, the time-like meridian $(v=0.25)$ and the time-like loxodrome in Figure 4.

Figure 4: Time-like loxodrome (blue), time-like meridian (green)
4.2. Time-like loxodromes on the helicoidal surfaces having time-like meridians with time-like axis Let us consider the helicoidal surface H which is given by (4). The meridian curve $H(u)$ is

$$
H(u)=(-f(u) \sin v, f(u) \cos v, g(u)+\lambda v)
$$

$H(u)$ is time-like if and only if

$$
\left\langle H_{u}(u), H_{u}(u)\right\rangle=f^{\prime 2}(u)-g^{\prime 2}(u)=-1
$$

for all $u \in J \subset \mathbb{R}$.
The coefficients of first fundamental form of H are

$$
\begin{equation*}
E=-1, F=-\lambda g^{\prime}(u) \text { and } G=f^{2}(u)-\lambda^{2} \tag{24}
\end{equation*}
$$

Substituting these equations into (6), the first fundamental form of H is

$$
d s^{2}=-d u^{2}-2 \lambda g^{\prime}(u) d u d v+\left(f^{2}(u)-\lambda^{2}\right) d v^{2}
$$

The helicoidal surface H is time-like, because $E G-F^{2}=-f^{2}(u)-\lambda^{2} f^{\prime 2}(u)<0$ for all $u \in J \subset \mathbb{R}$.
The Lorentzian time-like angle θ between the time-like loxodrome $\alpha(t)$ and the time-like meridian $H(u)$ is given by

$$
\begin{equation*}
-\cosh \theta=\frac{-d u-\lambda g^{\prime}(u) d v}{\sqrt{d u^{2}+2 \lambda g^{\prime}(u) d u d v-\left(f^{2}(u)-\lambda^{2}\right) d v^{2}}} \tag{25}
\end{equation*}
$$

From (25), the differential equation of the time-like loxodrome is

$$
\begin{equation*}
\left(\cosh ^{2} \theta\left(f^{2}(u)-\lambda^{2}\right)+\lambda^{2} g^{\prime 2}(u)\right)\left(\frac{d v}{d u}\right)^{2}-2 \lambda \sinh ^{2} \theta g^{\prime}(u) \frac{d v}{d u}=\sinh ^{2} \theta \tag{26}
\end{equation*}
$$

and its general solution is

$$
\begin{equation*}
v=\int_{u_{0}}^{u} \frac{2 \lambda \sinh ^{2} \theta g^{\prime}(u)+\varepsilon \sqrt{\sinh ^{2} 2 \theta\left(f^{2}(u)+\lambda^{2}\left(g^{\prime 2}(u)-1\right)\right)}}{2 \cosh ^{2} \theta\left(f^{2}(u)-\lambda^{2}\right)+2 \lambda^{2} g^{\prime 2}(u)} d u, \tag{27}
\end{equation*}
$$

where $\varepsilon= \pm 1$.
Also the following example can be given.
Example 4.3. Taking $f(u)=u, g(u)=\sqrt{2} u, \lambda=1, \varepsilon=-1, \theta=1 / 4, u \in(0,1 / 4)$ and $u_{0}=0$, we have $v \in(-0.07159,0)$. Also the arc-length of the time-like loxodrome is equal to 0.129974 . We can draw the time-like helicoidal surface, the time-like meridian $(v=-0.04)$ and the time-like loxodrome in Figure 5.

Figure 5: Time-like loxodrome (blue), time-like meridian (green)
4.3. Time-like loxodromes on the helicoidal surfaces having time-like meridians with light-like axis Let us consider the helicoidal surface H which is given by (5). The meridian curve is given by

$$
H(u)=\left((f(u)-g(u)) v,(g(u)-f(u)) \frac{v^{2}}{2}+f(u)+\lambda v,(g(u)-f(u)) \frac{v^{2}}{2}+g(u)+\lambda v\right),
$$

and it is time-like if and only if $f^{\prime 2}(u)-g^{\prime 2}(u)=-1$ for all $u \in J \subset \mathbb{R}$.
The coefficients of first fundamental form of H are

$$
\begin{equation*}
E=-1, F=\lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) \text { and } G=(f(u)-g(u))^{2} . \tag{28}
\end{equation*}
$$

Substituting the equations in (28) into (6), we find

$$
d s^{2}=-d u^{2}+2 \lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) d u d v+(f(u)-g(u))^{2} d v^{2} .
$$

The helicoidal surface H is time-like, because

$$
E G-F^{2}=-(f(u)-g(u))^{2}-\lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}<0
$$

for all $u \in J \subset \mathbb{R}$.
As it was mentioned earlier, at the intersection point $H(u, v)$, we get

$$
\begin{equation*}
-\cosh \theta=\frac{-d u+\lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) d v}{\sqrt{d u^{2}-2 \lambda\left(f^{\prime}(u)-g^{\prime}(u)\right) d u d v-(f(u)-g(u))^{2} d v^{2}}} . \tag{29}
\end{equation*}
$$

From this equation, the differential equation of the time-like loxodrome is

$$
\begin{equation*}
\left(\cosh ^{2} \theta(f(u)-g(u))^{2}+\lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}\right)\left(\frac{d v}{d u}\right)^{2}+2 \lambda \sinh ^{2} \theta\left(f^{\prime}(u)-g^{\prime}(u)\right) \frac{d v}{d u}=\sinh ^{2} \theta \tag{30}
\end{equation*}
$$

The general solution of (30) is

$$
\begin{equation*}
v=\int_{u_{0}}^{u} \frac{-2 \lambda \sinh ^{2} \theta\left(f^{\prime}(u)-g^{\prime}(u)\right)+\varepsilon \sqrt{\sinh ^{2} 2 \theta\left((f(u)-g(u))^{2}+\lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}\right)}}{2 \cosh ^{2} \theta(f(u)-g(u))^{2}+2 \lambda^{2}\left(f^{\prime}(u)-g^{\prime}(u)\right)^{2}} d u, \tag{31}
\end{equation*}
$$

where $\varepsilon= \pm 1$.
Finally, we give the following example.
Example 4.4. Taking $f(u)=\cosh u, g(u)=\sinh u, \lambda=1, \varepsilon=1, \theta=1, u \in(1,2)$ and $u_{0}=0$, we get $v \in(0.601447,2.23635)$. Thus the arc-length of the time-like loxodrome is equal to 1.256 . We can draw the time-like helicoidal surface, the time-like meridian $(v=1.5)$ and the time-like loxodrome in Figure 6.

Figure 6: Time-like loxodrome (blue), time-like meridian (green)
Remark 4.5. If we take $\lambda=0$ in the equations (23), (27) and (31), respectively, then we find the equations of the time-like loxodromes on the rotational surfaces having time-like meridians in Minkowski 3-space. In other words, these equations coincide with the equations in [1].

References

[1] M. Babaarslan, M. I. Munteanu, Time-like loxodromes on rotational surfaces in Minkowski 3-space, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 61(2) (2015) 471-484.
[2] M. Babaarslan, Y. Yayli, Space-like loxodromes on rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl. 409(1) (2014) 288-298.
[3] M. Babaarslan, Y. Yayli, Differential equation of the loxodrome on a helicoidal surface, Journal of Navigation 68(5) (2015) 962-970.
[4] M. Babaarslan, M. Kayacik, Differential equation of the space-like loxodromes on the helicoidal surfaces in Minkowski 3-space, Differ. Equ. Dyn. Syst. (2017). doi: 10.1007/s12591-016-0343-5.
[5] Chr. C. Beneki, G. Kaimakamis, B. J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl. 275(2) (2002) 586-614.
[6] F. Ji, Z. H. Hu, Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl. 318(2) (2006) 634-647.
[7] R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7(1) (2014) 44-107.
[8] C. A. Noble, Note on loxodromes, Bull. Amer. Math. Soc. 12(3) (1905) 116-119.
[9] Z̆. M. Šipuš, V. Volenec, The harmonic evolute of a surface in Minkowski 3-space, Math. Commun. 19(1) (2014) 43-55.
[10] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer, Graduate Texts in Mathematics, 149, Second Edition, 2006.
[11] H. Ugail, M. C. Márquez, A. Yilmaz, On Bézier surfaces in three-dimensional Minkowski space, Comput. Math. Appl. 62(8) (2011) 2899-2912.

[^0]: 2010 Mathematics Subject Classification. 53B25
 Keywords. Loxodrome, Helicoidal surface, Minkowski space.
 Received: 03 March 2016; Accepted: 09 August 2016
 Communicated by Ljubica Velimirović
 This paper was supported by the Scientific Research Project Coordination Unit of Bozok University under project 2015FBE/T159.
 Email addresses: murat.babaarslan@bozok.edu.tr (Murat Babaarslan), mustafakayacik@windowslive.com (Mustafa Kayacik)

