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Abstract. In this paper, we introduce a new concept of weak G-contraction for multi-valued mappings
on a metric space endowed with a directed graph. Endpoint theorem of this mapping is established under
some sufficient conditions in a complete metric space endowed with a directed graph. Our main results
extend and generalize those fixed point in partially ordered metric spaces. Some examples supporting our
main results are also given. Moreover, we apply our main results to obtain some coupled fixed point results
in the context of complete metric spaces endowed with a directed graph which are more general than those
in partially ordered metric spaces.

1. Introduction

Banach contraction principle [1] is one of the most fundamental result in metric fixed point theory.
It plays very important role in studying the existence of solutions of various equation such as different
equations, integral equations and system of linear equations. In 2001, Rhoades [2] extended this by
introducing the concept of weakly contractive map and proved some results in metric spaces. Banach
contraction principle has been widely generalized in different directions (see [3]-[10]). It was extended to
multi-valued mappings by Nadler [11] in 1969.

Let T : X → 2X be a multi-valued map. An element x ∈ X is called a fixed point of T, if x ∈ Tx. An
element x ∈ Xis said to be an endpoint (or stationary point) of T, if Tx = {x}. Several authors paid attention
to the existence of endpoints of multi-valued mapppings (see [12]-[16]).

Ran and Reurings [4] were the first who studied Banach contraction principle in partially ordered
metric spaces and applied the obtain results to linear and nonlinear matrix equation. After that many
authors extended those results and studied fixed point theorems in partially ordered metric spaces (see
[4],[5],[6],[7]). In another way, Jachymski [17] extended this principle in the setting of metric space endowed
with a graph. In this work, we aim to introduce and study a new concept of weak G-contraction for multi-
valued mappings on a metric space endowed with a directed graph.

We first recall definitions of the following auxiliary functions. Let Ψ be all functions ψ : [0,∞)→ [0,∞)
which satisfy
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(1) ψ is continuous and nondecreasing,

(2) ψ(t) = 0 if and only if t = 0,

In 2010, Harjani and Sadarangani [18] proved the following theorem

Theorem 1.1 ([18]). Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that (X, d)
is a complete metric space. Assume that X satisfies if xn is a nondecreasing sequence in X such that xn → x then
xn � x for all n ∈N. Let f : X→ X be a nondecreasing mapping such that

ψ(d( f (x), f (y))) ≤ ψ(d(x, y)) − φ(d(x, y)), for x � y,

where ψ,φ ∈ Ψ. If there exists x0 ∈ X with x0 � f (x0) then f has a fixed point.

In 2008, Jachymski [17] was the first who studied fixed point theorems for some contraction mappings in a
metric space endowed with a graph. He proved some fixed point results of G-contractions in this setting.

Definition 1.2 ([17]). Let (X, d) be a metric space and let G = (V(G),E(G)) be a directed graph such that V(G) = X.

We say that a mapping f : X→ X is a G-contraction if f preserves edges of G, i.e.,

x, y ∈ X, (x, y) ∈ E(G)⇒ ( f (x), f (y)) ∈ E(G) (1.1)

and there exists α ∈ (0, 1) such that

x, y ∈ X, (x, y) ∈ E(G)⇒ d( f (x), f (y)) ≤ αd(x, y).

He showed in [17], under some certain properties on (X, d,G), a G-contraction f : X → X has a fixed
point if and only if X f := {x ∈ X : (x, f (x)) ∈ E(G)} is nonempty. The mapping f : X → X satisfying the
condition (1.1) is called a graph-perserving mapping.

Later, in 2013, Dinvari and Frigon [19] introduced a new concept of G-contraction which is weaker than
that of Jachymski.

Definition 1.3 ([19]). Let T : X → 2X be a map with nonempty values. We say that T is a G-contraction(in the
sense of Dinvari and Frigon) if there exists α ∈ (0, 1) such that for all (x, y) ∈ E(G) and all u ∈ Tx, there exists v ∈ Ty
such that

(u, v) ∈ E(G) and d(u, v) ≤ αd(x, y).

They showed that a multi-valued G-contraction with closed values has a fixed point under some properties
on a metric space which is weaker than Property(A) (see [19], Theorem 2.10 and Corollary 2.11).

Recently, Sultana and Vetrivel [20] introduced a notion of Mizoguchi-Takahashi multi-valued contraction
in a metricc space endowed with a graph and they established its fixed point results.

Definition 1.4. A multi-valued mapping T : X→ CB(X) is said to be Mizoguchi-Takahashi G contraction if for any
x, y ∈ X, x , y with (x, y) ∈ E(G) :

(i) H(T(x),T(y)) ≤ α(d(x, y))d(x, y) where
α : [0,∞)→ [0, 1) such that lim sups→t+ α(s) < 1 for any t ∈ [0,∞), and

(ii) If u ∈ T(x) and v ∈ T(y) are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G).

In this work, by combination the concept of weak contraction for single-valued mappings and Mizoguchi-
Takahashi G-contraction given by Harjani and Sadarangani [18] and Sultana and Vetrivel [20], we introduce
a new type of G-contraction for multi-valued mappings, called G-weakly contraction, and prove the exis-
tence of endpoints for this type of mappings.
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2. Preliminaries

In this section, we give some basic, useful definitions and some known results that will be used in the
other sections.

A partial order is a binary relation ≤ over the set X which satisfies the followings conditions:

1. x � x (reflexivity)

2. If x � y and y � x, then x = y (antisymmetry)

3. If x � y and y � z, then x � z (transitivity)

for all x, y ∈ X. A set with a partial order � is called a partially ordered set. We write x ≺ y if x � y and
x , y.

Definition 2.1. Let (X,�) be a partial order set and T : X→ X. Then T is said to be nondecreasing if

x � y⇒ Tx � Ty.

Let G = (V(G),E(G)) be a directed graph where V(G) is a set of vertices of graph and E(G) is a set of
its edges. Assume that G has no parallel edges. We denote by G−1 the directed graph obtained from G by
reversing the definition of edges. That is

E(G−1) = {(x, y) : (y, x) ∈ E(G)}.

Definition 2.2. Let X be a nonempty set and G = (V(G),E(G)) be a directed graph such that V(G) = X. Then G is
said to be transitive if

(x, y), (y, z) ∈ E(G)⇒ (x, z) ∈ E(G).

Definition 2.3. Let X be a nonempty set and G = (V(G),E(G)) be a directed graph such that V(G) = X and let
T : X→ X. Then T is said to be graph-preserving if

(x, y) ∈ E(G)⇒ (Tx,Ty) ∈ E(G).

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed and bounded subsets of X. For
x ∈ X and A,B ∈ CB(X), define

d(x,A) = inf{d(x, y) : y ∈ A},

δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B}.

Denote H the Pompeiu-Hausdorff metric induced by d, see [24], that is

H(A,B) = max{sup
u∈A

d(u,B), sup
v∈B

d(v,A)}.

3. Main Results

We introduce a new type of G-contraction in this section and prove its endpoint theorem in a complete
metric space endowed with a directed graph. We begin with the following definitions.

Definition 3.1. Let (X, d) be a metric space, G = (V(G),E(G)) be a directed graph such that V(G) = X and
T : X → CB(X). T is said to be G-continuous with respect to δ if for any sequence {xn} in X and x ∈ X such that
(xn, xn+1) ∈ E(G) and d(xn, x)→ 0, then δ(Txn,Tx)→ 0.

Example 3.2. Let X = [1,∞) with usual metric d and let G be a directed graph with V(G) = X and E(G) =
{(1 + 1

n , 1 + 1
n+1 )|n ∈N}. Define T : X→ 2X by Tx = [1 + 1

x , 2]. Then T is G-continuous with respect to δ.
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Remark 3.3. Let (X, d) be a metric space, G = (V(G),E(G)) a directed graph such that V(G) = X and T : X→ CB(X).
Suppose T is G-continuous on X with respect to δ. Then we have

1. if (x, x) ∈ E(G) then Tx is a singleton set, and

2. if δ(Txn,Tx)→ 0 then Tx is a singleton set.

Proof. (1) If (x, x) ∈ E(G), then the sequence xn = x for all n ∈ N satisfies the conditions (xn, xn+1) ∈ E(G) and
d(xn, x)→ 0. This implies that δ(Tx,Tx) = 0, so Tx is a singleton set.
(2) Suppose that δ(Txn,Tx)→ 0. Let yn ∈ Txn for all n ∈N. If y, z ∈ Tx, we have

d(yn, y) ≤ δ(Txn,Tx)→ 0 and
d(yn, z) ≤ δ(Txn,Tx)→ 0.

It follows that y = z. Hence Tx is singleton.

Definition 3.4. Let (X, d) be a metric space, G = (V(G),E(G)) a directed graph such that V(G) = X and T : X →
B(X). T is said to be a G-weakly contraction if there exist ψ,φ ∈ Ψ with

ψ(δ(Tx,Ty)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ X such that (x, y) ∈ E(G)
and if u ∈ Tx and v ∈ Ty satisfying

d(u, v) ≤ d(x, y)

then (u, v) ∈ E(G).

The following property is useful for our study.
Property A([17]) For any sequence xn in X, if xn → x and (xn, xn+1) ∈ E(G) for n ∈N where x ∈ X, then there
is a subsequence xnk of {xn}with (xnk , x) ∈ E(G) for all k ∈N.

Theorem 3.5. Let (X, d) be a complete metric space and G = (V(G),E(G)) a directed graph such that V(G) = X and
G is transitive. If T : X→ B(X) is a multi-valued mapping satisfying the following properties:

(1) there exists x0 ∈ X such that (x0, y) ∈ E(G), for some y ∈ Tx0;

(2) T is a G-weakly contraction;

(3) Suppose either T is G-continuous or X has the property A;

then T has an endpoint.

Proof. Let x0 ∈ X and x1 ∈ Tx0 such that (x0, x1) ∈ E(G). By (2), we obtain

ψ(δ(Tx0,Tx1)) ≤ ψ(d(x0, x1)) − φ(d(x0, x1)) (1.2)

We choose x2 ∈ Tx1. Observe that d(x1, x2) ≤ δ(Tx0,Tx1). If d(x0, x1) = 0, then x0 = x1 ∈ Tx0, so x0 is a fixed
point of T. Suppose d(x0, x1) > 0. Since ψ is a nondecreasing, we have

ψ(d(x1, x2)) ≤ ψ(δ(Tx0,Tx1))
≤ ψ(d(x0, x1)) − φ(d(x0, x1))
< ψ(d(x0, x1)).
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This implies d(x0, x1) ≤ d(x1, x2). Because T is a G-weakly contraction, we have (x1, x2) ∈ E(G). Again,
choosing x3 ∈ Tx2, we observe that d(x2, x3) ≤ δ(Tx1,Tx2). If d(x1, x2) = 0, then x1 ∈ Tx1, so T has a fixed
point. Suppose d(x1, x2) > 0. Since ψ is a nondecreasing, we obtain

ψ(d(x2, x3)) ≤ ψ(δ(Tx1,Tx2))
≤ ψ(d(x1, x2)) − φ(d(x1, x2))
< ψ(d(x1, x2)),

hence d(x2, x3) ≤ d(x1, x2). Since T is a G-weakly contraction, we have (x2, x3) ∈ E(G). By induction, we
obtain a sequence {xn} ∈ X such that xn+1 ∈ Txn and d(xn+1, xn+2) ≤ d(xn, xn+1) for all n ∈N. Since {d(xn, xn+1)}
is a nonnegative and nonincreasing sequence, there exists r ≥ 0 such that

d(xn, xn+1)→ r as n→∞.

Since T is a G-weakly contraction and (xn, xn+1) ∈ E(G), we obtain

ψ(d(xn+1, xn+2)) ≤ ψ(δ(Txn,Txn+1))
≤ ψ(d(xn, xn+1)) − φ(d(xn, xn+1)),

when n→∞, we get ψ(r) ≤ ψ(r) − φ(r). It implies φ(r) = 0. Since φ ∈ Ψ, we get r = 0. Hence

lim
n→∞

d(xn, xn+1) = 0. (1.3)

Next, we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. Then, there
exists ε > 0, subsequence {xm(k)} and {xn(k)} of {xn}with n(k) > m(k) > k such that

d(xm(k), xn(k)) ≥ ε. (1.4)

Let n(k) be the smallest integer with m(k) < n(k) and d(xm(k), xn(k)) ≥ ε but

d(xm(k), xn(k)−1) < ε. (1.5)

By (1.3), (1.4) and (1.5), we have

ε ≤ d(xm(k), xn(k))
≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))
< ε + d(xn(k)−1, xn(k)).

Taking k→∞, we obtain

lim
k→∞

d(xm(k), xn(k)) = ε.

From

d(xm(k), xn(k)) ≤ d(xm(k), xm(k)−1) + d(xm(k)−1, xn(k)−1) + d(xn(k)−1, xn(k)), and
d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)) + d(xn(k), xn(k)−1),

by letting k→∞ in the above inequalities, we obtain

lim
k→∞

d(xm(k)−1, xn(k)−1) = ε.

Since m(k) < n(k) and (xi, xi+1) ∈ E(G), by transitivity of E(G), we obtain (xm(k), xn(k)) ∈ E(G). It follows, by (2),
that

ψ(d(xm(k), xn(k))) ≤ ψ(δ(d(xm(k)−1, xn(k)−1)))
≤ ψ(d(xm(k)−1, xn(k)−1)) − φ(d(xm(k)−1, xn(k)−1)).
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Taking k→∞, we obtain

ψ(ε) ≤ ψ(ε) − φ(ε).

Then φ(ε) = 0, i.e., ε = 0, which is a contradiction. So {xn} is a Cauchy sequence in X. Since X is complete,
there exists z ∈ X such that limn→∞ xn = z. We shall show that δ(z,Tz) = 0.
Case (i): If X has Property A.
Then there is a subsequence {xnk } of {xn} such that (xnk , z) ∈ E(G). It follows that

δ(z,Tz) ≤ d(z, xnk+1) + d(xnk+1,Txnk ) + δ(Txnk ,Tz)
= d(z, xnk+1) + δ(Txnk ,Tz).

Suppose that δ(z,Tz) > 0, we can choose N ∈N such that for any k > N,

0 ≤ δ(z,Tz) − d(z, xnk+1) ≤ δ(Txnk ,Tz)

Since ψ ∈ Ψ and (xnk , z) ∈ E(G), we have

ψ(δ(z,Tz) − d(z, xnk+1)) ≤ ψ(δ(Txnk ,Tz))
≤ ψ(d(xnk , z)) − φ(d(xnk , z)).

Letting k→∞, we obtain

0 < ψ(δ(z,Tz)) ≤ ψ(0) − φ(0) = 0,

which is a contradiction. Hence δ(z,Tz) = 0 i.e., Tz = {z}, so z is an endpoint of T.
Case (ii): T is G-continuous.
Since xn → z and (xn, xn+1) ∈ E(G), we obtain

δ(z,Tz) ≤ d(z, xn+1) + d(xn+1,Txn) + δ(Txn,Tz)
= d(z, xn+1) + δ(Txn,Tz)→ 0.

Hence δ(z,Tz) = 0 that is Tz = {z}, so z is an endpoint of T.

The following example is an illustration of Theorem 3.5.

Example 3.6. Let X = [0, 1] and let G be a directed graph with V(G) = X and E(G) = {( 1
m ,

1
n ) : m,n ∈ N and 2 ≤

m < n} ∪ {( 1
n , 0) : n ∈N}. Then G is transitive. Define T : X→ B(X) by

Tx =


{0} if x = 0;
{

1
2 , 1} if x = 1;
{

1
2x+1 ,

1
2x } otherwise.

Let ψ(t) = t and φ(t) = t
16 , then ψ,φ ∈ Ψ. We see that ( 1

4 ,
1
8 ) ∈ E(G) where 1

8 ∈ T( 1
4 ) = { 19 ,

1
8 }. Let x, y ∈ X be such

that (x, y) ∈ E(G).
If (x, y) = ( 1

n , 0), then T( 1
n ) = { 1

2n+1 ,
1

2n } and T(0) = {0}, we have

ψ(δ(Tx,Ty)) =
1

2n
≤

(1
n
− 0

)
−

1
16

(1
n
− 0

)
= ψ(d(x, y)) − φ(d(x, y))
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and we see that (0, 1
2n+1 ), (0, 1

2n ) ∈ E(G).

If (x, y) =
(

1
m ,

1
n

)
where m,n ∈N and 2 ≤ m < n, then Tx = { 1

2m+1 ,
1

2m }, Ty = { 1
2n+1 ,

1
2n }, we have

ψ(δ(Tx,Ty)) =
1

2m
−

1
2n + 1

≤

( 1
m
−

1
n

)
−

1
16

( 1
m
−

1
n

)
= ψ(d(x, y)) − φ(d(x, y))

and we see that ( 1
2m+1 ,

1
2n+1 ), ( 1

2m+1 ,
1

2n ), ( 1
2m ,

1
2n+1 ), ( 1

2m ,
1

2n ) ∈ E(G). Therefore T is a G-weakly contraction. It is easy
to see that X has Property A. Hence all conditions of Theorem 3.5 are satisfied and it is seen that T(0) = {0}.

Remark 3.7. The mapping T in Example 3.6 is not a contraction because for any k ∈ (0, 1),

H(T(0),T(1)) = 1 � kd(0, 1).

Therefore, Nadler’s Theorem [11] cannot be applied.

Theorem 3.8. Let (X, d) be a complete metric space with a partially order �. If T : X → B(X) is a multi-valued
mapping satisfying the following properties:

(1) there exist ψ,φ ∈ Ψ with

ψ(δ(Tx,Ty)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ X such that x , y and x � y
and if u ∈ Tx and v ∈ Ty are such that

d(u, v) ≤ d(x, y)

then u � v;

(2) there exists x0 ∈ X such that x0 � y, for some y ∈ Tx0;

(3) For any sequence (xn)n∈N in X with xn → x and xn � xn+1 for n ∈ N, then there is a subsequence {xnk } of {xn}

with xnk � x for k ∈N.

Then T has an endpoint.

Proof. Denote E(G) = {(x, y) ∈ X × X|x � y and x , y}. It easy to see that E(G) is transitive. Let x, y ∈ X and
(x, y) ∈ E(G). So x � y and x , y. By (1), we obtain

ψ(δ(Tx,Ty)) ≤ ψ(d(x, y)) − φ(d(x, y)).

Now let u ∈ Tx, v ∈ Ty are such that d(u, v) ≤ d(x, y), so u � v, that is (u, v) ∈ E(G). Therefore T is a G-weakly
contraction. By (2), there exists x0 ∈ X such that x0 � y for some y ∈ Tx0, then (x0, y) ∈ E(G). The condition
(3) implies that X has Property A. It follows directly from Theorem 3.5 that T has an endpoint.

The following result is directly obtained by Theorem 3.5 because a graph preserving mapping T is G-weakly
contraction.

Corollary 3.9. Let (X, d) be a complete metric space having Property A and G = (V(G),E(G)) a directed graph such
that V(G) = X and E(G) is transitive. If T : X→ X is a single-valued mapping satisfying

(1) there exists x0 ∈ X such that (x0,Tx0) ∈ E(G);

(2) T is graph-preserving;
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(3) there exist ψ,φ ∈ Ψ with

ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ X such that (x, y) ∈ E(G),

then there exists u ∈ X such that u = Tu.

The following theorem is an application of Corollary 3.9.

Theorem 3.10 ([18]). Let (X,�) be a partially ordered set and suppose there exists a metric d on X such that (X, d)
is a complete metric space. Let T : X → X be a nondecreasing mapping. Suppose that there exists x0 ∈ X with
x0 � Tx0. Suppose also that there exists ψ,φ ∈ Ψ satisfying

ψ(d(Tx,Ty)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ X with x , y and x � y. Suppose that either T is continuous or X has the following property: if a
nondecreasing sequence {xn} → x, then xn � x for all n ∈N. Then there exists x ∈ X such that x = Tx.

Proof. Let G = (V(G),E(G)) be a directed graph defined by V(G) = X and E(G) = {(x, y) ∈ X×X|x � y and x ,
y}. Therefore, the result is obtained directly by Corollary 3.9.

4. Application to Coupled Fixed Point

In this section, we apply our main results to obtain a coupled fixed point theorem for a single-valued
mapping F : X × X→ X when X is a complete metric space endowed with a directed graph. We first recall
some basic definitions of coupled fixd point and mixed monotone mappings.

Definition 4.1 ([8]). Let (X,�) be a partially ordered set and F : X ×X→ X be a given mapping. The mapping F is
said to have mixed monotone property on X if it is monotone nondecreasing in x and monotone nonincreasing in y,
that is,

x1, x2 ∈ X, x1 � x2 ⇒ F(x1, y) � F(x2, y),

y1, y2 ∈ X, y1 � y2 ⇒ F(x, y1) � F(x, y2).

Definition 4.2 ([8]). Let F : X ×X→ X be a given mappings. A point (x, y) ∈ X ×X is called a coupled fixed point
of F if x = F(x, y) and y = F(y, x).

In 2014, Chifu and Petrusel [21] introduced the concept of edge preserving of F : X × X → X as the
following.

Definition 4.3. We say that F : X × X→ X is edge preserving if

(x,u) ∈ E(G), (y, v) ∈ E(G−1)⇒ (F(x, y),F(u, v)) ∈ E(G) and (F(y, x),F(v,u)) ∈ E(G−1).

For a metric space (X, d) with a directed graph G = (V(G),E(G)) where V(G) = X, we let G′ = (V(G′),E(G′))
be a directed graph defined on product X × X as follows: V(G′) = X × X and

E(G′) = {((x, y), (u, v)) : (x,u) ∈ E(G), (y, v) ∈ E(G−1)}.

It is noted that the mapping η : (X × X) × (X × X)→ (X × X) given by

η((x, y), (u, v)) = d(x,u) + d(y, v),

for all (x, y), (u, v) ∈ X × X, is a metric on the product X × X.
Now, define the mapping TF by

TF(x, y) = (F(x, y),F(y, x)) for all (x, y) ∈ X × X.

It is known that (X, d) is complete if and only if (X × X, η) is complete, and (x, y) ∈ X × X is a coupled
fixed point of F if and only if (x, y) is a fixed point of TF.
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Before obtaining a coupled fixed point theorem by applications of the main results in Section 3, we first
give the following useful fact.

Lemma 4.4. If F is edge preserving, then TF is graph-preserving.

Proof. Let (x1, y1), (x2, y2) ∈ X×X such that ((x1, y1), (x2, y2)) ∈ E(GX×X), so (x1, x2) ∈ E(G′) and (y1, y2) ∈ E(G).
Therefore,

(F(x1, y1),F(x2, y2)) ∈ E(G) and (F(y1, x1),F(y2, x2)) ∈ E(G−1).

So,

((F(x1, y1),F(y1, x1)), (F(x2, y2),F(y2, x2)) ∈ E(G′).

Thus,

(TF(x1, y1),TF(x2, y2)) ∈ E(G′).

Therefore, TF is graph-preserving.

Now, we prove a main results of this section.

Theorem 4.5. Let (X, d) be a complete metric space and G = (V(G),E(G) a directed graph such that V(G) = C and G
is transitive. Let F : X×X→ X be edge preserving. Suppose that there exist x0, y0 ∈ X such that (x0,F(x0, y0)) ∈ E(G)
and (y0,F(y0, x0)) ∈ E(G−1) and there exist ψ,φ ∈ Ψ for which F satisfies

ψ

(
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2

)
≤ ψ

(
d(x,u) + d(y, v)

2

)
− φ

(
d(x,u) + d(y, v)

2

)
(4.1)

for all x, y,u, v ∈ X with (x,u) ∈ E(G) and (y, v) ∈ E(G−1). Suppose that either

(1) F is continuous or ;

(2) X has the following properties:

(a) if a sequence {xn} → x and (xn, xn+1) ∈ E(G) for all n ∈N, then (xn, x) ∈ E(G) for all n ∈N and
(b) if a sequence {yn} → y and (yn+1, yn) ∈ E(G) for all n ∈N, then (yn, y) ∈ E(G−1) for all n ∈N.

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x), that is, F has a coupled fixed point in X × X.

Proof. Let (x0, y0) ∈ X×X be such that (x0,F(x0, y0)) ∈ E(G−1) and (y0,F(y0, x0)) ∈ E(G). Then ((x0, y0),T(x0, y0)) ∈
E(G′). Notice that (2) is equivalent to

ψ
(η(TF(x, y),TF(u, v))

2

)
≤ ψ

(η((x, y), (u, v))
2

)
− φ

(η((x, y), (u, v))
2

)
.

By letting

d2((x, y), (u, v)) =
η((x, y), (u, v))

2
=

d(x,u) + d(y, v)
2

,

we have

ψ(d2(TF(x, y),TF(u, v))) ≤ ψ(d2((x, y), (u, v))) − φ(d2((x, y), (u, v)))

and d2 is a complete metric on X × X.
Next, let {(xn, yn)}n∈N be a sequence in X×X such that (xn, yn)→ (x, y) in (X×X, d2) and ((xn, yn), (xn+1, yn+1)) ∈
E(G). It implies that

xn → x, (xn, xn+1) ∈ E(G) and yn → y, (yn, yn+1) ∈ E(G−1).
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By assumption (2), we have (xn, x) ∈ E(G) and (yn, y) ∈ E(G). Therefore, ((xn, yn), (x, y)) ∈ E(G′). Thus, X ×X
has Property A. By Lemma 4.4, we have that TF is graph preserving. Therefore, all conditions of Corollary 3.9
are satisfied. Hence TF has a fixed point i.e., there exists (x, y) ∈ X such that (x, y) = TF(x, y) = (F(x, y),F(y, x)).
Therefore, F has a coupled fixed point.

The following corollary is a consequence of Theorem 4.5.

Corollary 4.6. Let (X,�) be a partially ordered set and suppose there exists a metric d on X such that (X, d) is a
complete metric space. Let F : X × X → X be a mapping having the mixed monotone property on X and there exist
x0 � F(x0, y0) and y0 � F(y0, x0). Suppose that there exist ψ,φ ∈ Ψ for which F and 1 satisfy

φ

(
d(F(x, y),F(u, v)) + d(F(y, x),F(v,u))

2

)
≤ φ

(
d(x,u) + d(y, v)

2

)
− ψ

(
d(x,u) + d(y, v)

2

)
(4.2)

for all x, y,u, v ∈ X with x � u and y � v. Suppose that either

(1) F is continuous or ;

(2) X has the following property:

(a) if a nondecreasing sequence {xn} → x, then xn � x for all n ∈N
(b) if a nonincreasing sequence {yn} → y, then yn � y for all n ∈N

Then there exist x, y ∈ X such that x = F(x, y) and y = F(y, x), that is, F has a coupled fixed point in X × X.

Proof. Let G = (V(G),E(G)), where V(G) = X and E(G) = {(x, y)|x � y}. We can directly check that all
conditions of Theorem 4.5 are satisfied. Therefore, F has a coupled fixed point.

Remark 4.7. Corollary 4.6 extends Theorem 2.1 in [8] and improves Theorem 1 in [23].

Example 4.8. Let X = R, d(x, y) = |x − y|, G be a directed graph such that V(G) = Z and E(G) = {(x, y) : x, y ∈
R such that x < y}. Define F : X×X→ X by F(x, y) =

x−4y
8 . Then F is edge preserving. Let ψ(t) = t

2 and φ(t) = t
16 .

Then we have

ψ

(
d(F(x, y), f (u, v)) + d(F(y, x),F(v,u))

2

)
=

1
4

(∣∣∣∣∣x − 4y
8
−

u − 4v
8

∣∣∣∣∣ +

∣∣∣∣∣ y − 4x
8
−

v − 4u
8

∣∣∣∣∣)
=

1
4

(∣∣∣∣∣x − u
8

+
4v − 4y

8

∣∣∣∣∣ +

∣∣∣∣∣ y − v
8

+
4u − 4x

8

∣∣∣∣∣)
≤

1
16

(
|x − u| + |y − v|

2
) +

1
4

(
|x − u| + |v − y|

2

)
≤

1
2

(
|x − u| + |y − v|

2

)
−

1
16

(
|x − u| + |v − y|

2

)
= ψ

(
d(x,u) + d(y, v)

2

)
− ψ

(
d(x,u) + d(y, v)

2

)
,

for all (x,u) ∈ E(G) and (y, v) ∈ E(G−1). So F satisfies the condition (2) of Theorem 4.5. Now choose (x0, y0) = (−8, 6),
(x0,F(x0, y0)) = (−8,−4) ∈ E(G) and (y0,F(y0, x0)) = (6,−4) ∈ E(G−1). Hence, F satsifies all conditions of Theorem
4.5 and we see that (0, 0) is a coupled fixed point of F.
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