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Abstract. In this article a geometrically distributed integer-valued autoregressive model of order one based
on the mixed thinning operator is introduced. This new thinning operator is defined as a probability mixture
of two well known thinning operators, binomial and negative binomial thinning. Some model properties
are discussed. Method of moments and the conditional least squares are considered as possible approaches
in model parameter estimation. Asymptotic characterization of the obtained parameter estimators is
presented. The adequacy of the introduced model is verified by its application on a certain kind of real-life
counting data, while its performance is evaluated by comparison with two other INAR(1) models that can
be also used over the observed data.

1. Introduction

In the last few decades, there is a significant increase of interest in the integer-valued time series
modeling. Some of the involved research was theoretically motivated, but most of it found its inspiration
in real-life situations. After some results of using Markov chains by Cox and Miller [8] and the discrete
ARMA models by Jacobs and Lewis [10–12], momentous results in the discrete valued time series analysis
were achieved, independently of each other, by Al-Osh and Alzaid [2] and McKenzie [15]. Very soon, some
of the first generalizations have been done in respect of marginal distribution and they can be found in
[16], [1], [5] and [6]. However, they all used a binomial thinning operator based on the Bernoulli counting
series in order to describe the autoregressive character of the dependance between the time series random
variables. These models were highly adequate for modeling the periodical counting of random events or
some population elements which could enter into or either survive or disappear from the observed system.
Afterwards, responding to more demanding modeling requirements, there have been many modifications
and generalizations of the thinning operator, such as in [3], [14] and [21, 22]. Also, Ristić et al. [17]
introduced a new integer-valued autoregressive process based on the geometric counting sequence.

While, as mentioned above, binomial thinning based INAR models were ideal for counting the number of
units which could enter or leave the observing area from one time interval to another, the negative binomial
thinning was used for systems involving much more activity. Namely, it’s defined using geometrically
distributed random variables, so it might be applied for modeling elements or random events which could,
by replicating themselves, affecting other elements, provoking other random events or in some other way,
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contribute to the overall thinning sum by more than 1. In this way, we have obtained two thinning operators,
completely different in terms of nature of the data which can be used on. But what happens if you deal with
the data related to the counting of elements of variable character, ie. elements which during one period of
time might be passive and in this way adding the total sum just 0 or 1, while already in the next counting
interval, for some reasons, they might become active, contributing to the count-value in a much greater
extent. Precisely for this reason, here we define a completely new thinning operator as a mixture of the
binomial and the negative binomial operator. Moreover, this mixture is a probability pondered, thus is very
capable of responding to requirements of a certain counting data. Likewise, there is a variety of real-life
examples where this kind of the mixed thinning INAR models are more likely to be used than the INAR
models based only on one of these two thinning operators.

Now, we provide the motivation for the introduction of a new INAR model with the mixed thinning
operator through three very different examples from real life. First of all, the number of patients with certain
diseases may be the subject of counting over time. Incubation period is the time elapsed between exposure
to a pathogenic organism and a moment when symptoms become apparent. We focus our attention on the
diseases of which the person is contagious during incubation period. Assume also that the counting time
interval is grater or equal to incubation period. In this case, the probability ponder of negative binomial
thinning directly corresponds to the ratio of the counting period and the disease incubation period. Namely,
if the time of the incubation is significant or even almost equal to the observing interval, there are very high
chances that an infected person with no symptoms will transmit the disease to someone else. However,
as this ratio is smaller, the chances of transmitting the disease are less and the probability of using the
binomial thinning is higher. On the other hand, if the patients are quickly quarantined, then the chances
of transmission are very small. Therefore, the application of the Bernoulli distributed counting sequence
becomes more frequent, affecting in the proper way the values of the mixture probability weights. Another
application of the mixed thinning INAR models may be found in counting the number of bacteria. Bacteria
are prokaryotic organisms that reproduce asexually. Bacterial reproduction most commonly occurs by a
kind of cell division called binary fission. Under optimal conditions (temperature, humidity, sources of
nutrients) bacteria can grow and divide extremely rapidly, so greater probability weight, corresponding to
a geometric counting sequence, would be a proper choice. On the contrary, if the temperature is extremely
law or the bacteria are exposed to certain antibiotics, then they will not reproduce, even more they will
only be able to survive or die over time, in which case the higher binomial thinning probability will make
the INAR model more appropriate. Finally, completely different from the previous applications, the mixed
thinning model may be used in the social anomalies research, more precisely in the counting of crimes
committed in a certain police district over time. For example, if you track the number of drug dealing in
a specific urban area you can encounter with the real dealers who are able to commit a greater number
of offenses, or only with ”beginners” or addicts who commit during the counting period one or no crime.
Here, as in the previous cases, it is very easy to see the opportunity for appropriate implementation of this
new model.

The outline of the paper is as follows. In the next section a new mixed thinning operator is introduced and
discussed. The third section is devoted to the introduction of the INAR model with geometric marginals
generated by the new thinning operator. The model features are discussed including a k-step ahead
conditional expectation and variance. Section 4 considers some procedures for estimating the unknown
model parameters obtaining their asymptotic characterization. In the last section a possible application of
the introduced model is discussed on some real-life data.

2. The Construction of the Thinning Operator

In this section we introduce a new thinning operator in the following way. Let {Wi}i∈N be a sequence of
the independent and identically distributed random variables given as

Wi=

{
Bi, with probability p,
Gi, with probability 1 − p, p ∈ [0, 1], (1)
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where Bi and Gi represent random variables with Bernoulli(α) distribution and geometric
(
α

1+α

)
distribution

with probability mass function given by P (Gi = x) = αx

(1+α)x+1 , x = 0, 1, . . . , respectively, α ∈ [0, 1]. We
suppose that Bi and Gi are independent random variables. From (1) we can see that the distribution of the
random variable Wi is a mixture of Bernoulli and geometric distribution. For p = 0 we obtain the geometric
distributed random variable and for p = 1 we obtain the Bernoulli distributed random variable.

Before we are introducing a new thinning operator α•p, we derive the probability generating function
of the random variable Wi given by (1). Using the fact that the random variables Bi and Gi have Bernoulli
and geometric distribution, respectively, we obtain that

ΦW(s) ≡ E
(
sWi

)
= p(1 − α + αs) +

1 − p
1 + α − αs

=
1 − α2p(1 − s)2

1 + α(1 − s)
. (2)

Now we are introducing the new thinning operator in the following way.

Definition 2.1. An operator α•p defined as

α •p X =

X∑
i=0

Wi, (3)

where α ∈ [0, 1] and X is a non-negative integer-valued random variable independent of the counting series {Wi}i∈N
given by (1) is called a mixed thinning operator.

The introduced thinning operator α•p is a mixture of the binomial and negative binomial thinning
operators. This property is given in the following theorem.

Theorem 2.2. Let X be a non-negative integer-valued random variable. Then for a given X = x, x ∈ N, the
distribution of the mixed thinning operator α•p given by (3) is a mixture of the binomial, negative binomial
distribution and their convolution as

α •p X|{X = x} d
=


NB

(
x, α

1+α

)
, with probability (1 − p)x,

Bin(i, α) + NB
(
x − i, α

1+α

)
, with probability

(x
i
)
pi(1 − p)x−i, 1 ≤ i ≤ x − 1,

Bin(x, α), with probability px,

where NB
(
i, α

1+α

)
, i ≥ 1, represents a random variable with the negative binomial distribution with parameters i and

α/(1 + α) and Bin(i, α), i ≥ 1, represents a random variable with binomial distribution with parameters i and α.

Proof. To prove the theorem we need to derive the conditional probability generating function of the
random variable α •p X for given X = x. Using the definition of the random variable Wi given by (1) and
the independency of the random variables {Wi}, we obtain that

Φα•pX|{X=x}(s) ≡ E
(
sα•pX

∣∣∣∣X = x
)

= (ΦW(s))x =

(
p(1 − α + αs) +

1 − p
1 + α − αs

)x

(4)

=

x∑
i=0

(
x
i

)
pi(1 − p)x−i (1 − α + αs)i

(1 + α − αs)x−i .

Finally, the proof follows from the fact that (1 − α + αs)i represents the probability generating function of
the random variable with Bin(i, α) distribution and (1 + α − αs)−(x−i) represents the probability generating
function of the random variable with NB(x − i, α/(1 + α)) distribution.

Corollary 2.3. Let J be a random variable with the binomial distribution with parameters x ∈N0 and p ∈ [0, 1]. Let
Bin(i, α), i ∈ N0, α ∈ [0, 1], and NB

(
k, α

1+α

)
, k ∈ N0, α > 0, be random variables with the binomial and negative
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binomial distribution, respectively, where Bin(0, α) = 0 and NB
(
0, α

1+α

)
= 0. Let us suppose that J, Bin(i, α) and

NB
(
k, α

1+α

)
are independent random variables. Then

α •p X|{X = x} d
= Bin(J, α) + NB

(
x − J,

α
1 + α

)
d
= α ◦ J + α ∗ (x − J).

Obviously, α •p X|{X = 0}=0.

Some properties of the thinning operator α•p can be easily obtained from the conditional probability
generating function given by (4). The first two derivatives of the probability generating function Φα•pX|{X=x}(s)
with respect to s = 1 are given respectively as Φ′α•pX|{X=x}(1) = αx and Φ′′α•pX|{X=x}(1) = α2x(1 + x − 2p), which
implies that the conditional expectation and variance of the random variable α •p X with respect to X are
E(α•p X|X) = αX and Var(α•p X|X) = α(1−2αp+α)X, respectively. These results yields that the unconditional
expectation and variance of the random variable α •p X are

E(α •p X) = αE(X) and Var(α •p X) = α2Var(X) + α(1 + α − 2αp)E(X),

respectively.

3. Stationary Time Series Model with the Geometric Marginals

In this section we construct a stationary time series model with the geometric marginals in the following
way.

Definition 3.1. The stationary sequence of random variables {Xt}t∈Z is called a mixed thinning integer-valued
autoregressive process of order 1 (MTINAR(1)) if it satisfies the equation

Xt = α •p Xt−1 + εt, (5)

where α•p is a mixed thinning operator given by Definition 2.1, {εt}t∈Z is a sequence of i.i.d. random variables
independent of the counting series {Wi}i∈N and the random variables Xt−i and εt are independent for all i ≥ 1.

The time series model (5) contains two existing models as special cases: the time series model with
geometric marginals generated by the binomial thinning operator for p = 1 and the NGINAR(1) time series
model of Ristić et al. [17] with geometric marginals generated by the negative binomial thinning operator
for p = 0.

First, we will consider the distribution of the random variable εt. It is given by the following theorem.

Theorem 3.2. Let {Xt}t∈Z be a stationary MTINAR(1) time series model with geometric(µ/(1 +µ)) marginals which
satisfies the condition µ ≥ α(1 − αp)/(1 − α). Then the random variable εt has the distribution of the following form

εt
d
=


0, with probability αp,
Geom

(
α

1+α

)
, with probability αµ(1−p)

µ−α ,

Geom
(
µ

1+µ

)
, with probability µ−α(1+µ−αp)

µ−α .

Proof. Since the random variables {Wi} are independent, we obtain from (5) and (2) that the probability
generating function of the random variable εt is given by

Φε(s) =
ΦX(s)

ΦX (ΦW(s))
=

1 + α(1 + µ) + α2pµ − α(1 + µ + 2αpµ)s + α2pµs2

(1 + µ − µs)(1 + α − αs)
.

The last equation yields that the probability generating function of the random variable εt can be represented
in the form

Φε(s) = αp +
αµ(1 − p)
µ − α

·
1

1 + α − αs
+
µ − α(1 + µ − αp)

µ − α
·

1
1 + µ − µs

.
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Under the condition µ ≥ α(1−αp)
1−α we have that a distribution of the random variable εt is well-defined and

that can be represented as a mixture of the following form

εt
d
=


0, with probability αp,
Geom

(
α

1+α

)
, with probability αµ(1−p)

µ−α ,

Geom
(
µ

1+µ

)
, with probability µ−α(1+µ−αp)

µ−α .

Definition 3.3. A time series {Xt}t∈Z considered in Theorem 3.2 is called a mixed thinning geometrically distributed
INAR(1) model (MTGINAR(1)).

Corollary 3.4. The mean and variance of the random variable εt are given respectively as E(εt) = (1 − α)µ and
Var(εt) = µ(1 − α − 2α2 + µ − α2µ + 2α2p).

Also we are in position to derive the transition probabilities of the process. Let j and x are some
non-negative integer values, then

P(Xt = j|Xt−1 = x) = P(α •p Xt−1 + εt = j|Xt−1 = x) = P

 x∑
i=0

Wi + εt = j


=

min{ j,x}∑
k=0

P

 x∑
i=0

Wi = k

 P
(
εt = j − k

)
, (6)

where

P

 x∑
i=0

Wi = k

 = (1 − p)xP
(
NB

(
x,

α
1 + α

)
= k

)
+ pxP (Bin(x, α) = k)

+

x−1∑
i=1

(
x
i

)
pi(1 − p)x−iP

(
Bin(i, α) + NB

(
x − i,

α
1 + α

)
= k

)
. (7)

We also have that

P
(
Bin(i, α) + NB

(
x − i,

α
1 + α

)
= k

)
=

min{k,i}∑
l=0

P (Bin(i, α) = l) P
(
NB

(
x − i,

α
1 + α

)
= k − l

)
=

min{k,i}∑
l=0

(
i
l

)(
x − i + k − l − 1

x − i − 1

)
αk(1 − α)i−l

(1 + α)k−l+x−i
.

Replacing this result in (7) we obtain the following

P

 x∑
i=0

Wi = k

 = (1 − p)x
(
x + k − 1

x − 1

)
αk

(1 + α)k+x
+ px

(
x
k

)
αk(1 − α)x−k

+

x−1∑
i=1

(
x
i

)
pi(1 − p)x−iαk(1 − α)i

(1 + α)k+x−i

min{k,i}∑
l=0

(
i
l

)(
x − i + k − l − 1

x − i − 1

) (1 + α
1 − α

)l

. (8)

Finally, replacing (8) in (6), we are able to calculate the process transition probability values.
Now, we derive and discuss some properties of the introduced model. From the definition of the model

(5), the conditional mean of the random α•p Xt for given Xt and the result from Corollary 3.4, we obtain that
the conditional mean of the random variable Xt+1 for given Xt is given by E(Xt+1|Xt) = αXt + (1−α)µ, which
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means that our model has a first order conditional linear autoregressive structure, as it was discussed in
[9]. This implies that the k-step ahead conditional mean is

E(Xt+k|Xt) = αkXt + µ(1 − αk).

If k→∞, then the k-step ahead conditional mean converges to the unconditional mean E(Xt) = µ.
The k-step ahead conditional variance is given by

Var(Xt+k|Xt) = α2Var(Xt+k−1|Xt) + α(1 + α − 2αp)(αk−1Xt + µ(1 − αk−1)) + Var(εt)

=
αk(1 − αk)(1 + α − 2αp)

1 − α
Xt + α(1 + α − 2αp)µ

(
1 − α2k

1 − α2 −
αk−1(1 − αk)

1 − α

)
+

1 − α2k

1 − α2 Var(εt).

Letting k → ∞, we obtain that the k-step ahead conditional variance converges to unconditional variance
Var(Xt) = µ(1 + µ). Also, we can see that the k-step ahead conditional variance linearly depends on Xt.

Since the model {Xt}t∈Z has the first order conditional linear autoregressive structure, it follows that
the autocorrelation function of the process {Xt}t∈Z is given by Corr(Xt+k,Xt) = α|k|, k ∈ Z. Thus, the
autocorrelation function is positive and decays exponentially, as k increases.

Finally, {Xt} is a Markovian process of the first order with identical marginal distribution. So, following
the proof of Theorem 2, in [19], its strict stationarity and ergodicity may be obtained.

4. Parameter Estimation

4.1. Conditional least squares
Let us consider the conditional least squares estimation of the unknown parameters α, µ and p. Since

the conditional expectation E(Xt|Xt−1) = αXt−1 + (1 − α)µ only depends on the first two parameters α and
µ, we will use the two-step conditional least squares approach considered by Karlsen and Tjøstheim [13].
Thus, in the first step we will estimate the unknown parameters α and µ, and in the second step we will
estimate the unknown parameter p by using the conditional least squares estimators of the parameters α
and µ obtained in the first step.

Let us provide more details for each step of the estimation. In the first step we minimize the function
S1(α, µ) given by

S1(α, µ) =

n∑
t=2

[Xt − E(Xt|Xt−1)]2 =

n∑
t=2

[Xt − αXt−1 − (1 − α)µ]2.

Then, minimizing the function S1(α, µ) with respect to the unknown parameters α and µ, we obtain the
conditional least squares estimators of these parameters, given by

α̂cls =
(n − 1)−1 ∑n

t=2 XtXt−1 − (n − 1)−2 ∑n
t=2 Xt

∑n
t=2 Xt−1

(n − 1)−1
∑n

t=2 X2
t−1 − (n − 1)−2 (∑n

t=2 Xt−1
)2

µ̂cls =

∑n
t=2 Xt − α̂cls

∑n
t=2 Xt−1

(n − 1)(1 − α̂cls)
.

The derived conditional least squares estimators of the unknown parameters α and µ are strongly
consistent as an immediate consequence of the ergodic theorem, since our novel time series model is
strictly stationary and ergodic. The asymptotic distribution of the estimators is established in the following
theorem.
Theorem 4.1. The estimator (n − 1)

1
2
(
α̂cls − α, µ̂cls − µ

)T has asymptotic bivariate normal distribution with mean
(0, 0)T and covariance matrix

D =


α(1+α−2αp)(1+4µ+3µ2)

µ(1+µ)2 −
z

1+µ
α(1+α−2αp)

(1−α)
α(1+α−2αp)

(1−α)2

µ(α(1−α−2αp)−z)
(1−α)2


where z = 1 − α+µ + α2(2(p − 1) − µ).
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Proof. First, note that we have introduced z as above for the sake of simplicity. In order to prove the stated
theorem, we will check whether the conditions of Theorem 3.1. and Theorem 3.2. of [20] are satisfied.
Denote a ≡ (a1, a2) = (α, µ) and 1(a,Xt−1) ≡ E(Xt|Xt−1) = αXt−1 + (1 − α)µ. It immediately follows that

E
∣∣∣∣∣ ∂1∂α

∣∣∣∣∣2 = E(Xt−1 − µ)2 = Var(Xt−1) = µ(1 + µ) < ∞,

E
∣∣∣∣∣ ∂1∂µ

∣∣∣∣∣2 = E(1 − α)2 = (1 − α)2 < ∞

and obviously E
∣∣∣∣ ∂21

∂α∂µ

∣∣∣∣2 < ∞, so the condition C1 of Theorem 3.1. is confirmed. Similarly the condition C3
of the same theorem holds. Moreover, let c1 and c2 be the arbitrary real numbers, such that the following
equation holds

E
∣∣∣∣∣c1
∂1

∂α
+ c2

∂1

∂µ

∣∣∣∣∣2 = 0.

Now, E
(
c1(Xt−1 − µ) + c2(1 − α)

)2 = c2
1Var(Xt−1)+c2

2(1−α)2 = 0 and it is obvious that the last equation implies
c1 = c2 = 0. Thus, the condition C2 is fulfilled and now all the conditions of Theorem 3.1. are checked. Note
that we have in this way once more established strict stationarity of the estimators. Next, we will check
whether the condition D1 of Theorem 3.2. holds and for this purpose let’s introduce

ft|t−1≡Var(Xt|Xt−1) = α(1 + α − 2α2p)Xt−1 − µz,

where z is defined above in the statement of the theorem. Using simple calculations, we get

R ≡ E
(
∂1

∂a
ft|t−1

∂1T

∂a

)
=

[
r11 r12
r21 r22

]
,

where

r11 = α(1 + α − 2αp)µ(1 + 4µ + 3µ2) − µ2(1 + µ)z
r12 = r21 = α(1 − α)µ(1 + µ)(1 + α − 2αp)
r22 = µ(1 − α)2 (

α(1 + α − 2αp) − z
)
.

It is easy to conclude that R < ∞, which implies the condition D1. Furthermore, it can be easily derived that

U =

[
E
(
∂1

∂ai

∂1

∂a j

)]
2×2

=

[
µ(1 + µ) 0

0 (1 − α)2

]
.

Finally, from Theorem 3.2. immediately follows that the estimator (n−1)
1
2
(
α̂cls − α, µ̂cls − µ

)T has asymptotic
bivariate normal distribution with mean (0, 0)T and covariance matrix U−1RU−1. After some calculations
we obtain D ≡ U−1RU−1 and the proof is now complete.

In the second step we estimate the unknown parameter p in the following way. Let us introduce a
random variable Yt = [Xt − E(Xt|Xt−1)]2 = [Xt − αXt−1 − (1 − α)µ]2. Now we are minimizing the function
S2(p) defined as

S2(p) =

n∑
t=2

[Yt − E(Yt|Xt−1)]2 =

n∑
t=2

[Yt − Var(Xt|Xt−1)]2

=

n∑
t=2

[Yt − α(1 + α − 2αp)Xt−1 − µ(1 − α − 2α2 + µ − α2µ + 2α2p)]2

=

n∑
t=2

[2α2p(Xt−1 − µ) − Zt]2,
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where Zt = −Yt + α(1 + α)Xt−1 + µ(1 − α − 2α2 + µ − α2µ). Now, minimizing the above function S2(p) with
respect to the unknown parameter p we obtain that the conditional least squares estimator of the parameter
p is given by

p̂cls =

∑n
t=2 Ẑt(Xt−1 − µ̂cls)

2α̂2
cls

∑n
t=2(Xt−1 − µ̂cls)2

,

where Ẑt = −Ŷt + α̂cls(1 + α̂cls)Xt−1 + µ̂cls(1− α̂cls − 2α̂2
cls + µ̂cls − α̂2

clsµ̂cls) and Ŷt = [Xt − α̂clsXt−1 − (1− α̂cls)µ̂cls]2.
Next, we will discuss the asymptotic normality of the previously obtained conditional least squares

estimator of the unknown parameter p. In particular, we will consider two cases, the case when the
parameters α and µ are known and the case when they are not. The results are stated within the following
theorems.

Theorem 4.2. Suppose that parameters α and µ are known. The conditional least squares estimator of the unknown
parameter p has asymptotic normal distribution.

Proof. In order to prove the statement of the theorem, based on the derived form of conditional least squares
estimate of parameter p, it follows that

(n − 1)
1
2
(
p̂cls(α, µ) − p

)
=

(n − 1)−
1
2
∑n

t=2

(
Zt − 2α2p(Xt−1 − µ)

)
(Xt−1 − µ)

(n − 1)−12α2
∑n

t=2(Xt−1 − µ)2
.

Now, as stated earlier, {Xt, t ∈ Z} is a strictly stationary and ergodic sequence, so it follows that {(Xt−1−µ)2, t ∈
Z} and {

(
Zt − 2α2p(Xt−1 − µ)

)
(Xt−1−µ), t ∈ Z} are also strictly stationary and ergodic sequences as continuous

transformations of {Xt, t ∈ Z}. Next, involving ergodic theorem, we conclude that (n−1)−12α2 ∑n
t=2(Xt−1−µ)2

is convergent with probability 1, which implies the convergence in probability, too. Further, denote as Ft−1
a σ-field generated with random variables Xt−i, i ≥ 1. After some calculations it can be easily shown
that E(Zt|Ft−1) = 2α2p(Xt−1 − µ), which implies that E

(
(Zt − 2α2p(Xt−1 − µ))(Xt−1 − µ)|Ft−1

)
= 0. Thus, we

conclude that {
(
Zt − 2α2p(Xt−1 − µ)

)
(Xt−1 − µ), t ∈ Z} is an ergodic, strictly stationary martingale difference

sequence. An application of central limit theorem for ergodic, strictly stationary martingale difference
sequences provides the convergence in distribution of (n − 1)−

1
2
∑n

t=2

(
Zt − 2α2p(Xt−1 − µ)

)
(Xt−1 − µ) to a

normal distribution with mean 0 and variance E
((

Zt − 2α2p(Xt−1 − µ)
)

(Xt−1 − µ)
)2
. Finally, using Slutsky’s

theorem, we are able to conclude the asymptotic normality of p̂cls(α, µ).

Theorem 4.3. Suppose that parametersα andµ are unknown. The conditional least squares estimator of the unknown
parameter p has asymptotic normal distribution.

Proof. We will consider the following decomposition

(n − 1)
1
2
(
p̂cls(α̂cls, µ̂cls) − p

)
= (n − 1)

1
2
(
p̂cls(α̂cls, µ̂cls) − p̂cls(α, µ̂cls)

)
+ (n − 1)

1
2
(
p̂cls(α, µ̂cls) − p̂cls(α, µ)

)
+(n − 1)

1
2
(
p̂cls(α, µ) − p

)
. (9)

Notice that within the previous theorem we have already proved the asymptotic normality of the third
summand of (9), i.e. (n− 1)

1
2
(
p̂cls(α, µ) − p

)
. In the following we shall prove the same result for the first and

the second summand.
First, we consider (n − 1)

1
2
(
p̂cls(α̂cls, µ̂cls) − p̂cls(α, µ̂cls)

)
. In this case, we have

p̂cls(α̂cls, µ̂cls) − p̂cls(α, µ̂cls) =

∑n
t=2

(
Xt−1 − µ̂cls

) (
α2Ẑt(α̂cls, µ̂cls) − α̂2

clsẐt(α, µ̂cls)
)

2α2α̂2
cls

∑n
t=2

(
Xt−1 − µ̂cls

)2 .
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Having in mind an earlier introduced form of Zt, after some calculations we obtain

α2Ẑt(α̂cls, µ̂cls) − α̂2
clsẐt(α, µ̂cls) = (α̂cls − α)

(
(α̂cls + α)X2

t − 2αα̂clsXtXt−1 − 2µ̂clsXt(α̂cls + α − αα̂cls)

+αα̂clsXt−1(2µ − 1) − µ̂cls(α̂cls + α − αα̂cls + 2αα̂clsµ̂cls)
)

= (α̂cls − α)Vt,

where Vt is just a shortened notation for a corresponding expression. So, we have the following result

(n − 1)
1
2
(
p̂cls(α̂cls, µ̂cls) − p̂cls(α, µ̂cls)

)
=

(n − 1)
1
2 (α̂cls − α)

∑n
t=2(Xt−1 − µ̂cls)Vt

2α2α̂2
cls

∑n
t=2

(
Xt−1 − µ̂cls

)2 .

Further reasoning is very similar to the one used in the previous theorem. Thus, as {Xt, t ∈ Z} is a strictly
stationary and ergodic sequence, it follows that {(Xt−1 − µ̂cls)Vt, t ∈ Z} and {(Xt−1 − µ̂cls)2, t ∈ Z} are also
strictly stationary and ergodic sequences as continuous transformations of {Xt, t ∈ Z}. Moreover, based on
ergodic theorem, we may conclude that the sums (n− 1)−1 ∑n

t=2(Xt−1 − µ̂cls)Vt and (n− 1)−1 ∑n
t=2(Xt−1 − µ̂cls)2

are convergent with probability 1. At the end, having in mind that (n − 1)
1
2 (α̂cls − α) has asymptotic normal

distribution with mean 0 as a result of Theorem 4.1 and making use of Slutsky’s theorem again, we conclude
that (n − 1)

1
2
(
p̂cls(α̂cls, µ̂cls) − p̂cls(α, µ̂cls)

)
has also asymptotic normal distribution with mean 0.

Now, we take in consideration (n − 1)
1
2
(
p̂cls(αcls, µ̂cls) − p̂cls(α, µ)

)
and establish its asymptotic normality.

Based on the derived form of p̂cls, we obtain

p̂cls(αcls, µ̂cls) − p̂cls(α, µ) =

∑n
t=2(Xt−1 − µ)2 ∑n

t=2 Ẑt(α, µ̂cls)(Xt−1 − µ̂cls)
2α2

∑n
t=2(Xt−1 − µ)2

∑n
t=2(Xt−1 − µ̂cls)2

−

∑n
t=2(Xt−1 − µ̂cls)2 ∑n

t=2 Zt(α, µ)(Xt−1 − µ)
2α2

∑n
t=2(Xt−1 − µ)2

∑n
t=2(Xt−1 − µ̂cls)2

=
A

2α2
∑n

t=2(Xt−1 − µ)2
∑n

t=2(Xt−1 − µ̂cls)2
.

After some calculations we obtain the following

A = (µ̂cls − µ)
[ n∑

t=2

X2
t−1

 n∑
t=2

Xt−1U1(t) −
n∑

t=2

U2(t)

 − 2
n∑

t=2

Xt−1

 n∑
t=2

Xt−1U3(t) − µµ̂cls

n∑
t=2

U1(t)


+(n − 1)

 n∑
t=2

Xt−1U4(t) −
n∑

t=2

U2(t)

 ],
where

U1(t) = (1 − α)
(
2(Xt − αXt−1 + α(µ̂cls + µ)) + 1

)
− 2α2,

U2(t) = −X2
t + 2αXtXt−1 − α

2Xt−1 + α(1 + α)Xt + 1 − α − 2α2 + 2(µ̂cls + µ)(1 − α)(Xt + αXt−1)
+2α(1 − α)(µ̂2

cls + µµ̂cls + µ2)

U3(t) = X2
t − 2αXtXt−1 + α2Xt−1 − α(1 + α)Xt − 2α(1 − α)µµ̂cls

U4(t) = (µ̂cls − µ)(X2
t − 2αXtXt−1 + α2Xt−1 − α(1 + α)Xt) − µµ̂cls(2(1 − α)(Xt + Xt−1) + 1 − α − 2α2).
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Using the introduced notation, we get the following equation

(n − 1)
1
2 p̂cls(αcls, µ̂cls) − p̂cls(α, µ) =

(n − 1)
1
2 (µ̂cls − µ)

2α2
(

1
n−1

∑n
t=2(Xt−1 − µ̂cls)2

) (
1

n−1

∑n
t=2(Xt−1 − µ)2

)
×

[
1

n − 1

n∑
t=1

X2
t−1

 1
n − 1

∑
t=2

Xt−1U1(t) −
1

n − 1

n∑
t=2

U2(t)


−

2
n − 1

n∑
t=2

Xt−1

 1
n − 1

n∑
t=2

Xt−1U3(t) −
µµ̂cls

n − 1

n∑
t=2

U1(t)


+

1
n − 1

n∑
t=2

Xt−1U4(t) −
1

n − 1

n∑
t=2

U2(t)
]

As in the previously considered case, using the fact that {Xt, t ∈ Z} is a strictly stationary and ergodic
sequence, all sequences obtained as its continuous transformations are also strictly stationary and ergodic
sequences. Notice that all the relevant sequences used in the preceding relation are in fact continuous
transformations of {Xt, t ∈ Z}. So, the corresponding sums are convergent with probability 1, based on
the ergodic theorem. Since (n − 1)

1
2 (µ̂cls − µ) has asymptotic normal distribution with mean 0, as derived

in Theorem 4.1, using Slutsky’s theorem once more, we establish that (n − 1)
1
2
(
p̂cls(αcls, µ̂cls) − p̂cls(α, µ)

)
has

also asymptotic normal distribution with mean 0.
Finally, having in mind the decomposition (9) we have begun with and the fact that we have established

asymptotic normality with 0 mean for all the summands of (9), we may conclude that the conditional
least square estimator of the unknown parameter p, when the parameters α and µ are also unknown, has
asymptotic normal distribution.

4.2. Yule-Walker estimation

In this section we provide Yule-Walker estimators and derive some of their features. As mentioned
earlier, E(Xt) = µ and Corr(Xt,Xt−1) = α. It directly follows that parameters µ and α can be estimated using
sample mean and sample autocorrelation, respectively. Thus,

µ̂yw =
1
n

n∑
t=1

Xt ≡ X̄n,

α̂yw =

∑n
t=2(Xt − X̄n)(Xt−1 − X̄n)∑n

t=1(Xt − X̄n)2
.

In order to derive Yule-Walker estimator of the unknown parameter p, we need the following auxiliary
result that can be obtained after some simple calculations. It follows that

E
(
α •p Xt−1

)2
= E(Xt−1)Var(W) + E(X2

t−1)(E(W))2,

E
((
α •p Xt−1

)2
Xt−1

)
= E(X2

t−1)Var(W) + E(X3
t−1)(E(W))2.

Using the above results we obtain that

Cov(X2
t ,Xt−1) = Cov

((
α •p Xt−1

)2
,Xt−1

)
+ 2Cov

( (
α •p Xt−1

)
εt,Xt−1

)
= Var(Xt−1)Var(W) + (E(W))2(E(X3

t−1) − E(X2
t−1)E(Xt−1)) + 2E(εt)E(W)Var(Xt−1)

= −2pα2µ(1 + µ) + y,
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where y = αµ
(
(1 + µ)(1 + α + 2µ(1 − α)) + α(1 + 5µ + 4µ2)

)
. Finally, we have the required estimator as

p̂yw =
ŷyw − Ĉovyw(X2

t ,Xt−1)

2α̂2
ywµ̂yw(1 + µ̂yw)

,

where

Ĉovyw(X2
t ,Xt−1) =

1
n − 1

n∑
t=2

X2
t Xt−1 −

 1
n − 1

n∑
t=2

X2
t


 1

n − 1

n∑
t=2

Xt−1

 ,
ŷyw = α̂ywµ̂yw

(
(1 + µ̂yw)(1 + α̂yw + 2µ̂yw(1 − α̂yw)) + α̂yw(1 + 5µ̂yw + 4µ̂2

yw)
)
.

Again, as in the previous section, strong consistency of the obtained estimates follows directly from the
ergodic theorem. In addition we give useful result. The proof is straightforward and is omitted here but
can be found in [18], since the forms of the relevant estimators are the same.
Theorem 4.4. Yule-Walker and the conditional least squares estimators of the unknown parameters α and µ satisfy
the following equations:

(i) α̂cls − α̂cls = o(n−
1
2 ) with probability 1

(ii) µ̂cls − µ̂cls = o(n−
1
2 ) with probability 1

Using the result of this theorem together with the Proposition 6.3.3. of [7], we conclude that the asymp-
totic distribution of Yule-Walker estimators of the unknown parameters α and µ is the same as the one
obtained in Theorem 4.1 for the conditional least squares estimators.

4.3. Maximum likelihood estimation
Using the additional information on the process marginal distribution, i.e. starting from the sample of

the observed process introduced by Definition 3.3, we are able to derive the maximum likelihood estimators
of the unknown model parameters µ, α and p. As usually, these estimators are obtained by maximizing the
log-likelihood function

log L(x1, . . . , xN;µ, α, p) = x1 logµ − (x1 + 1) log(1 + µ) +

N∑
t=2

log Pt(xt, xt−1;µ, α, p),

where Pt(xt, xt−1;µ, α, p) = P(Xt = xt|Xt−1 = xt−1), which is given by (6) and (8). Since the maximum likelihood
estimators can not be easily obtained as analytical solution of the the system of equations ∂ log L

∂µ = 0, ∂ log L
∂α = 0

and ∂ log L
∂p = 0, these estimators are rather obtained by using some of the numerical minimizing functions

implemented in most of the statistical software packages.

5. Application

In this section we apply a geometrically distributed integer-valued autoregressive process based on a
newly introduced mixed thinning operator on the counting data series from real life. In order to demon-
strate an appealing quality or even an advantage of usage of this new thinning operator over the ex-
clusive application of only one of its building operators, i.e. the binomial and the negative binomial
thinning operator, we compare here the introduced Mixed Thinning Geometrically distributed INAR(1)
model (MTGINAR(1)) with Geometric INAR(1) model (GINAR(1)) defined in [4] and New Geometric
INAR(1) model (NGINAR(1)) of [17]. For this purpose, we considered a data series representing a monthly
counting of committing a light criminal activity, public drunkenness, in a period from January 1990 to
December 2001, constituting a sequence of 144 observations. This data set, (PubDrunk-22) is created by
the 22nd police car beat of Pittsburgh and can be downloaded from the website Forecasting Principles
(http://www.forecastingprinciples.com). The sample mean, variance and autocorrelation of the PubDrunk-
22 are respectively, 1.34, 10.1 and 0.761. The plots of the time series, their autocorrelations and partial
autocorrelation functions are given in Figure 1.
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Figure 1: PubDrunk-22 series, autocorrelations and partial autocorrelations

Based on this figure, we conclude that it is possible to use the corresponding INAR(1) modeling.
Although, some of the higher order INAR models might have been a preferable choice, we have not
considered their usage, since in this article we are only dealing with the introduction of the INAR model of
the first order, based on a newly defined mixed thinning operator. To carry out the quality comparison of
our MTGINAR(1) model with GINAR(1) and NGINAR(1), first we have calculated the maximum likelihood
estimations of the parameters of the considered models and then using these estimations we have obtained
as a comparison criteria the Root Mean Squares of differences between the observations and predicted
values (RMS). The RMS is used as a standard quality measure of the model fitting performance, expecting
smaller values for more appropriate models. All the results are presented in Table 1.
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Table 1: ML parameter estimates and RMS values for INAR(1) modeling of the PubDrunk-22 counts data.

Model MLE RMS
GINAR(1) q̂ = 0.6030(0.0434)

α̂ = 0.4800(0.0466) 2.248
NGINAR(1) µ̂ = 1.3729(0.2958)

α̂ = 0.5720(0.0525) 2.146
MTGINAR(1) µ̂ = 1.4544(0.3425)

p̂ = 0.2234(0.1644)
α̂ = 0.6167(0.0638) 2.111

Obvious conclusion, based on the RMS values, is that the MTGINAR(1) model shows better performance
than the other two models in modeling the observed counting. Moreover, in case of the mixed thinning
model, the obtained probability estimate p̂ is much more closer to its limit value 0, than to the 1, meaning
that the negative binomial thinning operator is much more often realized than the binomial one. In this
regard, for the observed series, NGINAR(1) model, based on the negative binomial thinning, is much more
appropriate than the GINAR(1), while our MTGINAR(1) is notably the most persuasive among all three
observed models. The best results of newly introduced mixed thinning model can be explained by the
nature of the observed events. Namely, public drunkenness is an offence which may happen occasionally
by one or two persons with no special reason, but when there are some social events, like street festivals,
sport matches, etc., it would be expected to see more drunk persons in the streets than usual. Therefore,
if these events occur frequently, then the value of parameter p should be smaller, since it is a binomial
thinning weight which is more preferable to use during calmer period of time. So, it can be concluded that
the mixed thinning operator is designed for exactly this kind of counting processes, i.e. processes which
from time to time, depending on social circumstances, move from passive to active state and back. This
might be noticed in time series plot in Figure 1, where during approximately the first and the last 40 months
we have a more frequent occurrence of crime, than in between, giving sufficient reasons for the successful
implementation of MTGINAR(1) model to this type of data.
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