Filomat 31:13 (2017), 3965–3974 https://doi.org/10.2298/FIL1713965H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Conditions under which Left Derivations are Zero

Amin Hosseini^a

^aDepartment of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran

Abstract. In this study, we show that every continuous Jordan left derivation on a (commutative or noncommutative) prime UMV-Banach algebra with the identity element **1** is identically zero. Moreover, we prove that every continuous left derivation on a unital finite dimensional Banach algebra, under certain conditions, is identically zero. As another result in this regard, it is proved that if \Re is a 2-torsion free semiprime ring such that $ann\{[y,z] \mid y,z \in \Re\} = \{0\}$, then every Jordan left derivation $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ is identically zero. In addition, we provide several other results in this regard.

1. Introduction and Preliminaries

Throughout the paper, \Re denotes an associative ring. Before everything else, let us recall some basic definitions and set the notations which we use in the sequel. A ring \Re is called unital if there exists an element $1 \in \Re$ such that x1 = 1x = x holds for all $x \in \Re$. A ring \Re is said to be a domain if $\Re \neq \{0\}$ and x = 0 or y = 0, whenever xy = 0 in \Re . A ring \Re is called prime if for $x, y \in \Re, x\Re y = \{0\}$ implies x = 0 or y = 0, and is semiprime in case $x\Re x = \{0\}$ implies x = 0. Let S be a subset of a ring \Re . The left annihilator of S is *lann*(S) := { $x \in \Re \mid xS = \{0\}$ }. Similarly, the right annihilator of S is *rann*(S) := { $x \in \Re \mid Sx = \{0\}$ }. The annihilator of S is defined as *ann*(S) := *lann*(S) \cap *rann*(S). A ring \Re is called simple if $\Re^2 \neq \{0\}$ and $\{0\}$ and \Re are the only ideals in \Re . Recall that the center of a ring \Re is $Z(\Re) := {x \in \Re \mid xy = yx \text{ for all } y \in \Re}$. The above-mentioned definitions and notations are also considered for algebras.

Let \mathcal{A} be an associative algebra. A non-zero linear functional φ on an algebra \mathcal{A} is called a *character* if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in \mathcal{A}$. Throughout this article, $\Phi_{\mathcal{A}}$ denotes the set of all characters on \mathcal{A} . As usual, the set of all primitive ideals is denoted by $\Pi(\mathcal{A})$. The Jacobson radical of an algebra \mathcal{A} is defined to be the intersection of the primitive ideals of \mathcal{A} ; it is denoted by $rad(\mathcal{A})$. In deed, $rad(\mathcal{A}) = \bigcap_{\mathcal{P} \in \Pi(\mathcal{A})} \mathcal{P}$. An algebra \mathcal{A} is semisimple if $rad(\mathcal{A}) = \{0\}$. If \mathcal{A} is a *-algebra, then $S(\mathcal{A})$ denotes the set of all self-adjoint elements of \mathcal{A} (i.e., $S(\mathcal{A}) := \{s \in \mathcal{A} \mid s^* = s\}$) and $P(\mathcal{A})$ denotes the set of all projections in \mathcal{A} (i.e., $P(\mathcal{A}) := \{p \in \mathcal{A} \mid p^2 = p, p^* = p\}$). The set of those elements in \mathcal{A} which can be represented as finite real-linear combinations of mutually orthogonal projections is denoted by $O_{\mathcal{A}}$. Of course, $P(\mathcal{A}) \subseteq O(\mathcal{A}) \subseteq S(\mathcal{A})$. In the case of a von Neumann algebra \mathcal{A} , the set $O(\mathcal{A})$ is norm dense in $S(\mathcal{A})$. More generally, this is true for AW^* -algebras. Recall that the spectrum of an arbitrary element *a* of an algebra \mathcal{A} is $\mathfrak{S}(a) := \{\lambda \in \mathbb{C} \mid \lambda \mathbf{1} - a \text{ is not invertible in } \mathcal{A}\}$, where **1** stands for the identity element of \mathcal{A} . The above-mentioned definitions and concepts can all be found in [6, 15, 16, 20, 22].

²⁰¹⁰ Mathematics Subject Classification. Primary 47B47; Secondary 13N15, 17B40

Keywords. derivation, left derivation, Jordan left derivation.

Received: 29 December 2015; Accepted: 05 February 2017

Communicated by Dragan S. Djordjević

Email address: hosseini.amin82@gmail.com (Amin Hosseini)

A linear mapping $d : \mathcal{A} \to \mathcal{A}$ is called a derivation if d(ab) = d(a)b + ad(b) holds for all pairs $a, b \in \mathcal{A}$ and is called a Jordan derivation in case $d(a^2) = d(a)a + ad(a)$ is fulfilled for all $a \in \mathcal{A}$. A left derivation on \mathcal{A} is a linear mapping $\mathfrak{L} : \mathfrak{A} \to \mathfrak{A}$ if $\mathfrak{L}(ab) = a\mathfrak{L}(b) + b\mathfrak{L}(a)$ holds for all pairs $a, b \in \mathfrak{A}$ and is called a Jordan left derivation if $\mathfrak{L}(a^2) = 2a\mathfrak{L}(a)$ is fulfilled for all $a \in \mathcal{A}$. Recently, a number of authors ([1, 8, 13, 21, 23]) have studied left derivations and various generalized notions of them in the context of pure algebra, extensively. As a pioneering work, Brešar and Vukman [5] proved that every left derivation on a semiprime ring \Re is a derivation which maps \Re into its center. Furthermore, they also showed that if \mathcal{A} is a Banach algebra, then every continuous left derivation $\mathfrak{L}: \mathcal{A} \to \mathcal{A}$ maps \mathcal{A} into its radical. The question under which conditions left derivations and derivations are zero on a given Banach algebra have attracted much attention of authors (for instance, see [1, 5, 8–11, 13, 18, 21, 23]). In this paper, we also concentrate on this topic. This research has been motivated by the works [5, 9, 19, 23]. First, we present a definition as follows. An element a of a unital Banach algebra A has the uniformly mean value property (UMV-property, briefly) if for every closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ there exists a real number $c_{\alpha,\beta} \in (\alpha, \beta)$ such that $e^{\beta a} - e^{\alpha a} = (\beta - \alpha)ae^{c_{\alpha,\beta}a}$. A unital Banach algebra \mathcal{A} is called UMV-Banach algebra if every element of \mathcal{A} has the UMV-property. As a result in the current paper, we prove that every continuous left derivation on a unital, prime UMV-Banach algebra is identically zero. Clearly, the same result is true for continuous left derivations on a unital UMV-Banach algebra which also is a domain. In this work, we try to make clear the status of continuous left derivations on unital finite dimensional Banach algebras as follows. Let n be a positive integer and let \mathcal{A} be an ndimensional unital Banach algebra with the basis $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$. Suppose that for every integer k, $1 \le k \le n$, an ideal I_k generated by $\mathcal{B} - \{b_k\}$ is a proper subset of \mathcal{A} . Then every continuous left derivation on \mathcal{A} is identically zero. Furthermore, it is proved that if \mathfrak{R} is a 2-torsion free semiprime ring such that $ann\{[y,z] \mid y,z \in \Re\} = \{0\}$, then every Jordan left derivation $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ is identically zero. As another result in this regard, we show that every continuous Jordan left derivation on a normed *-algebra \mathcal{A} satisfying $O(\mathcal{A}) = S(\mathcal{A})$ is identically zero. In 2008, J. Vukman proved that every Jordan left derivation on a semisimple Banach algebra is zero (see [23], Theorem 4). We believe he could prove this theorem easier. In this article, we establish a simpler proof of that theorem.

2. Main Results

We begin with the following definition which has been presented in [9].

Definition 2.1. Let \mathcal{A} be a unital Banach algebra. An element a of \mathcal{A} has the uniformly mean value property (UMV-property, briefly) if for every closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ there exists an element $c_{\alpha,\beta} \in (\alpha, \beta)$ such that $e^{\beta a} - e^{\alpha a} = (\beta - \alpha)ae^{ac_{\alpha,\beta}}$. A unital Banach algebra \mathcal{A} is called UMV if every element of \mathcal{A} has the UMV-property.

Let *a* be an idempotent element of a unital Banach algebra \mathcal{A} , i.e. $a^2 = a$. We have

$$e^{ta} = \sum_{n=0}^{\infty} \frac{t^n a^n}{n!} = \mathbf{1} + \sum_{n=1}^{\infty} \frac{t^n a}{n!}$$
$$= \mathbf{1} + \sum_{n=0}^{\infty} \frac{t^n a}{n!} - a$$
$$= e^t a - a + \mathbf{1}$$

for all $t \in \mathbb{R}$. Hence,

$$e^{\beta a} - e^{\alpha a} = e^{\beta}a - a + 1 - (e^{\alpha}a - a + 1) = (e^{\beta} - e^{\alpha})a.$$
(1)

According to the classical mean value theorem for the function $f(t) = e^t$ on $[\alpha, \beta]$, there exists an element $c_{\alpha,\beta} \in (\alpha,\beta)$ such that $e^{\beta} - e^{\alpha} = (\beta - \alpha)e^{c_{\alpha,\beta}}$. This equality along with (1) imply that, $e^{\beta a} - e^{\alpha a} = (\beta - \alpha)e^{c_{\alpha,\beta}a}$. Now, we show that $e^{c_{\alpha,\beta}a} = ae^{c_{\alpha,\beta}a}$. We have

$$ae^{c_{\alpha,\beta}a} = a(e^{c_{\alpha,\beta}}a - a + 1) = e^{c_{\alpha,\beta}}a^2 - a^2 + a = e^{c_{\alpha,\beta}}a - a + a = e^{c_{\alpha,\beta}}a.$$

Thus, $e^{\beta a} - e^{\alpha a} = (\beta - \alpha)ae^{c_{\alpha,\beta}a}$. This means that *a* has the UMV-property. In the following theorem, \mathcal{A} denotes a unital Banach algebra.

Theorem 2.2. Let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a left derivation and let $b \in \mathcal{A}$ has the UMV-property. Assume that $f(b)\mathfrak{L}(b) = 0$ forces f(b) = 0 or $\mathfrak{L}(b) = 0$ for some function f. Moreover, suppose that $\mathfrak{L}(e^{c_{0,1}b}) = c_{0,1}e^{c_{0,1}b}\mathfrak{L}(b)$, where $c_{0,1} \in (0,1) \subseteq \mathbb{R}$ is obtained from the UMV-property of b and further $\mathfrak{L}(e^b) = e^b\mathfrak{L}(b)$. Then $\mathfrak{L}(b) = 0$.

Proof. If b = 0, then there is nothing to be proved. Let b be a non-zero element of \mathcal{A} having the UMVproperty. Hence, there exists an element $c_{0,1} = c$ of (0,1) such that $e^b - \mathbf{1} = be^{cb}$. Using the latest equality along with the aforementioned assumptions that $\mathfrak{L}(e^{cb}) = ce^{cb}\mathfrak{L}(b)$ and $\mathfrak{L}(e^b) = e^b\mathfrak{L}(b)$, we deduce that $0 = e^b\mathfrak{L}(b) - \mathfrak{L}(\mathbf{1}) - b\mathfrak{L}(e^{cb}) - e^{cb}\mathfrak{L}(b) = e^b\mathfrak{L}(b) - cbe^{cb}\mathfrak{L}(b) - e^{cb}\mathfrak{L}(b)$. Indeed, we have $(e^b - cbe^{cb} - e^{cb}\mathfrak{L}(b) = 0$. This equation along with the hypothesis that $f(b)\mathfrak{L}(b) = 0$ forces f(b) = 0 or $\mathfrak{L}(b) = 0$, imply that $\mathfrak{L}(b) = 0$ or $e^b - cbe^{cb} - e^{cb} = 0$. If $\mathfrak{L}(b) = 0$, then our goal is achieved. If not, suppose that

$$e^b - cbe^{cb} - e^{cb} = 0.$$
 (2)

Therefore,

$$0 = \mathfrak{L}(e^b - cbe^{cb} - e^{cb}) = e^b \mathfrak{L}(b) - c(b\mathfrak{L}(e^{cb}) + e^{cb}\mathfrak{L}(b)) - ce^{cb}\mathfrak{L}(b)$$
$$= (e^b - c^2be^{cb} - 2ce^{cb})\mathfrak{L}(b).$$

Reusing the above supposition, we obtain that $e^b - c^2 b e^{cb} - 2c e^{cb} = 0$ or $\mathfrak{L}(b) = 0$. If $\mathfrak{L}(b) = 0$, then we get the required result. If not, $e^b - c^2 b e^{cb} - 2c e^{cb} = 0$. So, we have

$$e^b = ce^{cb}(cb+2). \tag{3}$$

Comparing (2) and (3), we find that $ce^{cb}(cb + 2) = e^{cb}(cb + 1)$. From this and using the fact that e^{cb} is an invertible element of \mathcal{A} , we arrive at $b = \frac{1-2c}{c(c-1)}\mathbf{1}$. It implies that $\mathfrak{L}(b) = 0$ and our assertion is achieved. \Box

An immediate corollary of Theorem 2.2 reads as follows.

Corollary 2.3. Every continuous left derivation on a unital UMV-Banach algebra which is also a domain is identically zero.

Proof. Let \mathcal{A} be a unital UMV-Banach algebra which is also a domain and let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a continuous left derivation. Evidently, $\mathfrak{L}(e^a) = e^a \mathfrak{L}(a)$ holds for all $a \in \mathcal{A}$. Now, Theorem 2.2 is exactly what we need to complete the proof. \Box

By using an argument similar to the proof of Theorem 2.2, we show that every Jordan left derivation on a commutative or non-commutative prime Banach algebra, under certain conditions, is identically zero. Recall that an algebra \mathcal{A} is prime if $a\mathcal{A}b = \{0\}$ implies that a = 0 or b = 0

Theorem 2.4. Let \mathcal{A} be a (commutative or non-commutative) prime Banach algebra with the identity element 1, $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a Jordan left derivation, and let $b \in \mathcal{A}$ has the UMV-property. Suppose that $\mathfrak{L}(e^{c_{0,1}b}) = c_{0,1}e^{c_{0,1}b}\mathfrak{L}(b)$, where $c_{0,1} \in (0,1) \subseteq \mathbb{R}$ is obtained from the UMV-property of b and further $\mathfrak{L}(e^{b}) = e^{b}\mathfrak{L}(b)$. In this case $\mathfrak{L}(b) = 0$.

Proof. It follows from Theorem 2 of [23] that \mathfrak{L} is a derivation mapping \mathcal{A} into $Z(\mathcal{A})$. If b = 0, then there is nothing to be proved. Let b be a non-zero element of \mathcal{A} having the UMV-property. Hence, there exists an element $c_{0,1} = c$ of (0,1) such that $e^b - \mathbf{1} = be^{cb}$. Using the latest equality along with the aforementioned assumptions that $\mathfrak{L}(e^{cb}) = ce^{cb}\mathfrak{L}(b)$ and $\mathfrak{L}(e^b) = e^b\mathfrak{L}(b)$, we deduce that $0 = e^b\mathfrak{L}(b) - \mathfrak{L}(\mathbf{1}) - b\mathfrak{L}(e^{cb}) - e^{cb}\mathfrak{L}(b) = e^b\mathfrak{L}(b) - cbe^{cb}\mathfrak{L}(b) - e^{cb}\mathfrak{L}(b)$. Indeed, we have $(e^b - cbe^{cb} - e^{cb}\mathfrak{L}(b) = 0$. From this and using the fact that $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$, we obtain that $0 = (e^b - cbe^{cb} - e^{cb}\mathfrak{L}(b)a = (e^b - cbe^{cb} - e^{cb})\mathfrak{L}(b)$ for all $a \in \mathcal{A}$. The primeness of \mathcal{A} forces that $\mathfrak{L}(b) = 0$ or $e^b - cbe^{cb} - e^{cb} = 0$. If $\mathfrak{L}(b) = 0$, then our goal is achieved. If not, suppose that

$$e^b - cbe^{cb} - e^{cb} = 0. (4)$$

Therefore,

$$0 = \mathfrak{L}(e^b - cbe^{cb} - e^{cb}) = e^b \mathfrak{L}(b) - c(b\mathfrak{L}(e^{cb}) + e^{cb}\mathfrak{L}(b)) - ce^{cb}\mathfrak{L}(b)$$
$$= (e^b - c^2be^{cb} - 2ce^{cb})\mathfrak{L}(b).$$

Since $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$ and \mathcal{A} is prime, $e^b - c^2 b e^{cb} - 2c e^{cb} = 0$ or $\mathfrak{L}(b) = 0$. If $\mathfrak{L}(b) = 0$, then we get the required result. If not, $e^b - c^2 b e^{cb} - 2c e^{cb} = 0$. So, we have

$$e^b = ce^{cb}(cb+2). ag{5}$$

Comparing (4) and (5), we obtain that $ce^{cb}(cb + 2) = e^{cb}(cb + 1)$. From this and using the fact that e^{cb} is an invertible element of \mathcal{A} , we arrive at $b = \frac{1-2c}{c(c-1)}\mathbf{1}$. It implies that $\mathfrak{L}(b) = 0$. This completes the proof of our theorem. \Box

An immediate conclusion is:

Corollary 2.5. *Every continuous Jordan left derivation on a unital, prime UMV-Banach algebra is identically zero.*

Theorem 2.6. Let \mathcal{A} be a Banach algebra and let \mathcal{P} be a proper closed ideal of finite codimension in \mathcal{A} such that $a \in \mathcal{P}$ or $b \in \mathcal{P}$ whenever $ab \in \mathcal{P}$. If $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ is a continuous left derivation, then $\mathfrak{L}(\mathcal{A}) \subseteq \mathcal{P}$.

Proof. According to page 42 of [6], \mathcal{P} is a prime ideal in \mathcal{A} . It is clear that the quotient algebra $\frac{\mathcal{A}}{\mathcal{P}}$ is a domain. It follows from Corollary 1.4.38 of [6] that \mathcal{P} is a primitive ideal of \mathcal{A} and the proof of Theorem 2.1 of [5] implies that $\mathfrak{L}(\mathcal{P}) \subseteq \mathcal{P}$. Since $\mathfrak{L}(\mathcal{P}) \subseteq \mathcal{P}$, the linear mapping $\Lambda : \frac{\mathcal{A}}{\mathcal{P}} \to \frac{\mathcal{A}}{\mathcal{P}}$ defined by $\Lambda(a + \mathcal{P}) = \mathfrak{L}(a) + \mathcal{P}$ ($a \in \mathcal{A}$) is a well-defined left derivation. It follows from Proposition 1.3.56 of [6] that $\frac{\mathcal{A}}{\mathcal{P}} = \mathbb{C}\mathbf{1}$, and we deduce that Λ is identically zero. Consequently, $\mathfrak{L}(\mathcal{A}) \subseteq \mathcal{P}$. \Box

Here, we focus on the image of Jordan left derivatives to show that every Jordan left derivation, under certain circumstances, on a prime algebra is zero.

Theorem 2.7. Let \mathcal{A} be a unital, prime algebra, and let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a Jordan left derivation. If the rank of \mathfrak{L} is at most one, i.e. dim $(\mathfrak{L}(\mathcal{A})) \leq 1$, then \mathfrak{L} is identically zero.

Proof. It follows from Theorem 2 of [23] that \mathfrak{L} is a derivation mapping \mathcal{A} into $Z(\mathcal{A})$. If dim($\mathfrak{L}(\mathcal{A})$) = 0, then there is nothing to be proved. Suppose that dim($\mathfrak{L}(\mathcal{A})$) = 1. So, we can consider a non-zero element x of \mathcal{A} and a functional $\Omega : \mathcal{A} \to \mathbb{C}$ such that $\mathfrak{L}(a) = \Omega(a)x$ for all $a \in \mathcal{A}$. We are going to show that \mathfrak{L} is identically zero. To obtain a contradiction, assume that there exists an element $a_0 \in \mathcal{A}$ such that $\mathfrak{L}(a_0) \neq 0$. So, $\Omega(a_0) \neq 0$, too. Assume that $\mathfrak{L}(x) = 0$. So, $\Omega(x)x = 0$ and it implies that $\Omega(x) = 0$. We have $\Omega(a_0^2)x = \mathfrak{L}(a_0^2) = 2a_0\mathfrak{L}(a_0)a_0x$. Therefore,

$$0 = \Omega(a_0^2)\mathfrak{L}(x) = \mathfrak{L}(\Omega(a_0^2)x) = \mathfrak{L}(2\Omega(a_0)a_0x)$$

= $2\Omega(a_0)(x\mathfrak{L}(a_0) + a_0\mathfrak{L}(x))$
= $2\Omega(a_0)x\mathfrak{L}(a_0).$

It means that $2\Omega(a_0)x\mathfrak{Q}(a_0) = 0$ and so, $x\mathfrak{Q}(a_0) = 0$. From this and using the fact that $\mathfrak{Q}(\mathcal{A}) \subseteq Z(\mathcal{A})$, we obtain that $0 = x\mathfrak{Q}(a_0)a = xa\mathfrak{Q}(a_0)$ for all $a \in \mathcal{A}$. The primeness of \mathcal{A} forces x = 0 or $\mathfrak{Q}(a_0) = 0$, a contradiction. Now, suppose that $\mathfrak{Q}(x) \neq 0$. Clearly, $\Omega(x) \neq 0$, too. Note that

$$\Omega(x^2)x = \mathfrak{L}(x^2) = 2x\mathfrak{L}(x) = 2\Omega(x)x^2.$$

Hence, we have

$$0 = \mathfrak{L}(\Omega(x^2)x - 2\Omega(x)x^2) = \Omega(x^2)\mathfrak{L}(x) - 4\Omega(x)x\mathfrak{L}(x)$$
$$= (\Omega(x^2)\mathbf{1} - 4\Omega(x)x)\mathfrak{L}(x).$$

3968

From the former equation and using the fact $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$, we have $0 = (\Omega(x^2)\mathbf{1} - 4\Omega(x)x)\mathfrak{L}(x)a = (\Omega(x^2)\mathbf{1} - 4\Omega(x)x)a\mathfrak{L}(x)$ for all $a \in \mathcal{A}$. The primeness of \mathcal{A} implies that $\mathfrak{L}(x) = 0$, a contradiction, or $\Omega(x^2)\mathbf{1} - 4\Omega(x)x = 0$. Thus, $0 = \mathfrak{L}(\Omega(x^2)\mathbf{1} - 4\Omega(x)x) = 0 - 4\Omega(x)\mathfrak{L}(x)$ and since $\Omega(x) \neq 0$, it is concluded that $\mathfrak{L}(x) = 0$. But this is a contradiction of the supposition that $\mathfrak{L}(x) \neq 0$. We see that both cases $\mathfrak{L}(x) = 0$ and $\mathfrak{L}(x) \neq 0$ lead to a contradiction. This contradiction shows that there is no element a_0 of \mathcal{A} such that $\mathfrak{L}(a_0) \neq 0$. Thereby, \mathfrak{L} is identically zero. \Box

Corollary 2.8. Let \mathcal{A} be a unital, prime algebra, and let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a non-zero Jordan left derivation. Then, $\dim(\mathfrak{L}(\mathcal{A})) \ge 2$.

Applying Theorem 2.7, we show that continuous left derivations on unital finite-dimensional Banach algebras, under certain conditions, are zero. Let *n* be a positive integer, and let \mathcal{A} be an *n*-dimensional unital Banach algebra with the basis $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$. We prove the following theorem.

Theorem 2.9. Suppose that for every integer $k, 1 \le k \le n$, an ideal I_k generated by $\mathcal{B} - \{b_k\}$ is a proper subset of \mathcal{A} . Then every continuous left derivation on \mathcal{A} is identically zero.

Proof. It is easy to see that every I_k , $1 \le k \le n$, is a maximal ideal of \mathcal{A} . Suppose that I_k is not a maximal ideal of \mathcal{A} for some k, $1 \le k \le n$. Then there exists a maximal ideal \mathcal{M}_k of \mathcal{A} such that $I_k \subset \mathcal{M}_k \subset \mathcal{A}$. But then $n-1 = \dim(I_k) < \dim(\mathcal{M}_k) < n$, a contradiction. Hence, every I_k , $1 \le k \le n$, must be a maximal ideal of \mathcal{A} . It follows from Proposition 1.4.34 and Theorem 2.2.28 in [6] that I_k , $1 \le k \le n$, are closed primitive ideals of \mathcal{A} . Moreover, according to Proposition 1.4.34 of [6], I_k , $1 \le k \le n$, are also prime ideals of \mathcal{A} . Thus, the quotient algebra $\frac{\mathcal{A}}{I_k}$ is a prime algebra. Let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a continuous left derivation. In view of Theorem 2.1 of [5], we obtain $\mathfrak{L}(I_k) \subseteq I_k$, $1 \le k \le n$. Thus, the mapping $\Lambda : \frac{\mathcal{A}}{I_k} \to \frac{\mathcal{A}}{I_k}$ defined by $\Lambda(a + I_k) = \mathfrak{L}(a) + I_k$ is a left derivation. Since $\dim(\frac{\mathcal{A}}{I_k}) = 1$ for every $1 \le k \le n$, it follows from Theorem 2.7 that the left derivation $\Lambda : \frac{\mathcal{A}}{I_k} \to \frac{\mathcal{A}}{I_k}$ is identically zero. It means that $\mathfrak{L}(\mathcal{A}) \subseteq I_k$, for every $k \in \{1, 2, ..., n\}$. Hence, $\mathfrak{L}(\mathcal{A}) \subseteq \bigcap_{k=1}^n I_k$. Assume towards a contradiction that there exists an element a_0 of \mathcal{A} such that $\mathfrak{L}(a_0) \neq 0$. Since $\mathcal{B} = \{b_1, b_2, ..., b_n\}$ is a basis for \mathcal{A} , there exist the complex numbers α_{i_j} , and the elements b_{i_j} of \mathcal{B} such that

$$\mathfrak{L}(a_0) = \sum_{j=1}^m \alpha_{i_j} b_{i_j} = \alpha_{i_1} b_{i_1} + \alpha_{i_2} b_{i_2} + \dots + \alpha_{i_m} b_{i_m}, \quad (m \le n).$$

Since $\mathfrak{L}(\mathcal{A}) \subseteq I_k$ for every $k \in \{1, 2, ..., n\}$, we may assume that $\mathfrak{L}(\mathcal{A}) \subseteq I_{i_1}$. Therefore, we have

$$\mathfrak{L}(a_0) = \alpha_{i_1} b_{i_1} + \alpha_{i_2} b_{i_2} + \dots + \alpha_{i_m} b_{i_m} \in \mathcal{I}_{i_1}.$$

The previous equation shows that $b_{i_1} \in I_{i_1}$, which it is a contradiction. This contradiction proves the claim that \mathfrak{L} is identically zero on \mathcal{A} . \Box

Remark 2.10. Let \mathcal{A} be a semisimple Banach algebra with the identity element $\mathbf{1}$, and let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a linear map satisfying $\mathfrak{L}(ab) = a\mathfrak{L}(b) - b\mathfrak{L}(a)$ for all $a, b \in \mathcal{A}$. We claim that \mathfrak{L} is identically zero. Clearly, $\mathfrak{L}(\mathbf{1}) = 0$. For every invertible element $x \in \mathcal{A}$, we have $\mathfrak{L}(x) = x^2 \mathfrak{L}(x^{-1})$. It follows from Theorem 5 of [23] that $\mathfrak{L}(a) = a\mathfrak{L}(\mathbf{1}) = 0$ for all $a \in \mathcal{A}$. It means that \mathfrak{L} is zero.

In the following theorem we show that there are no nonzero continuous Jordan left derivations on normed *-algebras with $\overline{O(\mathcal{A})} = S(\mathcal{A})$.

Theorem 2.11. Every continuous Jordan left derivation on a normed *-algebra \mathcal{A} satisfying $O(\mathcal{A}) = S(\mathcal{A})$ is identically zero.

Proof. Let $\mathfrak{L} : \mathfrak{A} \to \mathfrak{A}$ be a continuous Jordan left derivation. We have to prove that $\mathfrak{L}(s) = 0$ for all $s \in S(\mathfrak{A})$. Namely, for every $a \in \mathfrak{A}$, there exist $s_1, s_2 \in S(\mathfrak{A})$ such that $a = s_1 + is_2$, where *i* denotes the imaginary unit. Thus, $\mathfrak{L}(a) = \mathfrak{L}(s_1 + is_2) = \mathfrak{L}(s_1) + i\mathfrak{L}(s_2) = 0$. So, let $p \in \mathfrak{A}$ be an arbitrary projection. We have $\mathfrak{L}(p) = \mathfrak{L}(p^2) = 2p\mathfrak{L}(p)$. This yields that $p\mathfrak{L}(p) = 2p\mathfrak{L}(p)$ and, thus, $p\mathfrak{L}(p) = 0$. Therefore, we conclude that $\mathfrak{L}(p) = 0$ for all projection $p \in P(\mathfrak{A})$. Let *x* be an arbitrary element of $O(\mathfrak{A})$. Hence, $x = \sum_{j=1}^m r_j p_j$, where p_1, p_2, \ldots, p_m are mutually orthogonal projections in \mathfrak{A} and r_1, r_2, \ldots, r_m are real numbers. We have $\mathfrak{L}(x) = \mathfrak{L}(\sum_{i=1}^m r_i \mathfrak{L}(p_i)) = 0$. Since $\overline{O(\mathfrak{A})} = \mathfrak{L}(\mathfrak{A})$, $\mathfrak{L}(s) = 0$ for every $s \in S(\mathfrak{A})$, as desired. \Box

It is evident that if \mathcal{A} is a unital Banach algebra and $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ is a continuous left derivation, then $\mathfrak{L}(e^a) = e^a \mathfrak{L}(a)$ holds for all $a \in \mathcal{A}$. We may think that this equation is valid only if \mathfrak{L} is continuous. In this work, we establish an example to show that the equation $\mathfrak{L}(e^a) = e^a \mathfrak{L}(a)$ can be fulfilled for some discontinuous (equivalently, unbounded) left derivations. The following problem has been raised in [9]. Here, we answer it.

Problem 2.12. Let $d : \mathcal{A} \to \mathcal{A}$ be a derivation satisfying $d(e^a) = e^a d(a)$ for all $a \in \mathcal{A}$. Is d a continuous operator?

We give a negative answer to the above question. Indeed, we define a discontinuous derivation (left derivation) D on a given Banach algebra \mathfrak{B} satisfying $D(e^b) = e^b D(b)$ for all $b \in \mathfrak{B}$. Let \mathcal{A} be a Banach algebra. Consider $\mathfrak{B} = \mathbb{C} \bigoplus \mathcal{A}$ as an algebra with pointwise addition, scalar multiplication and the product $(\alpha, a).(\beta, b) = (\alpha\beta, \alpha b + \beta a)$ for all $a, b \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$. The algebra \mathfrak{B} with the norm $||(\alpha, a)|| = |\alpha| + ||a||$ is a Banach algebra. Clearly, \mathfrak{B} is a unital commutative Banach algebra (see [12]). Suppose that $T : \mathcal{A} \to \mathcal{A}$ is an unbounded linear map. Define $D : \mathfrak{B} \to \mathfrak{B}$ by $D(\alpha, a) = (0, T(a))$. It is evident that D is an unbounded linear map.

$$D((\alpha, a)(\beta, b)) = D(\alpha\beta, \alpha b + \beta a)$$

= (0, \alpha T(b) + \beta T(a))
= (\alpha, a)(0, T(b)) + (\beta, b)(0, T(a))
= (\alpha, a)D(\beta, b) + D(\alpha, a)(\beta, b)
= (\alpha, a)D(\beta, b) + (\beta, b)D(\alpha, a)

Since \mathfrak{B} is a commutative algebra, D is both a left derivation and a derivation on \mathfrak{B} . Note that $e^{(\alpha,a)} = \sum_{n=0}^{\infty} \frac{(\alpha^n, n\alpha^{n-1}a)}{n!} = (e^{\alpha}, e^{\alpha}a)$. Thus, $D(e^{(\alpha,a)}) = D(e^{\alpha}, e^{\alpha}a) = (0, T(e^{\alpha}a)) = (0, e^{\alpha}T(a))$ for all $a \in \mathcal{A}$, $\alpha \in \mathbb{C}$. On the other hand, $e^{(\alpha,a)}D(\alpha, a) = (e^{\alpha}, e^{\alpha}a)(0, T(a)) = (0, e^{\alpha}T(a))$. Therefore, $D(e^{(\alpha,a)}) = e^{(\alpha,a)}D(\alpha, a)$ while D is an unbounded derivation (left derivation) on \mathfrak{B} .

The following theorem has been proved by Vukman [23]. Below, we prove it using a simpler proof.

Theorem 2.13. Let \mathcal{A} be a semisimple Banach algebra and let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a Jordan left derivation. Then \mathfrak{L} is identically zero.

Proof. We know that every semisimple algebra is also semiprime. It follows from Theorem 2 of [23] that \mathfrak{L} is a derivation mapping \mathcal{A} into $Z(\mathcal{A})$. We therefore have $\mathfrak{L}(ab) = \mathfrak{L}(a)b + a\mathfrak{L}(b) = a\mathfrak{L}(b) + b\mathfrak{L}(a)$ and it means that \mathfrak{L} is a left derivation, as well. Since \mathfrak{L} is a derivation, Remark 4.3 of [14] implies that \mathfrak{L} is continuous. Therefore, \mathfrak{L} is a continuous left derivation. At this moment, Theorem 2.1 of [5] implies that $\mathfrak{L}(\mathcal{A}) \subseteq rad(\mathcal{A}) = \{0\}$. Thereby, our goal is achieved. \Box

Applying the above-mentioned argument, we can achieve the following theorem.

Theorem 2.14. Let \mathcal{A} be a Banach algebra, $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a Jordan left derivation, and let \mathcal{P} be a primitive ideal of \mathcal{A} . If $\mathfrak{L}(\mathcal{P}) \subseteq \mathcal{P}$, then $\mathfrak{L}(\mathcal{A}) \subseteq \mathcal{P}$.

Proof. Straightforward.

By getting idea from [1], we define an *l*-two variable left derivation (resp. Jordan *l*-two variable left derivation) as follows.

Definition 2.15. A biadditive mapping $\Lambda : \Re \times \Re \to \Re$ is called an *l*-two variable left derivation (resp. Jordan *l*-two variable left derivation) if $\Lambda(xy, z) = x\Lambda(y, z) + y\Lambda(x, z)$ (resp. $\Lambda(x^2, y) = 2x\Lambda(x, y)$) holds for all $x, y, z \in \Re$.

For example, if $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ is a left derivation, then $\Lambda : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ defined by $\Lambda(x, y) = \mathfrak{L}(x)y$ is an *l*-two variable left derivation. Because $\Lambda(xy, z) = \mathfrak{L}(xy)z = x\mathfrak{L}(y)z + y\mathfrak{L}(x)z = x\Lambda(y, z) + y\Lambda(x, z)$ holds for all $x, y, z \in \mathfrak{R}$.

Lemma 2.16. Let \mathfrak{R} be a 2-torsion free semiprime ring, and let $\Lambda : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ be a Jordan l-two variable left derivation. In this case $\Lambda(\mathfrak{R} \times \mathfrak{R}) \subseteq Z(\mathfrak{R})$.

Proof. For an arbitrary fixed element $y \in \Re$, we define $\mathfrak{L}_y : \Re \to \Re$ by $\mathfrak{L}_y(x) = \Lambda(x, y)$. Clearly, $\mathfrak{L}_y(x^2) = \Lambda(x^2, y) = 2x \mathfrak{L}_y(x)$ for all $x \in \Re$. It means that \mathfrak{L}_y is a Jordan left derivation on \Re . By Theorem 2 of [23], \mathfrak{L}_y is a derivation mapping \Re into $Z(\Re)$. Hence, $\Lambda(x, y) = \mathfrak{L}_y(x) \in Z(\Re)$ for all $x \in \Re$. Since we are assuming that y is an arbitrary element of \Re , $\Lambda(x, y) \in Z(\Re)$ for all $x, y \in \Re$. This proves the lemma completely. \Box

Theorem 2.17. Let \Re be a 2-torsion free semiprime ring, and let $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ be a Jordan left derivation. Then, $\mathfrak{L}(x)[y,z] = 0$ for all $x, y, z \in \mathfrak{R}$.

Proof. If \Re is commutative, then there is nothing to be proved. Now, suppose that \Re is a non-commutative ring. We know that the biadditive map $\Lambda : \Re \times \Re \to \Re$ defined by $\Lambda(x, y) = \mathfrak{L}(x)y$ is a Jordan *l*-two variable left derivation. Note that $\mathfrak{L}(\Re) \subseteq Z(\Re)$ (see Theorem 2 of [23]). Application of Lemma 2.16 yields that $\mathfrak{L}(x)y = \Lambda(x, y) \in Z(\Re)$ for all $x, y \in \Re$. Therefore, we have $0 = [\mathfrak{L}(x)y, z] = \mathfrak{L}(x)[y, z] + [\mathfrak{L}(x), z]y = \mathfrak{L}(x)[y, z]$ for all $x, y, z \in \Re$. It means that $\mathfrak{L}(x)[y, z] = 0$ for all $x, y, z \in \Re$. Since $\mathfrak{L}(\Re) \subseteq Z(\Re)$, it is observed that $\mathfrak{L}(\Re) \subseteq ann\{[y, z] \mid y, z \in \Re\}$. \Box

In the next corollary, we show that every Jordan left derivation on a non-commutative semiprime ring, under certain conditions, is identically zero.

Corollary 2.18. Let \Re be a 2-torsion free semiprime ring such that $ann\{[y,z] \mid y,z \in \Re\} = \{0\}$. Then every Jordan left derivation $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ is identically zero.

Proof. This is an immediate consequence of Theorem 2.17. \Box

It is clear that if $ann\{[y,z] \mid y,z \in \Re\} = \{0\}$, then \Re is a non-commutative ring. Let \Re be a semiprime ring and $a \in lann\{[y,z] \mid y,z \in \Re\}$. It follows from Lemma 1.3 of [24] that $a \in Z(\Re)$. It means that $lann\{[y,z] \mid y,z \in \Re\} \subseteq Z(\Re)$. Similarly, we can see that $rann\{[y,z] \mid y,z \in \Re\} \subseteq Z(\Re)$, too. Therefore, $lann\{[y,z] \mid y,z \in \Re\} \cup rann\{[y,z] \mid y,z \in \Re\} \subseteq Z(\Re)$.

Theorem 2.19. Let \mathcal{A} be a unital, prime algebra, and let $\mathfrak{L} : \mathcal{A} \to \mathcal{A}$ be a Jordan left derivation. If dim $(ann\{[a, b] | a, b \in \mathcal{A}\}) \leq 1$, then \mathfrak{L} is identically zero.

Proof. Applying Theorems 2.7 and 2.17, we achieve our goal. \Box

In the following theorem, we investigate Jordan left derivations on simple rings.

Theorem 2.20. Let \mathfrak{R} be a non-commutative 2-torsion free simple ring, and let $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ be a Jordan left derivation. In this case $\mathfrak{L} = 0$.

Proof. It is obvious that \Re is semiprime. According to Theorem 2.17, $\Re(x)[y,z] = 0$ for all $x, y, z \in \Re$. It follows from Lemma 1.3 of [24] that for every $x \in \Re$ there exists an ideal I_x of \Re such that $\Re(x) \in I_x \subseteq Z(\Re)$. Since \Re is a simple ring, either $I_x = \{0\}$ or $I_x = \Re$. If $I_x = \Re$, then we have $\Re = I_x \subseteq Z(\Re)$ and so \Re is commutative, a contradiction. Hence $I_x = \{0\}$, and since $\Re(x) \in I_x$, $\Re(x) = 0$. Since x is an arbitrary element of \Re , our assertion is proved. \Box

M. Brešar and J. Vukman [[5], Corollary 1.3] proved that every Jordan left derivation on a noncommutative 2-torsion free and 3-torsion free prime ring is identically zero. Here, we prove the same result without using the assumption that the ring is 3-torsion free.

Theorem 2.21. Let \mathfrak{R} be a non-commutative 2-torsion free prime ring, and let $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ be a Jordan left derivation. In this case, \mathfrak{L} is zero.

Proof. According to Theorem 2.17, $\mathfrak{L}(x)[y,z] = 0$ for all $x, y, z \in \mathfrak{R}$. It follows from Theorem 2 of [23] that $\mathfrak{L}(\mathfrak{R}) \subseteq Z(\mathfrak{R})$. Therefore, we have $0 = r\mathfrak{L}(x)[y,z] = \mathfrak{L}(x)r[y,z]$ for all $x, y, z, r \in \mathfrak{R}$. The primeness of \mathfrak{R} forces that $\mathfrak{L}(x) = 0$ or [y,z] = 0. Since \mathfrak{R} is non-commutative and also x is an arbitrary element of \mathfrak{R} , $\mathfrak{L} = 0$ is achieved. \Box

Theorem 2.22. Let \Re be a 2-torsion free, unital, simprime ring and let $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ be a Jordan left derivation. If there exists an element x_0 of \mathfrak{R} such that $\mathfrak{L}(x_0)$ is invertible, then \mathfrak{R} is commutative.

Proof. It follows from Theorem 2.17 that $\mathfrak{L}(x)[y,z] = 0$ for all $x, y, z \in \mathfrak{R}$. Thus, $\mathfrak{L}(x_0)[y,z] = 0$ for all $y, z \in \mathfrak{R}$. This equation along with the assumption that $\mathfrak{L}(x_0)$ is invertible imply that [y,z] = 0 for all $y, z \in \mathfrak{R}$, and consequently, \mathfrak{R} is commutative. \Box

In Proposition 2.24, we show that every Jordan derivation on a (**commutative or non-commutative**) 2-torsion free prime ring is identically zero. To get such results, most authors assume that a ring or an algebra to be non-commutative. But in the following proposition, we do not use this assumption. We need the following lemma to establish Proposition 2.24.

Lemma 2.23. [[17], Lemma 2.2] Let \Re be a 2-torsion free prime ring and I be a non-zero Jordan ideal of \Re . If d is a derivation of \Re such that $d(x^2) = 0$ for all $x \in I$, then d = 0.

Proposition 2.24. Let \Re be a 2-torsion free prime ring, I be a non-zero Jordan ideal of \Re , and let $d : \Re \to \Re$ be a Jordan derivation such that $d(a^2) \in Z(\Re)$ for all $a \in I$. If ad(a)a = 0 for all $a \in I$, then d is identically zero.

Proof. It follows from Theorem 1 of [4] that *d* is a derivation. In this proof, [a, b] and < a, b > denote ab - ba and ab + ba, respectively. First, note that

i) $[a, b] + \langle a, b \rangle = 2ab$,

. .

ii) < ab, c >= a < b, c > -[a, c]b,

iii) < a, bc > = < a, b > c - b[a, c]

iv) < a + b, c > = < a, c > + < b, c > and < a, b + c > = < a, b > + < a, c >.

By using the above symbols, we see that $d(a^2) = d(a)a + ad(a) = \langle a, d(a) \rangle$. Let *I* be the above-mentioned Jordan ideal. Since $[d(a^2), a] = 0$ for all $a \in I$, we have $[d(a), a^2] = 0$, i.e. $d(a)a^2 = a^2d(a)$ for all $a \in I$. In the next step, we show that $(d(a^2))^2a = 0$ for all $a \in I$. By using the equality (ii) and the assumptions that ad(a)a = 0 and $d(a^2) \in Z(\Re)$ for all $a \in I$, we have

$$\begin{aligned} (d(a^{2}))^{2} &= \langle a, d(a) \rangle^{2} = \langle \langle a, d(a) \rangle a, d(a) \rangle + [\langle a, d(a) \rangle, d(a)]a \\ &= \langle \langle a, d(a) \rangle a, d(a) \rangle = \langle ad(a)a + d(a)a^{2}, d(a) \rangle \\ &= \langle d(a)a^{2}, d(a) \rangle = d(a)a^{2}d(a) + d(a)d(a)a^{2} \\ &= d(a)a^{2}d(a) + d(a)a^{2}d(a) \\ &= 2d(a)a^{2}d(a). \end{aligned}$$

Therefore, we have

$$< a, d(a) >^{2} a = (d(a^{2}))^{2}a = 2d(a)a^{2}d(a)a = 2d(a)aad(a)a = 0, \text{ for all } a \in I.$$

Evidently, $d(a^2) \in Z(\Re)$ causes that $(d(a^2))^2 \in Z(\Re)$ as well. Thus $(d(a^2))^3 = \langle a, d(a) \rangle^3 = \langle a, d(a) \rangle^2$ $a, d(a) \rangle + [\langle a, d(a) \rangle^2, d(a)]a = 0$ for all $a \in I$. Hence, $(d(a^2))^4 = \langle a, d(a) \rangle^4 = 0$ for all $a \in I$ and so $\langle a, d(a) \rangle^2 x \langle a, d(a) \rangle^2 = \langle a, d(a) \rangle^4 x = 0$ for all $x \in \Re$. The primeness of \Re forces $\langle a, d(a) \rangle^2 = 0$ for all $a \in I$. Similarly, since $\langle a, d(a) \rangle \in Z(\Re)$, we have $\langle a, d(a) \rangle x \langle a, d(a) \rangle = \langle a, d(a) \rangle^2 x = 0$ for all $x \in \Re$. Reusing the primeness of \Re implies that $\langle a, d(a) \rangle = 0$, i.e. $d(a^2) = 0$ for all $a \in I$. Here, Lemma 2.23 completes the proof. \Box

Corollary 2.25. Let \Re be a (commutative or non-commutative) 2-torsion free prime ring, I be a non-zero Jordan ideal of \Re , and let $\mathfrak{L} : \mathfrak{R} \to \mathfrak{R}$ be a Jordan left derivation such that $a\mathfrak{L}(a)a = 0$ for all $a \in I$. Then, \mathfrak{L} is identically zero.

Proof. It follows from Theorem 2 of [23] that \mathfrak{L} is a derivation which maps \mathfrak{R} into $Z(\mathfrak{R})$. Therefore, all the assumptions of Proposition 2.24 are fulfilled and consequently, our objective is achieved. \Box

We feel that in Corollary 2.25, the assumption $a\mathfrak{L}(a)a = 0$ for all $a \in I$ can be removed. But we are unable to prove the result without this requirement.

A discussion on the presented conjecture in [9]:

After reviewing examples concerning UMV-property, it was seen that the spectrum of such elements is contained in the real numbers set (see Conjecture 2.12 in [9]). For example, let \mathcal{A} be a unital Banach algebra and $a \in \mathcal{A}$ be an idempotent element. We know that a has the UMV-property and clearly, $\mathfrak{S}(a) = \{0, 1\}$. Let \mathcal{A} be a commutative unital Banach algebra. It follows from Theorem 1.3.4 of [16] that $\mathfrak{S}(a) = \{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\}$. Moreover, we know that every character is continuous (see Theorem 3.1.3 of [7]). Suppose that $a \in \mathcal{A}$ has the UMV-property. It means that for every closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ there exists an element $c_{\alpha,\beta} \in (\alpha, \beta)$ such that $e^{\beta a} - e^{\alpha a} = (\beta - \alpha)ae^{ac_{\alpha,\beta}}$. If φ is an arbitrary character on \mathcal{A} , then we have

$$\varphi(e^{\beta a} - e^{\alpha a}) = \varphi((\beta - \alpha)ae^{ac_{\alpha,\beta}}) = (\beta - \alpha)\varphi(a)\varphi(e^{ac_{\alpha,\beta}}).$$

Since φ is a continuous linear mapping, we obtain that

$$e^{\beta\varphi(a)} - e^{\alpha\varphi(a)} = (\beta - \alpha)\varphi(a)e^{c_{\alpha,\beta}\varphi(a)}$$

Having considered $z = \varphi(a) \in \mathbb{C}$, the above-mentioned equality turns into

$$e^{\beta z} - e^{\alpha z} = (\beta - \alpha) z e^{c_{\alpha,\beta} z}.$$
(6)

It is clear that z = 0 is a result of equation (6). We know that function $f(x) = e^x$ is continuous on the closed interval $[\alpha, \beta]$ and also is differentiable on the open interval (α, β) . So, by the classical mean value theorem, we obtain that $f(\beta) - f(\alpha) = (\beta - \alpha)f'(c_{\alpha,\beta})$ for come $c_{\alpha,\beta} \in (\alpha, \beta)$. It means that

$$e^{\beta}-e^{\alpha}=(\beta-\alpha)e^{c_{\alpha,\beta}}.$$

Therefore, z = 1 is another result of equation (6). Using MATLAB software to solve equation (6), we see that this software acquires z = 0, 1 as the results of this equation.

Based on the above discussion, we see that if \mathcal{A} is a unital, commutative Banach algebra and $a \in \mathcal{A}$ has the UMV-property, then $\mathfrak{S}(a) \subseteq \mathbb{R}$.

Acknowledgements The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper. Moreover, we would like to thank Dr. Fatemeh Ghomanjani for her help to solve equation (6) by using MATLAB software.

References

- [1] S. Ali, On Generalized Left Derivations in Rings and Banach Algebras, Aequat. Math. 81 (2011), 209–226.
- [2] M. Ashraf and N. Rehman, On Lie ideals and Jordan left derivatins of prime rings, Arch. Math. (Brno). 36 (2000), 201-206.

- [3] M. Ashraf, S. Ali, N. Rehman and M. R. Mozumder, On generalized left (α, β)-derivations in rings, Bull. Iranian. Math. Soc. 38 (2012), 893–905.
- [4] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 140 4 (1988), 1003–1006.
- [5] M. Brešar and J. Vukman, On Left Derivations and Related Mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.
- [6] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, 2000.
- [7] H. G. Dales, Pietro Aiena, Jorg Eschmeier, Kjeld Laursen and George A. Willis, Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge University Press, 2003.
- [8] A. Hosseini, A characterization of weak n_m-Jordan (α, β)-derivations by generalized centralizers, Rend. Circ. Math. Palermo. 64 (2015), 221–227.
- [9] A. Hosseini, A characterization of derivations on uniformly mean value Banach algebras, Turkish J. Math. 40 (2016), 1058–1070.
- [10] A. Hosseini, Some conditions under which derivations are zero on Banach *-algebras, Acta Univ. Sapientiae, Mathematica, 9 (2017), 176–184.
- [11] A. Hosseini, Commutativity of Banach Algebras Characterized by Primitive Ideals and Spectra, Filomat, 31 (2017), 2053-2060.
- [12] A. Hosseini, M. Hassani, A. Niknam and S. Hejazian, Some results on σ-Derivations, Ann. Funct. Anal. 2 (2011), 75-84.
- [13] Y. S. Jung, On left derivations and derivations of Banach algebras, Bull. Korean Math. Soc. 35 (1998), 659–667.
- [14] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 10681073.
- [15] I. Kaplansky, Projections in Banach Algebras, Ann. of Math. 53 (2) (1951), 235-249.
- [16] G. J. Murphy, C*-Algebras and Operator Theory. Boston Academic Press, (1990).
- [17] L. Oukhtite, A. Mamounib, C, Beddani, Derivations and Jordan ideals in prime rings, J. Taibah Univ. Sci. 8 (2014), 364369.
- [18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [19] S. Pedersen, Anticommuting derivations, Proc. Amer. Math. Soc. 127 (1999), 1103–1108.
- [20] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge University Press, Cambridge, 1991.
- [21] N. Shahzad, Jordan and Left Derivations on Locally C*-algebras, Southeast Asian Bull. Math. 31 (2007), 1183–1190.
- [22] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag Berlin Heidelberg New York, 2001.
- [23] J. Vukman, On Left Jordan Derivations of Rings and Banach Algebras, Aequat. Math. 75 (2008), 260-266.
- [24] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin, 32 (4) (1991), 609-614.