Some Conditions under which Left Derivations are Zero

Amin Hosseini ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran

Abstract

In this study, we show that every continuous Jordan left derivation on a (commutative or noncommutative) prime UMV-Banach algebra with the identity element $\mathbf{1}$ is identically zero. Moreover, we prove that every continuous left derivation on a unital finite dimensional Banach algebra, under certain conditions, is identically zero. As another result in this regard, it is proved that if \mathfrak{R} is a 2 -torsion free semiprime ring such that $\operatorname{ann}\{[y, z] \mid y, z \in \mathfrak{R}\}=\{0\}$, then every Jordan left derivation $\mathcal{P}: \mathfrak{R} \rightarrow \mathfrak{R}$ is identically zero. In addition, we provide several other results in this regard.

1. Introduction and Preliminaries

Throughout the paper, \mathfrak{R} denotes an associative ring. Before everything else, let us recall some basic definitions and set the notations which we use in the sequel. A ring \Re is called unital if there exists an element $\mathbf{1} \in \mathfrak{R}$ such that $x \mathbf{1}=\mathbf{1} x=x$ holds for all $x \in \mathfrak{R}$. A ring \mathfrak{R} is said to be a domain if $\mathfrak{R} \neq\{0\}$ and $x=0$ or $y=0$, whenever $x y=0$ in \mathfrak{R}. A ring \mathfrak{R} is called prime if for $x, y \in \mathfrak{R}, x \Re y=\{0\}$ implies $x=0$ or $y=0$, and is semiprime in case $x \Re x=\{0\}$ implies $x=0$. Let \mathcal{S} be a subset of a ring \mathfrak{R}. The left annihilator of \mathcal{S} is $\operatorname{lann}(\mathcal{S}):=\{x \in \mathfrak{R} \mid x \mathcal{S}=\{0\}\}$. Similarly, the right annihilator of \mathcal{S} is $\operatorname{rann}(\mathcal{S}):=\{x \in \mathfrak{R} \mid \mathcal{S} x=\{0\}\}$. The annihilator of \mathcal{S} is defined as $\operatorname{ann}(\mathcal{S}):=\operatorname{lann}(\mathcal{S}) \cap \operatorname{rann}(\mathcal{S})$. A ring \mathfrak{R} is called simple if $\mathfrak{R}^{2} \neq\{0\}$ and $\{0\}$ and \mathfrak{R} are the only ideals in \mathfrak{R}. Recall that the center of a ring \mathfrak{R} is $Z(\Re):=\{x \in \Re \mid x y=y x$ for all $y \in \mathfrak{R}\}$. The above-mentioned definitions and notations are also considered for algebras.

Let \mathcal{A} be an associative algebra. A non-zero linear functional φ on an algebra \mathcal{A} is called a character if $\varphi(a b)=\varphi(a) \varphi(b)$ for every $a, b \in \mathcal{A}$. Throughout this article, $\Phi_{\mathcal{A}}$ denotes the set of all characters on \mathcal{A}. As usual, the set of all primitive ideals is denoted by $\Pi(\mathcal{A})$. The Jacobson radical of an algebra \mathcal{A} is defined to be the intersection of the primitive ideals of \mathcal{A}; it is denoted by $\operatorname{rad}(\mathcal{A})$. In deed, $\operatorname{rad}(\mathcal{A})=\bigcap_{\mathcal{P} \in \Pi(\mathcal{A})} \mathcal{P}$. An algebra \mathcal{A} is semisimple if $\operatorname{rad}(\mathcal{A})=\{0\}$. If \mathcal{A} is a $*$-algebra, then $S(\mathcal{A})$ denotes the set of all self-adjoint elements of \mathcal{A} (i.e., $S(\mathcal{A}):=\left\{s \in \mathcal{A} \mid s^{*}=s\right\}$) and $P(\mathcal{A})$ denotes the set of all projections in \mathcal{A} (i.e., $P(\mathcal{A}):=\left\{p \in \mathcal{A} \mid p^{2}=p, p^{*}=\right.$ $p\}$). The set of those elements in \mathcal{A} which can be represented as finite real-linear combinations of mutually orthogonal projections is denoted by $O_{\mathcal{A}}$. Of course, $P(\mathcal{A}) \subseteq O(\mathcal{A}) \subseteq S(\mathcal{A})$. In the case of a von Neumann algebra \mathcal{A}, the set $O(\mathcal{A})$ is norm dense in $S(\mathcal{A})$. More generally, this is true for $A W^{*}$-algebras. Recall that the spectrum of an arbitrary element a of an algebra \mathcal{A} is $\subseteq(a):=\{\lambda \in \mathbb{C} \mid \lambda 1-a$ is not invertible in $\mathcal{A}\}$, where 1 stands for the identity element of \mathcal{A}. The above-mentioned definitions and concepts can all be found in [6, 15, 16, 20, 22].

[^0]A linear mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation if $d(a b)=d(a) b+a d(b)$ holds for all pairs $a, b \in \mathcal{A}$ and is called a Jordan derivation in case $d\left(a^{2}\right)=d(a) a+a d(a)$ is fulfilled for all $a \in \mathcal{A}$. A left derivation on \mathcal{A} is a linear mapping $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ if $\mathfrak{L}(a b)=a \mathfrak{L}(b)+b \mathfrak{R}(a)$ holds for all pairs $a, b \in \mathcal{A}$ and is called a Jordan left derivation if $\mathcal{L}\left(a^{2}\right)=2 a \mathscr{L}(a)$ is fulfilled for all $a \in \mathcal{A}$. Recently, a number of authors ($[1,8,13,21,23]$) have studied left derivations and various generalized notions of them in the context of pure algebra, extensively. As a pioneering work, Brešar and Vukman [5] proved that every left derivation on a semiprime ring \Re is a derivation which maps \mathfrak{R} into its center. Furthermore, they also showed that if \mathcal{A} is a Banach algebra, then every continuous left derivation $\mathfrak{R}: \mathcal{A} \rightarrow \mathcal{A}$ maps \mathcal{A} into its radical. The question under which conditions left derivations and derivations are zero on a given Banach algebra have attracted much attention of authors (for instance, see $[1,5,8-11,13,18,21,23])$. In this paper, we also concentrate on this topic. This research has been motivated by the works [5, 9, 19, 23]. First, we present a definition as follows. An element a of a unital Banach algebra \mathcal{A} has the uniformly mean value property (UMV-property, briefly) if for every closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ there exists a real number $c_{\alpha, \beta} \in(\alpha, \beta)$ such that $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{\alpha, \beta} a}$. A unital Banach algebra \mathcal{A} is called UMV-Banach algebra if every element of \mathcal{A} has the UMV-property. As a result in the current paper, we prove that every continuous left derivation on a unital, prime UMV-Banach algebra is identically zero. Clearly, the same result is true for continuous left derivations on a unital UMV-Banach algebra which also is a domain. In this work, we try to make clear the status of continuous left derivations on unital finite dimensional Banach algebras as follows. Let n be a positive integer and let \mathcal{A} be an n dimensional unital Banach algebra with the basis $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. Suppose that for every integer k, $1 \leq k \leq n$, an ideal I_{k} generated by $\mathcal{B}-\left\{b_{k}\right\}$ is a proper subset of \mathcal{A}. Then every continuous left derivation on \mathcal{A} is identically zero. Furthermore, it is proved that if \mathfrak{R} is a 2 -torsion free semiprime ring such that ann $\{[y, z] \mid y, z \in \mathfrak{R}\}=\{0\}$, then every Jordan left derivation $\mathfrak{R}: \mathfrak{R} \rightarrow \mathfrak{R}$ is identically zero. As another result in this regard, we show that every continuous Jordan left derivation on a normed $*$-algebra \mathcal{A} satisfying $\overline{O(\mathcal{A})}=S(\mathcal{A})$ is identically zero. In $2008, \mathrm{~J}$. Vukman proved that every Jordan left derivation on a semisimple Banach algebra is zero (see [23], Theorem 4). We believe he could prove this theorem easier. In this article, we establish a simpler proof of that theorem.

2. Main Results

We begin with the following definition which has been presented in [9].
Definition 2.1. Let \mathcal{A} be a unital Banach algebra. An element a of \mathcal{A} has the uniformly mean value property (UMV-property, briefly) if for every closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ there exists an element $c_{\alpha, \beta} \in(\alpha, \beta)$ such that $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{a c_{\alpha, \beta}}$. A unital Banach algebra \mathcal{A} is called UMV if every element of \mathcal{A} has the UMV-property.

Let a be an idempotent element of a unital Banach algebra \mathcal{A}, i.e. $a^{2}=a$. We have

$$
\begin{aligned}
e^{t a} & =\sum_{n=0}^{\infty} \frac{t^{n} a^{n}}{n!}=\mathbf{1}+\sum_{n=1}^{\infty} \frac{t^{n} a}{n!} \\
& =\mathbf{1}+\sum_{n=0}^{\infty} \frac{t^{n} a}{n!}-a \\
& =e^{t} a-a+\mathbf{1}
\end{aligned}
$$

for all $t \in \mathbb{R}$. Hence,

$$
\begin{equation*}
e^{\beta a}-e^{\alpha a}=e^{\beta} a-a+1-\left(e^{\alpha} a-a+\mathbf{1}\right)=\left(e^{\beta}-e^{\alpha}\right) a . \tag{1}
\end{equation*}
$$

According to the classical mean value theorem for the function $f(t)=e^{t}$ on $[\alpha, \beta]$, there exists an element $c_{\alpha, \beta} \in(\alpha, \beta)$ such that $e^{\beta}-e^{\alpha}=(\beta-\alpha) e^{c_{\alpha, \beta}}$. This equality along with (1) imply that, $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) e^{c_{\alpha, \beta}} a$. Now, we show that $e^{c_{\alpha, \beta}} a=a e^{c_{\alpha, \beta} a}$. We have

$$
a e^{c_{\alpha, \beta} a}=a\left(e^{c_{\alpha, \beta}} a-a+1\right)=e^{c_{\alpha, \beta}} a^{2}-a^{2}+a=e^{c_{\alpha, \beta}} a-a+a=e^{c_{\alpha, \beta}} a .
$$

Thus, $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{c_{\alpha, \beta} a}$. This means that a has the UMV-property.
In the following theorem, \mathcal{A} denotes a unital Banach algebra.
Theorem 2.2. Let $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a left derivation and let $b \in \mathcal{A}$ has the UMV-property. Assume that $f(b) \mathfrak{L}(b)=0$ forces $f(b)=0$ or $\mathfrak{L}(b)=0$ for some function f. Moreover, suppose that $\mathfrak{L}\left(e^{c_{0,1} b}\right)=c_{0,1} e^{c_{0,1} b} \mathfrak{L}(b)$, where $c_{0,1} \in(0,1) \subseteq \mathbb{R}$ is obtained from the UMV-property of b and further $\mathfrak{L}\left(e^{b}\right)=e^{b} \mathfrak{L}(b)$. Then $\mathfrak{L}(b)=0$.
Proof. If $b=0$, then there is nothing to be proved. Let b be a non-zero element of \mathcal{A} having the UMVproperty. Hence, there exists an element $c_{0,1}=c$ of $(0,1)$ such that $e^{b}-\mathbf{1}=b e^{c b}$. Using the latest equality along with the aforementioned assumptions that $\mathfrak{L}\left(e^{c b}\right)=c e^{c b} \mathcal{L}(b)$ and $\mathfrak{L}\left(e^{b}\right)=e^{b} \mathfrak{L}(b)$, we deduce that $0=e^{b} \mathfrak{L}(b)-\mathfrak{L}(\mathbf{1})-b \mathfrak{L}\left(e^{c b}\right)-e^{c b} \mathfrak{L}(b)=e^{b} \mathfrak{L}(b)-c b e^{c b} \mathfrak{L}(b)-e^{c b} \mathfrak{L}(b)$. Indeed, we have $\left(e^{b}-c b e^{c b}-e^{c b}\right) \mathfrak{L}(b)=0$. This equation along with the hypothesis that $f(b) \mathfrak{L}(b)=0$ forces $f(b)=0$ or $\mathfrak{L}(b)=0$, imply that $\mathfrak{L}(b)=0$ or $e^{b}-c b e^{c b}-e^{c b}=0$. If $\mathfrak{L}(b)=0$, then our goal is achieved. If not, suppose that

$$
\begin{equation*}
e^{b}-c b e^{c b}-e^{c b}=0 \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
0 & =\mathfrak{L}\left(e^{b}-c b e^{c b}-e^{c b}\right)=e^{b} \mathfrak{L}(b)-c\left(b \mathscr{L}\left(e^{c b}\right)+e^{c b} \mathfrak{L}(b)\right)-c e^{c b} \mathfrak{L}(b) \\
& =\left(e^{b}-c^{2} b e^{c b}-2 c e^{c b}\right) \mathfrak{L}(b)
\end{aligned}
$$

Reusing the above supposition, we obtain that $e^{b}-c^{2} b e^{c b}-2 c e^{c b}=0$ or $\mathfrak{L}(b)=0$. If $\mathfrak{L}(b)=0$, then we get the required result. If not, $e^{b}-c^{2} b e^{c b}-2 c e^{c b}=0$. So, we have

$$
\begin{equation*}
e^{b}=c e^{c b}(c b+2) \tag{3}
\end{equation*}
$$

Comparing (2) and (3), we find that $c e^{c b}(c b+2)=e^{c b}(c b+1)$. From this and using the fact that $e^{c b}$ is an invertible element of \mathcal{A}, we arrive at $b=\frac{1-2 c}{c(c-1)} \mathbf{1}$. It implies that $\mathcal{L}(b)=0$ and our assertion is achieved.

An immediate corollary of Theorem 2.2 reads as follows.
Corollary 2.3. Every continuous left derivation on a unital UMV-Banach algebra which is also a domain is identically zero.
Proof. Let \mathcal{A} be a unital UMV-Banach algebra which is also a domain and let $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a continuous left derivation. Evidently, $\mathfrak{L}\left(e^{a}\right)=e^{a} \mathfrak{L}(a)$ holds for all $a \in \mathcal{A}$. Now, Theorem 2.2 is exactly what we need to complete the proof.

By using an argument similar to the proof of Theorem 2.2, we show that every Jordan left derivation on a commutative or non-commutative prime Banach algebra, under certain conditions, is identically zero. Recall that an algebra \mathcal{A} is prime if $a \mathcal{A} b=\{0\}$ implies that $a=0$ or $b=0$
Theorem 2.4. Let \mathcal{A} be a (commutative or non-commutative) prime Banach algebra with the identity element 1, $\mathfrak{Z}: \mathcal{A} \rightarrow \mathcal{A}$ be a Jordan left derivation, and let $b \in \mathcal{A}$ has the UMV-property. Suppose that $\mathfrak{P}\left(e^{c_{0,1} b}\right)=c_{0,1} e^{c_{0,1}} \mathfrak{Z}(b)$, where $\mathcal{c}_{0,1} \in(0,1) \subseteq \mathbb{R}$ is obtained from the UMV-property of b and further $\mathfrak{L}\left(e^{b}\right)=e^{b} \mathfrak{L}(b)$. In this case $\mathfrak{L}(b)=0$.

Proof. It follows from Theorem 2 of [23] that \mathfrak{R} is a derivation mapping \mathcal{A} into $Z(\mathcal{A})$. If $b=0$, then there is nothing to be proved. Let b be a non-zero element of \mathcal{A} having the UMV-property. Hence, there exists an element $c_{0,1}=c$ of $(0,1)$ such that $e^{b}-\mathbf{1}=b e^{c b}$. Using the latest equality along with the aforementioned assumptions that $\mathfrak{L}\left(e^{c b}\right)=c e^{c b} \mathfrak{L}(b)$ and $\mathfrak{L}\left(e^{b}\right)=e^{b} \mathfrak{L}(b)$, we deduce that $0=e^{b} \mathfrak{L}(b)-\mathfrak{L}(\mathbf{1})-b \mathfrak{L}\left(e^{c b}\right)-e^{c b} \mathfrak{L}(b)=$ $e^{b} \mathfrak{L}(b)-c b e^{c b} \mathfrak{L}(b)-e^{c b} \mathfrak{L}(b)$. Indeed, we have $\left(e^{b}-c b e^{c b}-e^{c b}\right) \mathfrak{Q}(b)=0$. From this and using the fact that $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$, we obtain that $0=\left(e^{b}-c b e^{c b}-e^{c b}\right) \mathcal{L}(b) a=\left(e^{b}-c b e^{c b}-e^{c b}\right) a \mathfrak{L}(b)$ for all $a \in \mathcal{A}$. The primeness of \mathcal{A} forces that $\mathfrak{L}(b)=0$ or $e^{b}-c b e^{c b}-e^{c b}=0$. If $\mathfrak{L}(b)=0$, then our goal is achieved. If not, suppose that

$$
\begin{equation*}
e^{b}-c b e^{c b}-e^{c b}=0 \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
0 & =\mathfrak{Z}\left(e^{b}-c b e^{c b}-e^{c b}\right)=e^{b} \mathfrak{L}(b)-c\left(b \mathfrak{L}\left(e^{c b}\right)+e^{c b} \mathfrak{L}(b)\right)-c e^{c b} \mathfrak{L}(b) \\
& =\left(e^{b}-c^{2} b e^{c b}-2 c e^{c b}\right) \mathfrak{L}(b) .
\end{aligned}
$$

Since $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$ and \mathcal{A} is prime, $e^{b}-c^{2} b e^{c b}-2 c e^{c b}=0$ or $\mathfrak{L}(b)=0$. If $\mathfrak{L}(b)=0$, then we get the required result. If not, $e^{b}-c^{2} b e^{c b}-2 c e^{c b}=0$. So, we have

$$
\begin{equation*}
e^{b}=c e^{c b}(c b+2) \tag{5}
\end{equation*}
$$

Comparing (4) and (5), we obtain that $c e^{c b}(c b+2)=e^{c b}(c b+1)$. From this and using the fact that $e^{c b}$ is an invertible element of \mathcal{A}, we arrive at $b=\frac{1-2 c}{c(c-1)} \mathbf{1}$. It implies that $\mathfrak{L}(b)=0$. This completes the proof of our theorem.

An immediate conclusion is:
Corollary 2.5. Every continuous Jordan left derivation on a unital, prime UMV-Banach algebra is identically zero.
Theorem 2.6. Let \mathcal{A} be a Banach algebra and let \mathcal{P} be a proper closed ideal of finite codimension in \mathcal{A} such that $a \in \mathcal{P}$ or $b \in \mathcal{P}$ whenever $a b \in \mathcal{P}$. If $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ is a continuous left derivation, then $\mathfrak{L}(\mathcal{A}) \subseteq \mathcal{P}$.

Proof. According to page 42 of [6], \mathscr{P} is a prime ideal in \mathcal{A}. It is clear that the quotient algebra $\frac{\mathcal{H}}{\mathcal{P}}$ is a domain. It follows from Corollary 1.4.38 of [6] that \mathcal{P} is a primitive ideal of \mathcal{A} and the proof of Theorem 2.1 of [5] implies that $\mathcal{L}(\mathcal{P}) \subseteq \mathcal{P}$. Since $\mathcal{L}(\mathcal{P}) \subseteq \mathcal{P}$, the linear mapping $\Lambda: \frac{\mathcal{F}}{\mathcal{P}} \rightarrow \frac{\mathcal{F}}{\mathcal{P}}$ defined by $\Lambda(a+\mathcal{P})=\mathscr{L}(a)+\mathcal{P}$ $(a \in \mathcal{A})$ is a well-defined left derivation. It follows from Proposition 1.3 .56 of [6] that $\frac{\mathcal{P}}{\mathcal{P}}=\mathbb{C} 1$, and we deduce that Λ is identically zero. Consequently, $\mathfrak{L}(\mathcal{F}) \subseteq \mathcal{P}$.

Here, we focus on the image of Jordan left derivatives to show that every Jordan left derivation, under certain circumstances, on a prime algebra is zero.
Theorem 2.7. Let \mathcal{A} be a unital, prime algebra, and let $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a Jordan left derivation. If the rank of \mathfrak{L} is at most one, i.e. $\operatorname{dim}(\mathfrak{L}(\mathcal{A})) \leq 1$, then \mathfrak{L} is identically zero.
Proof. It follows from Theorem 2 of [23] that \mathbb{L} is a derivation mapping \mathcal{A} into $Z(\mathcal{A})$. If $\operatorname{dim}(\mathfrak{L}(\mathcal{A}))=0$, then there is nothing to be proved. Suppose that $\operatorname{dim}(\mathscr{L}(\mathcal{A}))=1$. So, we can consider a non-zero element x of \mathcal{A} and a functional $\Omega: \mathcal{A} \rightarrow \mathbb{C}$ such that $\mathfrak{L}(a)=\Omega(a) x$ for all $a \in \mathcal{A}$. We are going to show that \mathfrak{L} is identically zero. To obtain a contradiction, assume that there exists an element $a_{0} \in \mathcal{A}$ such that $\mathfrak{L}\left(a_{0}\right) \neq 0$. So, $\Omega\left(a_{0}\right) \neq 0$, too. Assume that $\mathcal{L}(x)=0$. So, $\Omega(x) x=0$ and it implies that $\Omega(x)=0$. We have $\Omega\left(a_{0}^{2}\right) x=\mathfrak{L}\left(a_{0}^{2}\right)=2 a_{0} \mathfrak{Q}\left(a_{0}\right)=2 \Omega\left(a_{0}\right) a_{0} x$. Therefore,

$$
\begin{aligned}
0 & =\Omega\left(a_{0}^{2}\right) \mathfrak{L}(x)=\mathfrak{L}\left(\Omega\left(a_{0}^{2}\right) x\right)=\mathfrak{L}\left(2 \Omega\left(a_{0}\right) a_{0} x\right) \\
& =2 \Omega\left(a_{0}\right)\left(x \mathfrak{L}\left(a_{0}\right)+a_{0} \mathfrak{L}(x)\right) \\
& =2 \Omega\left(a_{0}\right) x \mathfrak{Z}\left(a_{0}\right) .
\end{aligned}
$$

It means that $2 \Omega\left(a_{0}\right) x \mathfrak{L}\left(a_{0}\right)=0$ and so, $x \mathfrak{L}\left(a_{0}\right)=0$. From this and using the fact that $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$, we obtain that $0=x \mathfrak{L}\left(a_{0}\right) a=x a \mathfrak{Z}\left(a_{0}\right)$ for all $a \in \mathcal{A}$. The primeness of \mathcal{A} forces $x=0$ or $\mathfrak{L}\left(a_{0}\right)=0$, a contradiction. Now, suppose that $\mathcal{L}(x) \neq 0$. Clearly, $\Omega(x) \neq 0$, too. Note that

$$
\Omega\left(x^{2}\right) x=\mathfrak{L}\left(x^{2}\right)=2 x \mathfrak{L}(x)=2 \Omega(x) x^{2} .
$$

Hence, we have

$$
\begin{aligned}
0 & =\mathfrak{R}\left(\Omega\left(x^{2}\right) x-2 \Omega(x) x^{2}\right)=\Omega\left(x^{2}\right) \mathfrak{L}(x)-4 \Omega(x) x \mathfrak{L}(x) \\
& =\left(\Omega\left(x^{2}\right) \mathbf{1}-4 \Omega(x) x\right) \mathfrak{L}(x) .
\end{aligned}
$$

From the former equation and using the fact $\mathfrak{L}(\mathcal{A}) \subseteq Z(\mathcal{A})$, we have $0=\left(\Omega\left(x^{2}\right) \mathbf{1}-4 \Omega(x) x\right) \mathfrak{Z}(x) a=$ $\left(\Omega\left(x^{2}\right) \mathbf{1}-4 \Omega(x) x\right) a \mathscr{L}(x)$ for all $a \in \mathcal{A}$. The primeness of \mathcal{A} implies that $\mathcal{L}(x)=0$, a contradiction, or $\Omega\left(x^{2}\right) \mathbf{1}-4 \Omega(x) x=0$. Thus, $0=\mathfrak{R}\left(\Omega\left(x^{2}\right) \mathbf{1}-4 \Omega(x) x\right)=0-4 \Omega(x) \mathfrak{L}(x)$ and since $\Omega(x) \neq 0$, it is concluded that $\mathfrak{L}(x)=0$. But this is a contradiction of the supposition that $\mathfrak{L}(x) \neq 0$. We see that both cases $\mathscr{L}(x)=0$ and $\mathscr{L}(x) \neq 0$ lead to a contradiction. This contradiction shows that there is no element a_{0} of \mathcal{A} such that $\mathfrak{L}\left(a_{0}\right) \neq 0$. Thereby, \mathfrak{L} is identically zero.

Corollary 2.8. Let \mathcal{A} be a unital, prime algebra, and let $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a non-zero Jordan left derivation. Then, $\operatorname{dim}(\mathfrak{L}(\mathcal{A})) \geq 2$.

Applying Theorem 2.7, we show that continuous left derivations on unital finite-dimensional Banach algebras, under certain conditions, are zero. Let n be a positive integer, and let \mathcal{A} be an n-dimensional unital Banach algebra with the basis $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. We prove the following theorem.

Theorem 2.9. Suppose that for every integer $k, 1 \leq k \leq n$, an ideal \mathcal{I}_{k} generated by $\mathcal{B}-\left\{b_{k}\right\}$ is a proper subset of \mathcal{A}. Then every continuous left derivation on \mathcal{A} is identically zero.

Proof. It is easy to see that every $I_{k}, 1 \leq k \leq n$, is a maximal ideal of \mathcal{A}. Suppose that I_{k} is not a maximal ideal of \mathcal{A} for some $k, 1 \leq k \leq n$. Then there exists a maximal ideal \mathcal{M}_{k} of \mathcal{A} such that $\mathcal{I}_{k} \subset \mathcal{M}_{k} \subset \mathcal{A}$. But then $n-1=\operatorname{dim}\left(\mathcal{I}_{k}\right)<\operatorname{dim}\left(\mathcal{M}_{k}\right)<n$, a contradiction. Hence, every $\mathcal{I}_{k}, 1 \leq k \leq n$, must be a maximal ideal of \mathcal{A}. It follows from Proposition 1.4.34 and Theorem 2.2.28 in [6] that $\mathcal{I}_{k}, 1 \leq k \leq n$, are closed primitive ideals of \mathcal{A}. Moreover, according to Proposition 1.4.34 of [6], $\mathcal{I}_{k}, 1 \leq k \leq n$, are also prime ideals of \mathcal{A}. Thus, the quotient algebra $\frac{\mathcal{H}}{I_{k}}$ is a prime algebra. Let $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a continuous left derivation. In view of Theorem 2.1 of [5], we obtain $\mathcal{L}\left(I_{k}\right) \subseteq I_{k}, 1 \leq k \leq n$. Thus, the mapping $\Lambda: \frac{\mathcal{F}}{I_{k}} \rightarrow \frac{\mathcal{F}}{I_{k}}$ defined by $\Lambda\left(a+\mathcal{I}_{k}\right)=\mathfrak{L}(a)+\mathcal{I}_{k}$ is a left derivation. Since $\operatorname{dim}\left(\frac{\mathcal{F}}{I_{k}}\right)=1$ for every $1 \leq k \leq n$, it follows from Theorem 2.7 that the left derivation $\Lambda: \frac{\mathcal{F}}{I_{k}} \rightarrow \frac{\mathcal{F}}{I_{k}}$ is identically zero. It means that $\mathcal{L}(\mathcal{A}) \subseteq I_{k}$, for every $k \in\{1,2, \ldots, n\}$. Hence, $\mathfrak{L}(\mathcal{A}) \subseteq \bigcap_{k=1}^{n} \mathcal{I}_{k}$. Assume towards a contradiction that there exists an element a_{0} of \mathcal{A} such that $\mathfrak{L}\left(a_{0}\right) \neq 0$. Since $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ is a basis for \mathcal{A}, there exist the complex numbers $\alpha_{i_{j}}$, and the elements $b_{i_{j}}$ of \mathcal{B} such that

$$
\mathfrak{L}\left(a_{0}\right)=\sum_{j=1}^{m} \alpha_{i_{j}} b_{i_{j}}=\alpha_{i_{1}} b_{i_{1}}+\alpha_{i_{2}} b_{i_{2}}+\ldots+\alpha_{i_{m}} b_{i_{m}}, \quad(m \leq n) .
$$

Since $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{I}_{k}$ for every $k \in\{1,2, \ldots, n\}$, we may assume that $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{I}_{i_{1}}$. Therefore, we have

$$
\mathfrak{L}\left(a_{0}\right)=\alpha_{i_{1}} b_{i_{1}}+\alpha_{i_{2}} b_{i_{2}}+\ldots+\alpha_{i_{m}} b_{i_{m}} \in \mathcal{I}_{i_{1}} .
$$

The previous equation shows that $b_{i_{1}} \in \mathcal{I}_{i_{1}}$, which it is a contradiction. This contradiction proves the claim that \mathcal{L} is identically zero on \mathcal{A}.

Remark 2.10. Let \mathcal{A} be a semisimple Banach algebra with the identity element 1, and let $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a linear map satisfying $\mathfrak{L}(a b)=a \mathfrak{L}(b)-b \mathfrak{L}(a)$ for all $a, b \in \mathcal{A}$. We claim that \mathfrak{R} is identically zero. Clearly, $\mathfrak{L}(\mathbf{1})=0$. For every invertible element $x \in \mathcal{A}$, we have $\mathfrak{L}(x)=x^{2} \mathfrak{L}\left(x^{-1}\right)$. It follows from Theorem 5 of [23] that $\mathfrak{R}(a)=a \mathfrak{R}(\mathbf{1})=0$ for all $a \in \mathcal{A}$. It means that \mathbb{L} is zero.

In the following theorem we show that there are no nonzero continuous Jordan left derivations on normed $*$-algebras with $\overline{O(\mathcal{A})}=S(\mathcal{A})$.

Theorem 2.11. Every continuous Jordan left derivation on a normed *-algebra \mathcal{A} satisfying $\overline{O(\mathcal{A})}=S(\mathcal{A})$ is identically zero.

Proof. Let $\mathcal{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a continuous Jordan left derivation. We have to prove that $\mathfrak{L}(s)=0$ for all $s \in S(\mathcal{A})$. Namely, for every $a \in \mathcal{A}$, there exist $s_{1}, s_{2} \in S(\mathcal{A})$ such that $a=s_{1}+i s_{2}$, where i denotes the imaginary unit. Thus, $\mathfrak{R}(a)=\mathfrak{L}\left(s_{1}+i s_{2}\right)=\mathfrak{Z}\left(s_{1}\right)+i \mathscr{L}\left(s_{2}\right)=0$. So, let $p \in \mathcal{A}$ be an arbitrary projection. We have $\mathfrak{L}(p)=\mathscr{L}\left(p^{2}\right)=2 p \mathscr{L}(p)$. This yields that $p \mathscr{L}(p)=2 p \mathscr{L}(p)$ and, thus, $p \mathscr{L}(p)=0$. Therefore, we conclude that $\mathcal{L}(p)=0$ for all projection $p \in P(\mathcal{A})$. Let x be an arbitrary element of $O(\mathcal{A})$. Hence, $x=\sum_{i=1}^{m} r_{j} p_{j}$, where $p_{1}, p_{2}, \ldots, p_{m}$ are mutually orthogonal projections in \mathcal{A} and $r_{1}, r_{2}, \ldots, r_{m}$ are real numbers. We have $\mathfrak{L}(x)=\mathfrak{L}\left(\sum_{j=1}^{m} r_{j} p_{j}\right)=\sum_{j=1}^{m} r_{j} \mathfrak{L}\left(p_{j}\right)=0$. Since $\overline{O(\mathcal{A})}=S(\mathcal{A}), \mathfrak{L}(s)=0$ for every $s \in S(\mathcal{A})$, as desired.

It is evident that if \mathcal{A} is a unital Banach algebra and $\mathfrak{R}: \mathcal{A} \rightarrow \mathcal{A}$ is a continuous left derivation, then $\mathfrak{L}\left(e^{a}\right)=e^{a} \mathfrak{L}(a)$ holds for all $a \in \mathcal{A}$. We may think that this equation is valid only if \mathfrak{L} is continuous. In this work, we establish an example to show that the equation $\mathcal{L}\left(e^{a}\right)=e^{a} \mathfrak{L}(a)$ can be fulfilled for some discontinuous (equivalently, unbounded) left derivations. The following problem has been raised in [9]. Here, we answer it.

Problem 2.12. Let $d: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation satisfying $d\left(e^{a}\right)=e^{a} d(a)$ for all $a \in \mathcal{A}$. Is d a continuous operator?
We give a negative answer to the above question. Indeed, we define a discontinuous derivation (left derivation) D on a given Banach algebra \mathfrak{B} satisfying $D\left(e^{b}\right)=e^{b} D(b)$ for all $b \in \mathfrak{B}$. Let \mathcal{A} be a Banach algebra. Consider $\mathfrak{B}=\mathbb{C} \bigoplus \mathcal{A}$ as an algebra with pointwise addition, scalar multiplication and the product $(\alpha, a) \cdot(\beta, b)=(\alpha \beta, \alpha b+\beta a)$ for all $a, b \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$. The algebra \mathfrak{B} with the norm $\|(\alpha, a)\|=|\alpha|+\|a\|$ is a Banach algebra. Clearly, \mathfrak{B} is a unital commutative Banach algebra (see [12]). Suppose that $T: \mathcal{A} \rightarrow \mathcal{A}$ is an unbounded linear map. Define $D: \mathfrak{B} \rightarrow \mathfrak{B}$ by $D(\alpha, a)=(0, T(a))$. It is evident that D is an unbounded linear map. Furthermore, we have

$$
\begin{aligned}
D((\alpha, a)(\beta, b)) & =D(\alpha \beta, \alpha b+\beta a) \\
& =(0, \alpha T(b)+\beta T(a)) \\
& =(\alpha, a)(0, T(b))+(\beta, b)(0, T(a)) \\
& =(\alpha, a) D(\beta, b)+D(\alpha, a)(\beta, b) \\
& =(\alpha, a) D(\beta, b)+(\beta, b) D(\alpha, a)
\end{aligned}
$$

Since \mathfrak{B} is a commutative algebra, D is both a left derivation and a derivation on \mathfrak{B}. Note that $e^{(\alpha, a)}=$ $\sum_{n=0}^{\infty} \frac{\left(\alpha^{n}, n n^{n-1} a\right)}{n!}=\left(e^{\alpha}, e^{\alpha} a\right)$. Thus, $D\left(e^{(\alpha, a)}\right)=D\left(e^{\alpha}, e^{\alpha} a\right)=\left(0, T\left(e^{\alpha} a\right)\right)=\left(0, e^{\alpha} T(a)\right)$ for all $a \in \mathcal{A}, \alpha \in \mathbb{C}$. On the other hand, $e^{(\alpha, a)} D(\alpha, a)=\left(e^{\alpha}, e^{\alpha} a\right)(0, T(a))=\left(0, e^{\alpha} T(a)\right)$. Therefore, $D\left(e^{(\alpha, a)}\right)=e^{(\alpha, a)} D(\alpha, a)$ while D is an unbounded derivation (left derivation) on \mathfrak{B}.

The following theorem has been proved by Vukman [23]. Below, we prove it using a simpler proof.
Theorem 2.13. Let \mathcal{A} be a semisimple Banach algebra and let $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a Jordan left derivation. Then \mathfrak{L} is identically zero.

Proof. We know that every semisimple algebra is also semiprime. It follows from Theorem 2 of [23] that \mathfrak{L} is a derivation mapping \mathcal{A} into $Z(\mathcal{A})$. We therefore have $\mathfrak{L}(a b)=\mathcal{L}(a) b+a \mathscr{L}(b)=a \mathscr{L}(b)+b \mathfrak{P}(a)$ and it means that \mathfrak{L} is a left derivation, as well. Since \mathfrak{Z} is a derivation, Remark 4.3 of [14] implies that \mathfrak{L} is continuous. Therefore, \mathfrak{L} is a continuous left derivation. At this moment, Theorem 2.1 of [5] implies that $\mathcal{L}(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})=\{0\}$. Thereby, our goal is achieved

Applying the above-mentioned argument, we can achieve the following theorem.
Theorem 2.14. Let \mathcal{A} be a Banach algebra, $\mathfrak{L}: \mathcal{A} \rightarrow \mathcal{A}$ be a Jordan left derivation, and let \mathcal{P} be a primitive ideal of \mathcal{A}. If $\mathfrak{L}(\mathcal{P}) \subseteq \mathcal{P}$, then $\mathfrak{L}(\mathcal{F}) \subseteq \mathcal{P}$.

Proof. Straightforward.
By getting idea from [1], we define an l-two variable left derivation (resp. Jordan l-two variable left derivation) as follows.

Definition 2.15. A biadditive mapping $\Lambda: \Re \times \Re \rightarrow \mathfrak{R}$ is called an l-two variable left derivation (resp. Jordan l-two variable left derivation) if $\Lambda(x y, z)=x \Lambda(y, z)+y \Lambda(x, z)\left(\right.$ resp. $\left.\Lambda\left(x^{2}, y\right)=2 x \Lambda(x, y)\right)$ holds for all $x, y, z \in \mathfrak{R}$.

For example, if $\mathfrak{R}: \mathfrak{R} \rightarrow \mathfrak{R}$ is a left derivation, then $\Lambda: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ defined by $\Lambda(x, y)=\mathfrak{R}(x) y$ is an l-two variable left derivation. Because $\Lambda(x y, z)=\mathscr{L}(x y) z=x \mathscr{L}(y) z+y \mathfrak{L}(x) z=x \Lambda(y, z)+y \Lambda(x, z)$ holds for all $x, y, z \in \mathfrak{R}$.

Lemma 2.16. Let \mathfrak{R} be a 2 -torsion free semiprime ring, and let $\Lambda: \Re \times \Re \rightarrow \Re$ be a Jordan l-two variable left derivation. In this case $\Lambda(\Re \times \Re) \subseteq Z(\Re)$.

Proof. For an arbitrary fixed element $y \in \mathfrak{R}$, we define $\mathfrak{L}_{y}: \mathfrak{R} \rightarrow \mathfrak{R}$ by $\mathfrak{L}_{y}(x)=\Lambda(x, y)$. Clearly, $\mathfrak{L}_{y}\left(x^{2}\right)=$ $\Lambda\left(x^{2}, y\right)=2 x \Lambda(x, y)=2 x \mathfrak{Q}_{y}(x)$ for all $x \in \mathfrak{R}$. It means that \mathfrak{L}_{y} is a Jordan left derivation on \mathfrak{R}. By Theorem 2 of [23], \mathfrak{L}_{y} is a derivation mapping \mathfrak{R} into $Z(\Re)$. Hence, $\Lambda(x, y)=\mathfrak{L}_{y}(x) \in Z(\Re)$ for all $x \in \mathfrak{R}$. Since we are assuming that y is an arbitrary element of $\mathfrak{R}, \Lambda(x, y) \in Z(\Re)$ for all $x, y \in \mathfrak{R}$. This proves the lemma completely.

Theorem 2.17. Let \mathfrak{R} be a 2-torsion free semiprime ring, and let $\mathfrak{Z}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a Jordan left derivation. Then, $\mathfrak{L}(x)[y, z]=0$ for all $x, y, z \in \mathfrak{R}$.

Proof. If \mathfrak{R} is commutative, then there is nothing to be proved. Now, suppose that \mathfrak{R} is a non-commutative ring. We know that the biadditive map $\Lambda: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ defined by $\Lambda(x, y)=\mathcal{R}(x) y$ is a Jordan l-two variable left derivation. Note that $\mathcal{L}(\Re) \subseteq Z(\Re)$ (see Theorem 2 of [23]). Application of Lemma 2.16 yields that $\mathfrak{Q}(x) y=\Lambda(x, y) \in Z(\mathfrak{R})$ for all $x, y \in \mathfrak{R}$. Therefore, we have $0=[\mathcal{L}(x) y, z]=\mathfrak{L}(x)[y, z]+[\mathcal{L}(x), z] y=\mathfrak{L}(x)[y, z]$ for all $x, y, z \in \mathfrak{R}$. It means that $\mathcal{L}(x)[y, z]=0$ for all $x, y, z \in \mathfrak{R}$. Since $\mathcal{L}(\Re) \subseteq Z(\Re)$, it is observed that $\mathfrak{L}(\Re) \subseteq \operatorname{ann}\{[y, z] \mid y, z \in \Re\}$.

In the next corollary, we show that every Jordan left derivation on a non-commutative semiprime ring, under certain conditions, is identically zero.

Corollary 2.18. Let \mathfrak{R} be a 2-torsion free semiprime ring such that ann $\{[y, z] \mid y, z \in \mathfrak{R}\}=\{0\}$. Then every Jordan left derivation $\mathfrak{L}: \mathfrak{R} \rightarrow \mathfrak{R}$ is identically zero.

Proof. This is an immediate consequence of Theorem 2.17.
It is clear that if $\operatorname{ann}\{[y, z] \mid y, z \in \mathfrak{R}\}=\{0\}$, then \mathfrak{R} is a non-commutative ring. Let \mathfrak{R} be a semiprime ring and $a \in \operatorname{lann}\{[y, z] \mid y, z \in \mathfrak{R}\}$. It follows from Lemma 1.3 of [24] that $a \in Z(\Re)$. It means that $\operatorname{lann}\{[y, z] \mid y, z \in \mathfrak{R}\} \subseteq Z(\mathfrak{R})$. Similarly, we can see that $\operatorname{rann}\{[y, z] \mid y, z \in \mathfrak{R}\} \subseteq Z(\Re)$, too. Therefore, lann $\{[y, z] \mid y, z \in \mathfrak{R}\} \cup \operatorname{rann}\{[y, z] \mid y, z \in \mathfrak{R}\} \subseteq Z(\Re)$.

Theorem 2.19. Let \mathcal{A} be a unital, prime algebra, and let $\mathfrak{Z}: \mathcal{A} \rightarrow \mathcal{A}$ be a Jordan left derivation. If $\operatorname{dim}($ ann $\{[a, b] \mid a, b \in$ $\mathcal{A}\}) \leq 1$, then \mathfrak{Q} is identically zero.

Proof. Applying Theorems 2.7 and 2.17, we achieve our goal.
In the following theorem, we investigate Jordan left derivations on simple rings.
Theorem 2.20. Let \mathfrak{R} be a non-commutative 2-torsion free simple ring, and let $\mathfrak{Z}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a Jordan left derivation. In this case $\mathbb{L}=0$.

Proof. It is obvious that \mathfrak{R} is semiprime. According to Theorem 2.17, $\mathfrak{R}(x)[y, z]=0$ for all $x, y, z \in \mathfrak{R}$. It follows from Lemma 1.3 of [24] that for every $x \in \mathfrak{R}$ there exists an ideal \mathcal{I}_{x} of \mathfrak{R} such that $\mathfrak{L}(x) \in I_{x} \subseteq Z(\mathfrak{R})$. Since \mathfrak{R} is a simple ring, either $\mathcal{I}_{x}=\{0\}$ or $\mathcal{I}_{x}=\mathfrak{R}$. If $\mathcal{I}_{x}=\mathfrak{R}$, then we have $\mathfrak{R}=\mathcal{I}_{x} \subseteq Z(\mathfrak{R})$ and so \mathfrak{R} is commutative, a contradiction. Hence $\mathcal{I}_{x}=\{0\}$, and since $\mathscr{L}(x) \in \mathcal{I}_{x}, \mathcal{L}(x)=0$. Since x is an arbitrary element of \Re, our assertion is proved.
M. Bres̆ar and J. Vukman [[5], Corollary 1.3] proved that every Jordan left derivation on a noncommutative 2 -torsion free and 3 -torsion free prime ring is identically zero. Here, we prove the same result without using the assumption that the ring is 3-torsion free.

Theorem 2.21. Let \mathfrak{R} be a non-commutative 2-torsion free prime ring, and let $\mathfrak{R}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a Jordan left derivation. In this case, \mathfrak{L} is zero.

Proof. According to Theorem 2.17, $\mathfrak{L}(x)[y, z]=0$ for all $x, y, z \in \mathfrak{R}$. It follows from Theorem 2 of [23] that $\mathfrak{L}(\mathfrak{R}) \subseteq Z(\Re)$. Therefore, we have $0=r \mathfrak{L}(x)[y, z]=\mathfrak{L}(x) r[y, z]$ for all $x, y, z, r \in \mathfrak{R}$. The primeness of \mathfrak{R} forces that $\mathfrak{L}(x)=0$ or $[y, z]=0$. Since \mathfrak{R} is non-commutative and also x is an arbitrary element of $\mathfrak{R}, \mathfrak{L}=0$ is achieved.

Theorem 2.22. Let \mathfrak{R} be a 2-torsion free, unital, simprime ring and let $\mathfrak{Z}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a Jordan left derivation. If there exists an element x_{0} of \Re such that $\mathfrak{R}\left(x_{0}\right)$ is invertible, then \Re is commutative.

Proof. It follows from Theorem 2.17 that $\mathfrak{L}(x)[y, z]=0$ for all $x, y, z \in \mathfrak{R}$. Thus, $\mathfrak{L}\left(x_{0}\right)[y, z]=0$ for all $y, z \in \mathfrak{R}$. This equation along with the assumption that $\mathcal{L}\left(x_{0}\right)$ is invertible imply that $[y, z]=0$ for all $y, z \in \mathfrak{R}$, and consequently, \mathfrak{R} is commutative.

In Proposition 2.24, we show that every Jordan derivation on a (commutative or non-commutative) 2-torsion free prime ring is identically zero. To get such results, most authors assume that a ring or an algebra to be non-commutative. But in the following proposition, we do not use this assumption. We need the following lemma to establish Proposition 2.24.

Lemma 2.23. [[17], Lemma 2.2] Let \mathfrak{R} be a 2-torsion free prime ring and I be a non-zero Jordan ideal of \mathfrak{R}. If d is a derivation of \mathfrak{R} such that $d\left(x^{2}\right)=0$ for all $x \in I$, then $d=0$.

Proposition 2.24. Let \mathfrak{R} be a 2-torsion free prime ring, \mathcal{I} be a non-zero Jordan ideal of \mathfrak{R}, and let $d: \mathfrak{R} \rightarrow \mathfrak{R}$ be a Jordan derivation such that $d\left(a^{2}\right) \in Z(\Re)$ for all $a \in \mathcal{I}$. If ad $(a) a=0$ for all $a \in \mathcal{I}$, then d is identically zero.

Proof. It follows from Theorem 1 of [4] that d is a derivation. In this proof, $[a, b]$ and $<a, b>$ denote $a b-b a$ and $a b+b a$, respectively. First, note that
i) $[a, b]+\langle a, b\rangle=2 a b$,
ii) $\langle a b, c\rangle=a\langle b, c\rangle-[a, c] b$,
iii) $\langle a, b c\rangle=<a, b\rangle c-b[a, c]$
iv) $\langle a+b, c\rangle=\langle a, c\rangle+\langle b, c\rangle$ and $\langle a, b+c\rangle=\langle a, b\rangle+\langle a, c\rangle$.

By using the above symbols, we see that $d\left(a^{2}\right)=d(a) a+a d(a)=<a, d(a)>$. Let I be the above-mentioned Jordan ideal. Since $\left[d\left(a^{2}\right), a\right]=0$ for all $a \in I$, we have $\left[d(a), a^{2}\right]=0$, i.e. $d(a) a^{2}=a^{2} d(a)$ for all $a \in I$. In the next step, we show that $\left(d\left(a^{2}\right)\right)^{2} a=0$ for all $a \in \mathcal{I}$. By using the equality (ii) and the assumptions that $\operatorname{ad}(a) a=0$ and $d\left(a^{2}\right) \in Z(\Re)$ for all $a \in \mathcal{I}$, we have

$$
\begin{aligned}
\left(d\left(a^{2}\right)\right)^{2}=<a, d(a)>^{2} & =\ll a, d(a)>a, d(a)>+[<a, d(a)>, d(a)] a \\
& =\ll a, d(a)>a, d(a)>=<a d(a) a+d(a) a^{2}, d(a)> \\
& =<d(a) a^{2}, d(a)>=d(a) a^{2} d(a)+d(a) d(a) a^{2} \\
& =d(a) a^{2} d(a)+d(a) a^{2} d(a) \\
& =2 d(a) a^{2} d(a) .
\end{aligned}
$$

Therefore, we have

$$
<a, d(a)>^{2} a=\left(d\left(a^{2}\right)\right)^{2} a=2 d(a) a^{2} d(a) a=2 d(a) a a d(a) a=0, \text { for all } a \in I
$$

Evidently, $d\left(a^{2}\right) \in Z(\Re)$ causes that $\left(d\left(a^{2}\right)\right)^{2} \in Z(\Re)$ as well. Thus $\left(d\left(a^{2}\right)\right)^{3}=<a, d(a)>^{3}=\ll a, d(a)>^{2}$ $a, d(a)>+\left[<a, d(a)>^{2}, d(a)\right] a=0$ for all $a \in I$. Hence, $\left(d\left(a^{2}\right)\right)^{4}=<a, d(a)>^{4}=0$ for all $a \in I$ and so
$<a, d(a)>^{2} x<a, d(a)>^{2}=<a, d(a)>^{4} x=0$ for all $x \in \Re$. The primeness of \mathfrak{R} forces $<a, d(a)>^{2}=0$ for all $a \in I$. Similarly, since $<a, d(a)>\in Z(\Re)$, we have $<a, d(a)>x<a, d(a)>=<a, d(a)>^{2} x=0$ for all $x \in \mathfrak{R}$. Reusing the primeness of \mathfrak{R} implies that $\langle a, d(a)\rangle=0$, i.e. $d\left(a^{2}\right)=0$ for all $a \in \mathcal{I}$. Here, Lemma 2.23 completes the proof.

Corollary 2.25. Let \mathfrak{R} be a (commutative or non-commutative) 2-torsion free prime ring, \mathcal{I} be a non-zero Jordan ideal of \mathfrak{R}, and let $\mathfrak{L}: \mathfrak{R} \rightarrow \mathfrak{R}$ be a Jordan left derivation such that $a \mathfrak{L}(a) a=0$ for all $a \in \mathcal{I}$. Then, \mathfrak{L} is identically zero.

Proof. It follows from Theorem 2 of [23] that \mathfrak{L} is a derivation which maps \mathfrak{R} into $Z(\mathfrak{R})$. Therefore, all the assumptions of Proposition 2.24 are fulfilled and consequently, our objective is achieved.

We feel that in Corollary 2.25, the assumption $a \mathfrak{L}(a) a=0$ for all $a \in \mathcal{I}$ can be removed. But we are unable to prove the result without this requirement.

A discussion on the presented conjecture in [9]:

After reviewing examples concerning UMV-property, it was seen that the spectrum of such elements is contained in the real numbers set (see Conjecture 2.12 in [9]). For example, let \mathcal{A} be a unital Banach algebra and $a \in \mathcal{A}$ be an idempotent element. We know that a has the UMV-property and clearly, $\mathfrak{S}(a)=\{0,1\}$. Let \mathcal{A} be a commutative unital Banach algebra. It follows from Theorem 1.3.4 of [16] that $\mathfrak{S}(a)=\left\{\varphi(a) \mid \varphi \in \Phi_{\mathcal{A}}\right\}$. Moreover, we know that every character is continuous (see Theorem 3.1.3 of [7]). Suppose that $a \in \mathcal{A}$ has the UMV-property. It means that for every closed interval $[\alpha, \beta] \subseteq \mathbb{R}$ there exists an element $c_{\alpha, \beta} \in(\alpha, \beta)$ such that $e^{\beta a}-e^{\alpha a}=(\beta-\alpha) a e^{a c_{\alpha, \beta}}$. If φ is an arbitrary character on \mathcal{A}, then we have

$$
\varphi\left(e^{\beta a}-e^{\alpha a}\right)=\varphi\left((\beta-\alpha) a e^{a c_{\alpha, \beta}}\right)=(\beta-\alpha) \varphi(a) \varphi\left(e^{a c_{\alpha, \beta}}\right) .
$$

Since φ is a continuous linear mapping, we obtain that

$$
e^{\beta \varphi(a)}-e^{\alpha \varphi(a)}=(\beta-\alpha) \varphi(a) e^{c_{\alpha, \beta} \varphi(a)}
$$

Having considered $z=\varphi(a) \in \mathbb{C}$, the above-mentioned equality turns into

$$
\begin{equation*}
e^{\beta z}-e^{\alpha z}=(\beta-\alpha) z e^{c_{\alpha, \beta} z} \tag{6}
\end{equation*}
$$

It is clear that $z=0$ is a result of equation (6). We know that function $f(x)=e^{x}$ is continuous on the closed interval $[\alpha, \beta]$ and also is differentiable on the open interval (α, β). So, by the classical mean value theorem, we obtain that $f(\beta)-f(\alpha)=(\beta-\alpha) f^{\prime}\left(c_{\alpha, \beta}\right)$ for come $c_{\alpha, \beta} \in(\alpha, \beta)$. It means that

$$
e^{\beta}-e^{\alpha}=(\beta-\alpha) e^{c_{\alpha, \beta}}
$$

Therefore, $z=1$ is another result of equation (6). Using MATLAB software to solve equation (6), we see that this software acquires $z=0,1$ as the results of this equation.

Based on the above discussion, we see that if \mathcal{A} is a unital, commutative Banach algebra and $a \in \mathcal{A}$ has the UMV-property, then $\circlearrowleft(a) \subseteq \mathbb{R}$.

Acknowledgements The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper. Moreover, we would like to thank Dr. Fatemeh Ghomanjani for her help to solve equation (6) by using MATLAB software.

References

[1] S. Ali, On Generalized Left Derivations in Rings and Banach Algebras, Aequat. Math. 81 (2011), 209-226.
[2] M. Ashraf and N. Rehman, On Lie ideals and Jordan left derivatins of prime rings, Arch. Math. (Brno). 36 (2000), 201-206.
[3] M. Ashraf, S. Ali, N. Rehman and M. R. Mozumder, On generalized left (α, β)-derivations in rings , Bull. Iranian. Math. Soc. 38 (2012), 893-905.
[4] M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 1404 (1988), 1003-1006.
[5] M. Bres̆ar and J. Vukman, On Left Derivations and Related Mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.
[6] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, 2000.
[7] H. G. Dales, Pietro Aiena, Jorg Eschmeier, Kjeld Laursen and George A. Willis, Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge University Press, 2003.
[8] A. Hosseini, A characterization of weak n_{m}-Jordan (α, β)-derivations by generalized centralizers, Rend. Circ. Math. Palermo. 64 (2015), 221-227.
[9] A. Hosseini, A characterization of derivations on uniformly mean value Banach algebras, Turkish J. Math. 40 (2016), 1058-1070.
[10] A. Hosseini, Some conditions under which derivations are zero on Banach *-algebras, Acta Univ. Sapientiae, Mathematica, 9 (2017), 176-184.
[11] A. Hosseini, Commutativity of Banach Algebras Characterized by Primitive Ideals and Spectra, Filomat, 31 (2017), 2053-2060.
[12] A. Hosseini, M. Hassani, A. Niknam and S. Hejazian, Some results on σ-Derivations, Ann. Funct. Anal. 2 (2011), 75-84.
[13] Y. S. Jung, On left derivations and derivations of Banach algebras, Bull. Korean Math. Soc. 35 (1998), 659-667.
[14] B. E. Johnson and A. M. Sinclair,Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 10681073.
[15] I. Kaplansky, Projections in Banach Algebras, Ann. of Math. 53 (2) (1951), 235-249.
[16] G. J. Murphy, C*-Algebras and Operator Theory. Boston Academic Press, (1990).
[17] L. Oukhtite, A. Mamounib, C, Beddani, Derivations and Jordan ideals in prime rings, J. Taibah Univ. Sci. 8 (2014), 364369.
[18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[19] S. Pedersen, Anticommuting derivations, Proc. Amer. Math. Soc. 127 (1999), 1103-1108.
[20] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge University Press, Cambridge, 1991.
[21] N. Shahzad, Jordan and Left Derivations on Locally C*-algebras, Southeast Asian Bull. Math. 31 (2007), 1183-1190.
[22] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag Berlin Heidelberg New York, 2001.
[23] J. Vukman, On Left Jordan Derivations of Rings and Banach Algebras, Aequat. Math. 75 (2008), 260-266.
[24] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin, 32 (4) (1991), 609-614.

[^0]: 2010 Mathematics Subject Classification. Primary 47B47; Secondary 13N15, 17B40
 Keywords. derivation, left derivation, Jordan left derivation.
 Received: 29 December 2015; Accepted: 05 February 2017
 Communicated by Dragan S. Djordjević
 Email address: hosseini.amin82@gmail.com (Amin Hosseini)

