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Abstract. In this study, we show that every continuous Jordan left derivation on a (commutative or non-
commutative) prime UMV-Banach algebra with the identity element 1 is identically zero. Moreover, we
prove that every continuous left derivation on a unital finite dimensional Banach algebra, under certain
conditions, is identically zero. As another result in this regard, it is proved that if R is a 2-torsion free
semiprime ring such that ann{[y, z] | y, z ∈ R} = {0}, then every Jordan left derivation L : R → R is
identically zero. In addition, we provide several other results in this regard.

1. Introduction and Preliminaries

Throughout the paper, R denotes an associative ring. Before everything else, let us recall some basic
definitions and set the notations which we use in the sequel. A ring R is called unital if there exists an
element 1 ∈ R such that x1 = 1x = x holds for all x ∈ R. A ring R is said to be a domain if R , {0} and x = 0
or y = 0, whenever xy = 0 in R. A ring R is called prime if for x, y ∈ R, xRy = {0} implies x = 0 or y = 0,
and is semiprime in case xRx = {0} implies x = 0. Let S be a subset of a ring R. The left annihilator of S
is lann(S) := {x ∈ R | xS = {0}}. Similarly, the right annihilator of S is rann(S) := {x ∈ R | Sx = {0}}. The
annihilator of S is defined as ann(S) := lann(S) ∩ rann(S). A ring R is called simple if R2 , {0} and {0} and
R are the only ideals in R. Recall that the center of a ring R is Z(R) := {x ∈ R | xy = yx f or all y ∈ R}. The
above-mentioned definitions and notations are also considered for algebras.

Let A be an associative algebra. A non-zero linear functional ϕ on an algebra A is called a character if
ϕ(ab) = ϕ(a)ϕ(b) for every a, b ∈ A. Throughout this article, ΦA denotes the set of all characters on A. As
usual, the set of all primitive ideals is denoted by Π(A). The Jacobson radical of an algebraA is defined to be
the intersection of the primitive ideals ofA; it is denoted by rad(A). In deed, rad(A) =

⋂
P∈Π(A)P. An algebra

A is semisimple if rad(A) = {0}. IfA is a ∗-algebra, then S(A) denotes the set of all self-adjoint elements ofA
(i.e., S(A) := {s ∈ A | s∗ = s}) and P(A) denotes the set of all projections inA (i.e., P(A) := {p ∈ A | p2 = p, p∗ =
p}). The set of those elements inA which can be represented as finite real-linear combinations of mutually
orthogonal projections is denoted by OA. Of course, P(A) ⊆ O(A) ⊆ S(A). In the case of a von Neumann
algebra A, the set O(A) is norm dense in S(A). More generally, this is true for AW∗-algebras. Recall that
the spectrum of an arbitrary element a of an algebraA isS(a) := {λ ∈ C | λ1− a is not invertible inA}, where
1 stands for the identity element of A. The above-mentioned definitions and concepts can all be found in
[6, 15, 16, 20, 22].
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A linear mapping d : A→A is called a derivation if d(ab) = d(a)b + ad(b) holds for all pairs a, b ∈ A and
is called a Jordan derivation in case d(a2) = d(a)a + ad(a) is fulfilled for all a ∈ A. A left derivation on A is
a linear mapping L : A → A if L(ab) = aL(b) + bL(a) holds for all pairs a, b ∈ A and is called a Jordan left
derivation if L(a2) = 2aL(a) is fulfilled for all a ∈ A. Recently, a number of authors ([1, 8, 13, 21, 23]) have
studied left derivations and various generalized notions of them in the context of pure algebra, extensively.
As a pioneering work, Bres̆ar and Vukman [5] proved that every left derivation on a semiprime ring R is a
derivation which maps R into its center. Furthermore, they also showed that ifA is a Banach algebra, then
every continuous left derivation L : A→AmapsA into its radical. The question under which conditions
left derivations and derivations are zero on a given Banach algebra have attracted much attention of authors
(for instance, see [1, 5, 8–11, 13, 18, 21, 23]). In this paper, we also concentrate on this topic. This research
has been motivated by the works [5, 9, 19, 23]. First, we present a definition as follows. An element a of a
unital Banach algebraA has the uniformly mean value property (UMV-property, briefly) if for every closed
interval [α, β] ⊆ R there exists a real number cα,β ∈ (α, β) such that eβa

− eαa = (β − α)aecα,βa. A unital Banach
algebra A is called UMV-Banach algebra if every element of A has the UMV-property. As a result in the
current paper, we prove that every continuous left derivation on a unital, prime UMV-Banach algebra is
identically zero. Clearly, the same result is true for continuous left derivations on a unital UMV-Banach
algebra which also is a domain. In this work, we try to make clear the status of continuous left derivations
on unital finite dimensional Banach algebras as follows. Let n be a positive integer and let A be an n-
dimensional unital Banach algebra with the basis B = {b1, b2, . . . , bn}. Suppose that for every integer k,
1 ≤ k ≤ n, an ideal Ik generated by B − {bk} is a proper subset ofA. Then every continuous left derivation
on A is identically zero. Furthermore, it is proved that if R is a 2-torsion free semiprime ring such that
ann{[y, z] | y, z ∈ R} = {0}, then every Jordan left derivation L : R→ R is identically zero. As another result
in this regard, we show that every continuous Jordan left derivation on a normed ∗-algebra A satisfying
O(A) = S(A) is identically zero. In 2008, J. Vukman proved that every Jordan left derivation on a semisimple
Banach algebra is zero (see [23], Theorem 4). We believe he could prove this theorem easier. In this article,
we establish a simpler proof of that theorem.

2. Main Results

We begin with the following definition which has been presented in [9].

Definition 2.1. Let A be a unital Banach algebra. An element a of A has the uniformly mean value property
(UMV-property, briefly) if for every closed interval [α, β] ⊆ R there exists an element cα,β ∈ (α, β) such that
eβa
− eαa = (β − α)aeacα,β . A unital Banach algebraA is called UMV if every element ofA has the UMV-property.

Let a be an idempotent element of a unital Banach algebraA, i.e. a2 = a. We have

eta =

∞∑
n=0

tnan

n!
= 1 +

∞∑
n=1

tna
n!

= 1 +

∞∑
n=0

tna
n!
− a

= eta − a + 1

for all t ∈ R. Hence,

eβa
− eαa = eβa − a + 1 − (eαa − a + 1) = (eβ − eα)a. (1)

According to the classical mean value theorem for the function f (t) = et on [α, β], there exists an element
cα,β ∈ (α, β) such that eβ − eα = (β − α)ecα,β . This equality along with (1) imply that, eβa

− eαa = (β − α)ecα,βa.
Now, we show that ecα,βa = aecα,βa. We have

aecα,βa = a(ecα,βa − a + 1) = ecα,βa2
− a2 + a = ecα,βa − a + a = ecα,βa.
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Thus, eβa
− eαa = (β − α)aecα,βa. This means that a has the UMV-property.

In the following theorem,A denotes a unital Banach algebra.

Theorem 2.2. Let L : A→A be a left derivation and let b ∈ A has the UMV-property. Assume that f (b)L(b) = 0
forces f (b) = 0 orL(b) = 0 for some function f . Moreover, suppose thatL(ec0,1b) = c0,1ec0,1bL(b), where c0,1 ∈ (0, 1) ⊆ R
is obtained from the UMV-property of b and further L(eb) = ebL(b). Then L(b) = 0.

Proof. If b = 0, then there is nothing to be proved. Let b be a non-zero element of A having the UMV-
property. Hence, there exists an element c0,1 = c of (0,1) such that eb

− 1 = becb. Using the latest equality
along with the aforementioned assumptions that L(ecb) = cecbL(b) and L(eb) = ebL(b), we deduce that
0 = ebL(b) − L(1) − bL(ecb) − ecbL(b) = ebL(b) − cbecbL(b) − ecbL(b). Indeed, we have (eb

− cbecb
− ecb)L(b) = 0.

This equation along with the hypothesis that f (b)L(b) = 0 forces f (b) = 0 or L(b) = 0, imply that L(b) = 0 or
eb
− cbecb

− ecb = 0. If L(b) = 0, then our goal is achieved. If not, suppose that

eb
− cbecb

− ecb = 0. (2)

Therefore,

0 = L(eb
− cbecb

− ecb) = ebL(b) − c
(
bL(ecb) + ecbL(b)

)
− cecbL(b)

=
(
eb
− c2becb

− 2cecb
)
L(b).

Reusing the above supposition, we obtain that eb
− c2becb

− 2cecb = 0 or L(b) = 0. If L(b) = 0, then we get the
required result. If not, eb

− c2becb
− 2cecb = 0. So, we have

eb = cecb(cb + 2). (3)

Comparing (2) and (3), we find that cecb(cb + 2) = ecb(cb + 1). From this and using the fact that ecb is an
invertible element ofA, we arrive at b = 1−2c

c(c−1) 1. It implies that L(b) = 0 and our assertion is achieved.

An immediate corollary of Theorem 2.2 reads as follows.

Corollary 2.3. Every continuous left derivation on a unital UMV-Banach algebra which is also a domain is identically
zero.

Proof. Let A be a unital UMV-Banach algebra which is also a domain and let L : A → A be a continuous
left derivation. Evidently, L(ea) = eaL(a) holds for all a ∈ A. Now, Theorem 2.2 is exactly what we need to
complete the proof.

By using an argument similar to the proof of Theorem 2.2, we show that every Jordan left derivation
on a commutative or non-commutative prime Banach algebra, under certain conditions, is identically zero.
Recall that an algebraA is prime if aAb = {0} implies that a = 0 or b = 0

Theorem 2.4. Let A be a (commutative or non-commutative) prime Banach algebra with the identity element 1,
L : A → A be a Jordan left derivation, and let b ∈ A has the UMV-property. Suppose that L(ec0,1b) = c0,1ec0,1bL(b),
where c0,1 ∈ (0, 1) ⊆ R is obtained from the UMV-property of b and further L(eb) = ebL(b). In this case L(b) = 0.

Proof. It follows from Theorem 2 of [23] that L is a derivation mapping A into Z(A). If b = 0, then there
is nothing to be proved. Let b be a non-zero element of A having the UMV-property. Hence, there exists
an element c0,1 = c of (0,1) such that eb

− 1 = becb. Using the latest equality along with the aforementioned
assumptions that L(ecb) = cecbL(b) and L(eb) = ebL(b), we deduce that 0 = ebL(b) − L(1) − bL(ecb) − ecbL(b) =
ebL(b) − cbecbL(b) − ecbL(b). Indeed, we have (eb

− cbecb
− ecb)L(b) = 0. From this and using the fact that

L(A) ⊆ Z(A), we obtain that 0 = (eb
− cbecb

− ecb)L(b)a = (eb
− cbecb

− ecb)aL(b) for all a ∈ A. The primeness of
A forces that L(b) = 0 or eb

− cbecb
− ecb = 0. If L(b) = 0, then our goal is achieved. If not, suppose that

eb
− cbecb

− ecb = 0. (4)
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Therefore,

0 = L(eb
− cbecb

− ecb) = ebL(b) − c
(
bL(ecb) + ecbL(b)

)
− cecbL(b)

=
(
eb
− c2becb

− 2cecb
)
L(b).

Since L(A) ⊆ Z(A) and A is prime, eb
− c2becb

− 2cecb = 0 or L(b) = 0. If L(b) = 0, then we get the required
result. If not, eb

− c2becb
− 2cecb = 0. So, we have

eb = cecb(cb + 2). (5)

Comparing (4) and (5), we obtain that cecb(cb + 2) = ecb(cb + 1). From this and using the fact that ecb is an
invertible element of A, we arrive at b = 1−2c

c(c−1) 1. It implies that L(b) = 0. This completes the proof of our
theorem.

An immediate conclusion is:

Corollary 2.5. Every continuous Jordan left derivation on a unital, prime UMV-Banach algebra is identically zero.

Theorem 2.6. Let A be a Banach algebra and let P be a proper closed ideal of finite codimension in A such that
a ∈ P or b ∈ P whenever ab ∈ P. If L : A→A is a continuous left derivation, then L(A) ⊆ P.

Proof. According to page 42 of [6],P is a prime ideal inA. It is clear that the quotient algebra A
P

is a domain.
It follows from Corollary 1.4.38 of [6] that P is a primitive ideal of A and the proof of Theorem 2.1 of [5]
implies that L(P) ⊆ P. Since L(P) ⊆ P, the linear mapping Λ : A

P
→

A

P
defined by Λ(a + P) = L(a) + P

(a ∈ A) is a well-defined left derivation. It follows from Proposition 1.3.56 of [6] that A
P

= C1, and we
deduce that Λ is identically zero. Consequently, L(A) ⊆ P.

Here, we focus on the image of Jordan left derivatives to show that every Jordan left derivation, under
certain circumstances, on a prime algebra is zero.

Theorem 2.7. LetA be a unital, prime algebra, and let L : A→A be a Jordan left derivation. If the rank of L is at
most one, i.e. dim(L(A)) ≤ 1, then L is identically zero.

Proof. It follows from Theorem 2 of [23] that L is a derivation mapping A into Z(A). If dim(L(A)) = 0,
then there is nothing to be proved. Suppose that dim(L(A)) = 1. So, we can consider a non-zero element
x of A and a functional Ω : A → C such that L(a) = Ω(a)x for all a ∈ A. We are going to show that
L is identically zero. To obtain a contradiction, assume that there exists an element a0 ∈ A such that
L(a0) , 0. So, Ω(a0) , 0, too. Assume that L(x) = 0. So, Ω(x)x = 0 and it implies that Ω(x) = 0. We have
Ω(a2

0)x = L(a2
0) = 2a0L(a0) = 2Ω(a0)a0x. Therefore,

0 = Ω(a2
0)L(x) = L(Ω(a2

0)x) = L(2Ω(a0)a0x)

= 2Ω(a0)
(
xL(a0) + a0L(x)

)
= 2Ω(a0)xL(a0).

It means that 2Ω(a0)xL(a0) = 0 and so, xL(a0) = 0. From this and using the fact that L(A) ⊆ Z(A), we obtain
that 0 = xL(a0)a = xaL(a0) for all a ∈ A. The primeness ofA forces x = 0 or L(a0) = 0, a contradiction. Now,
suppose that L(x) , 0. Clearly, Ω(x) , 0, too. Note that

Ω(x2)x = L(x2) = 2xL(x) = 2Ω(x)x2.

Hence, we have

0 = L
(
Ω(x2)x − 2Ω(x)x2

)
= Ω(x2)L(x) − 4Ω(x)xL(x)

=
(
Ω(x2)1 − 4Ω(x)x

)
L(x).
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From the former equation and using the fact L(A) ⊆ Z(A), we have 0 =
(
Ω(x2)1 − 4Ω(x)x

)
L(x)a =(

Ω(x2)1 − 4Ω(x)x
)
aL(x) for all a ∈ A. The primeness of A implies that L(x) = 0, a contradiction, or

Ω(x2)1 − 4Ω(x)x = 0. Thus, 0 = L
(
Ω(x2)1 − 4Ω(x)x

)
= 0 − 4Ω(x)L(x) and since Ω(x) , 0, it is concluded

that L(x) = 0. But this is a contradiction of the supposition that L(x) , 0. We see that both cases L(x) = 0
and L(x) , 0 lead to a contradiction. This contradiction shows that there is no element a0 of A such that
L(a0) , 0. Thereby, L is identically zero.

Corollary 2.8. Let A be a unital, prime algebra, and let L : A → A be a non-zero Jordan left derivation. Then,
dim(L(A)) ≥ 2.

Applying Theorem 2.7, we show that continuous left derivations on unital finite-dimensional Banach
algebras, under certain conditions, are zero. Let n be a positive integer, and let A be an n-dimensional
unital Banach algebra with the basis B = {b1, b2, . . . , bn}. We prove the following theorem.

Theorem 2.9. Suppose that for every integer k, 1 ≤ k ≤ n, an ideal Ik generated by B− {bk} is a proper subset ofA.
Then every continuous left derivation onA is identically zero.

Proof. It is easy to see that every Ik, 1 ≤ k ≤ n, is a maximal ideal of A. Suppose that Ik is not a maximal
ideal of A for some k, 1 ≤ k ≤ n. Then there exists a maximal idealMk of A such that Ik ⊂ Mk ⊂ A. But
then n − 1 = dim(Ik) < dim(Mk) < n, a contradiction. Hence, every Ik, 1 ≤ k ≤ n, must be a maximal
ideal of A. It follows from Proposition 1.4.34 and Theorem 2.2.28 in [6] that Ik, 1 ≤ k ≤ n, are closed
primitive ideals ofA. Moreover, according to Proposition 1.4.34 of [6], Ik, 1 ≤ k ≤ n, are also prime ideals
of A. Thus, the quotient algebra A

Ik
is a prime algebra. Let L : A → A be a continuous left derivation. In

view of Theorem 2.1 of [5], we obtain L(Ik) ⊆ Ik, 1 ≤ k ≤ n. Thus, the mapping Λ : A
Ik
→

A

Ik
defined by

Λ(a + Ik) = L(a) + Ik is a left derivation. Since dim(A
Ik

) = 1 for every 1 ≤ k ≤ n, it follows from Theorem
2.7 that the left derivation Λ : A

Ik
→

A

Ik
is identically zero. It means that L(A) ⊆ Ik, for every k ∈ {1, 2, ...,n}.

Hence, L(A) ⊆
⋂n

k=1 Ik. Assume towards a contradiction that there exists an element a0 of A such that
L(a0) , 0. Since B = {b1, b2, ..., bn} is a basis forA, there exist the complex numbers αi j , and the elements bi j

of B such that

L(a0) =

m∑
j=1

αi j bi j = αi1 bi1 + αi2 bi2 + ... + αim bim , (m ≤ n).

Since L(A) ⊆ Ik for every k ∈ {1, 2, ...,n}, we may assume that L(A) ⊆ Ii1 . Therefore, we have

L(a0) = αi1 bi1 + αi2 bi2 + ... + αim bim ∈ Ii1 .

The previous equation shows that bi1 ∈ Ii1 , which it is a contradiction. This contradiction proves the claim
that L is identically zero onA.

Remark 2.10. Let A be a semisimple Banach algebra with the identity element 1, and let L : A → A be a linear
map satisfying L(ab) = aL(b) − bL(a) for all a, b ∈ A. We claim that L is identically zero. Clearly, L(1) = 0. For
every invertible element x ∈ A, we have L(x) = x2L(x−1). It follows from Theorem 5 of [23] that L(a) = aL(1) = 0
for all a ∈ A. It means that L is zero.

In the following theorem we show that there are no nonzero continuous Jordan left derivations on
normed ∗-algebras with O(A) = S(A).

Theorem 2.11. Every continuous Jordan left derivation on a normed ∗-algebra A satisfying O(A) = S(A) is
identically zero.
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Proof. Let L : A → A be a continuous Jordan left derivation. We have to prove that L(s) = 0 for all
s ∈ S(A). Namely, for every a ∈ A, there exist s1, s2 ∈ S(A) such that a = s1 + is2, where i denotes the
imaginary unit. Thus, L(a) = L(s1 + is2) = L(s1) + iL(s2) = 0. So, let p ∈ A be an arbitrary projection. We
have L(p) = L(p2) = 2pL(p). This yields that pL(p) = 2pL(p) and, thus, pL(p) = 0. Therefore, we conclude
that L(p) = 0 for all projection p ∈ P(A). Let x be an arbitrary element of O(A). Hence, x =

∑m
j=1 r jp j,

where p1, p2, . . . , pm are mutually orthogonal projections in A and r1, r2, . . . , rm are real numbers. We have
L(x) = L(

∑m
j=1 r jp j) =

∑m
j=1 r jL(p j) = 0. Since O(A) = S(A), L(s) = 0 for every s ∈ S(A), as desired.

It is evident that if A is a unital Banach algebra and L : A → A is a continuous left derivation, then
L(ea) = eaL(a) holds for all a ∈ A. We may think that this equation is valid only if L is continuous. In
this work, we establish an example to show that the equation L(ea) = eaL(a) can be fulfilled for some
discontinuous (equivalently, unbounded) left derivations. The following problem has been raised in [9].
Here, we answer it.

Problem 2.12. Let d : A→A be a derivation satisfying d(ea) = ead(a) for all a ∈ A. Is d a continuous operator?

We give a negative answer to the above question. Indeed, we define a discontinuous derivation (left
derivation) D on a given Banach algebra B satisfying D(eb) = ebD(b) for all b ∈ B. Let A be a Banach
algebra. ConsiderB = C

⊕
A as an algebra with pointwise addition, scalar multiplication and the product

(α, a).(β, b) = (αβ, αb + βa) for all a, b ∈ A and α, β ∈ C. The algebra B with the norm ‖(α, a)‖ = |α| + ‖a‖ is a
Banach algebra. Clearly, B is a unital commutative Banach algebra (see [12]). Suppose that T : A → A is
an unbounded linear map. Define D : B → B by D(α, a) = (0,T(a)). It is evident that D is an unbounded
linear map. Furthermore, we have

D((α, a)(β, b)) = D(αβ, αb + βa)
= (0, αT(b) + βT(a))
= (α, a)(0,T(b)) + (β, b)(0,T(a))
= (α, a)D(β, b) + D(α, a)(β, b)
= (α, a)D(β, b) + (β, b)D(α, a)

Since B is a commutative algebra, D is both a left derivation and a derivation on B. Note that e(α,a) =∑
∞

n=0
(αn,nαn−1a)

n! = (eα, eαa). Thus, D(e(α,a)) = D(eα, eαa) = (0,T(eαa)) = (0, eαT(a)) for all a ∈ A, α ∈ C. On
the other hand, e(α,a)D(α, a) = (eα, eαa)(0,T(a)) = (0, eαT(a)). Therefore, D(e(α,a)) = e(α,a)D(α, a) while D is an
unbounded derivation (left derivation) on B.

The following theorem has been proved by Vukman [23]. Below, we prove it using a simpler proof.

Theorem 2.13. Let A be a semisimple Banach algebra and let L : A → A be a Jordan left derivation. Then L is
identically zero.

Proof. We know that every semisimple algebra is also semiprime. It follows from Theorem 2 of [23] that
L is a derivation mapping A into Z(A). We therefore have L(ab) = L(a)b + aL(b) = aL(b) + bL(a) and it
means that L is a left derivation, as well. Since L is a derivation, Remark 4.3 of [14] implies that L is
continuous. Therefore, L is a continuous left derivation. At this moment, Theorem 2.1 of [5] implies that
L(A) ⊆ rad(A) = {0}. Thereby, our goal is achieved.

Applying the above-mentioned argument, we can achieve the following theorem.

Theorem 2.14. LetA be a Banach algebra, L : A → A be a Jordan left derivation, and let P be a primitive ideal of
A. If L(P) ⊆ P, then L(A) ⊆ P.

Proof. Straightforward.

By getting idea from [1], we define an l-two variable left derivation (resp. Jordan l-two variable left
derivation) as follows.
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Definition 2.15. A biadditive mapping Λ : R×R→ R is called an l-two variable left derivation (resp. Jordan l-two
variable left derivation) if Λ(xy, z) = xΛ(y, z) + yΛ(x, z) (resp. Λ(x2, y) = 2xΛ(x, y)) holds for all x, y, z ∈ R.

For example, if L : R → R is a left derivation, then Λ : R × R → R defined by Λ(x, y) = L(x)y is an l-two
variable left derivation. Because Λ(xy, z) = L(xy)z = xL(y)z + yL(x)z = xΛ(y, z) + yΛ(x, z) holds for all
x, y, z ∈ R.

Lemma 2.16. Let R be a 2-torsion free semiprime ring, and let Λ : R × R → R be a Jordan l-two variable left
derivation. In this case Λ(R ×R) ⊆ Z(R).

Proof. For an arbitrary fixed element y ∈ R, we define Ly : R → R by Ly(x) = Λ(x, y). Clearly, Ly(x2) =
Λ(x2, y) = 2xΛ(x, y) = 2xLy(x) for all x ∈ R. It means that Ly is a Jordan left derivation on R. By Theorem
2 of [23], Ly is a derivation mapping R into Z(R). Hence, Λ(x, y) = Ly(x) ∈ Z(R) for all x ∈ R. Since we
are assuming that y is an arbitrary element of R, Λ(x, y) ∈ Z(R) for all x, y ∈ R. This proves the lemma
completely.

Theorem 2.17. Let R be a 2-torsion free semiprime ring, and let L : R → R be a Jordan left derivation. Then,
L(x)[y, z] = 0 for all x, y, z ∈ R.

Proof. If R is commutative, then there is nothing to be proved. Now, suppose that R is a non-commutative
ring. We know that the biadditive map Λ : R ×R→ R defined by Λ(x, y) = L(x)y is a Jordan l-two variable
left derivation. Note that L(R) ⊆ Z(R) (see Theorem 2 of [23]). Application of Lemma 2.16 yields that
L(x)y = Λ(x, y) ∈ Z(R) for all x, y ∈ R. Therefore, we have 0 = [L(x)y, z] = L(x)[y, z] + [L(x), z]y = L(x)[y, z]
for all x, y, z ∈ R. It means that L(x)[y, z] = 0 for all x, y, z ∈ R. Since L(R) ⊆ Z(R), it is observed that
L(R) ⊆ ann{[y, z] | y, z ∈ R}.

In the next corollary, we show that every Jordan left derivation on a non-commutative semiprime ring,
under certain conditions, is identically zero.

Corollary 2.18. Let R be a 2-torsion free semiprime ring such that ann{[y, z] | y, z ∈ R} = {0}. Then every Jordan
left derivation L : R→ R is identically zero.

Proof. This is an immediate consequence of Theorem 2.17.

It is clear that if ann{[y, z] | y, z ∈ R} = {0}, then R is a non-commutative ring. Let R be a semiprime
ring and a ∈ lann{[y, z] | y, z ∈ R}. It follows from Lemma 1.3 of [24] that a ∈ Z(R). It means that
lann{[y, z] | y, z ∈ R} ⊆ Z(R). Similarly, we can see that rann{[y, z] | y, z ∈ R} ⊆ Z(R), too. Therefore,
lann{[y, z] | y, z ∈ R}

⋃
rann{[y, z] | y, z ∈ R} ⊆ Z(R).

Theorem 2.19. LetA be a unital, prime algebra, and letL : A→A be a Jordan left derivation. If dim
(
ann{[a, b] | a, b ∈

A}

)
≤ 1, then L is identically zero.

Proof. Applying Theorems 2.7 and 2.17, we achieve our goal.

In the following theorem, we investigate Jordan left derivations on simple rings.

Theorem 2.20. LetR be a non-commutative 2-torsion free simple ring, and let L : R→ R be a Jordan left derivation.
In this case L = 0.

Proof. It is obvious that R is semiprime. According to Theorem 2.17, L(x)[y, z] = 0 for all x, y, z ∈ R. It
follows from Lemma 1.3 of [24] that for every x ∈ R there exists an ideal Ix of R such that L(x) ∈ Ix ⊆ Z(R).
Since R is a simple ring, either Ix = {0} or Ix = R. If Ix = R, then we have R = Ix ⊆ Z(R) and so R is
commutative, a contradiction. Hence Ix = {0}, and since L(x) ∈ Ix, L(x) = 0. Since x is an arbitrary element
of R, our assertion is proved.
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M. Bres̆ar and J. Vukman [[5], Corollary 1.3] proved that every Jordan left derivation on a non-
commutative 2-torsion free and 3-torsion free prime ring is identically zero. Here, we prove the same
result without using the assumption that the ring is 3-torsion free.

Theorem 2.21. LetR be a non-commutative 2-torsion free prime ring, and let L : R→ R be a Jordan left derivation.
In this case, L is zero.

Proof. According to Theorem 2.17, L(x)[y, z] = 0 for all x, y, z ∈ R. It follows from Theorem 2 of [23] that
L(R) ⊆ Z(R). Therefore, we have 0 = rL(x)[y, z] = L(x)r[y, z] for all x, y, z, r ∈ R. The primeness of R forces
that L(x) = 0 or [y, z] = 0. Since R is non-commutative and also x is an arbitrary element of R, L = 0 is
achieved.

Theorem 2.22. Let R be a 2-torsion free, unital, simprime ring and let L : R → R be a Jordan left derivation. If
there exists an element x0 of R such that L(x0) is invertible, then R is commutative.

Proof. It follows from Theorem 2.17 that L(x)[y, z] = 0 for all x, y, z ∈ R. Thus, L(x0)[y, z] = 0 for all y, z ∈ R.
This equation along with the assumption that L(x0) is invertible imply that [y, z] = 0 for all y, z ∈ R, and
consequently, R is commutative.

In Proposition 2.24, we show that every Jordan derivation on a (commutative or non-commutative)
2-torsion free prime ring is identically zero. To get such results, most authors assume that a ring or an
algebra to be non-commutative. But in the following proposition, we do not use this assumption. We need
the following lemma to establish Proposition 2.24.

Lemma 2.23. [[17], Lemma 2.2] Let R be a 2-torsion free prime ring and I be a non-zero Jordan ideal of R. If d is a
derivation of R such that d(x2) = 0 for all x ∈ I, then d = 0.

Proposition 2.24. Let R be a 2-torsion free prime ring, I be a non-zero Jordan ideal of R, and let d : R → R be a
Jordan derivation such that d(a2) ∈ Z(R) for all a ∈ I. If ad(a)a = 0 for all a ∈ I, then d is identically zero.

Proof. It follows from Theorem 1 of [4] that d is a derivation. In this proof, [a, b] and < a, b > denote ab − ba
and ab + ba, respectively. First, note that
i) [a, b]+ < a, b >= 2ab,
ii) < ab, c >= a < b, c > −[a, c]b,
iii) < a, bc >=< a, b > c − b[a, c]
iv) < a + b, c >=< a, c > + < b, c > and < a, b + c >=< a, b > + < a, c >.
By using the above symbols, we see that d(a2) = d(a)a + ad(a) =< a, d(a) >. Let I be the above-mentioned
Jordan ideal. Since [d(a2), a] = 0 for all a ∈ I, we have [d(a), a2] = 0, i.e. d(a)a2 = a2d(a) for all a ∈ I. In
the next step, we show that (d(a2))2a = 0 for all a ∈ I. By using the equality (ii) and the assumptions that
ad(a)a = 0 and d(a2) ∈ Z(R) for all a ∈ I, we have

(d(a2))2 =< a, d(a) >2 =<< a, d(a) > a, d(a) > +[< a, d(a) >, d(a)]a

=<< a, d(a) > a, d(a) > = < ad(a)a + d(a)a2, d(a) >

=< d(a)a2, d(a) >= d(a)a2d(a) + d(a)d(a)a2

= d(a)a2d(a) + d(a)a2d(a)

= 2d(a)a2d(a).

Therefore, we have

< a, d(a) >2 a = (d(a2))2a = 2d(a)a2d(a)a = 2d(a)aad(a)a = 0, f or all a ∈ I.

Evidently, d(a2) ∈ Z(R) causes that (d(a2))2
∈ Z(R) as well. Thus (d(a2))3 =< a, d(a) >3=<< a, d(a) >2

a, d(a) > +[< a, d(a) >2, d(a)]a = 0 for all a ∈ I. Hence, (d(a2))4 =< a, d(a) >4= 0 for all a ∈ I and so
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< a, d(a) >2 x < a, d(a) >2=< a, d(a) >4 x = 0 for all x ∈ R. The primeness of R forces < a, d(a) >2= 0 for
all a ∈ I. Similarly, since < a, d(a) >∈ Z(R), we have < a, d(a) > x < a, d(a) >=< a, d(a) >2 x = 0 for all
x ∈ R. Reusing the primeness of R implies that < a, d(a) >= 0, i.e. d(a2) = 0 for all a ∈ I. Here, Lemma 2.23
completes the proof.

Corollary 2.25. Let R be a (commutative or non-commutative) 2-torsion free prime ring, I be a non-zero Jordan
ideal of R, and let L : R → R be a Jordan left derivation such that aL(a)a = 0 for all a ∈ I. Then, L is identically
zero.

Proof. It follows from Theorem 2 of [23] that L is a derivation which maps R into Z(R). Therefore, all the
assumptions of Proposition 2.24 are fulfilled and consequently, our objective is achieved.

We feel that in Corollary 2.25, the assumption aL(a)a = 0 for all a ∈ I can be removed. But we are unable
to prove the result without this requirement.

A discussion on the presented conjecture in [9]:
After reviewing examples concerning UMV-property, it was seen that the spectrum of such elements is
contained in the real numbers set (see Conjecture 2.12 in [9]). For example, letA be a unital Banach algebra
and a ∈ A be an idempotent element. We know that a has the UMV-property and clearly, S(a) = {0, 1}. Let
A be a commutative unital Banach algebra. It follows from Theorem 1.3.4 of [16] thatS(a) = {ϕ(a) |ϕ ∈ ΦA}.
Moreover, we know that every character is continuous (see Theorem 3.1.3 of [7]). Suppose that a ∈ A has
the UMV-property. It means that for every closed interval [α, β] ⊆ R there exists an element cα,β ∈ (α, β)
such that eβa

− eαa = (β − α)aeacα,β . If ϕ is an arbitrary character onA, then we have

ϕ(eβa
− eαa) = ϕ((β − α)aeacα,β ) = (β − α)ϕ(a)ϕ(eacα,β ).

Since ϕ is a continuous linear mapping, we obtain that

eβϕ(a)
− eαϕ(a) = (β − α)ϕ(a)ecα,βϕ(a).

Having considered z = ϕ(a) ∈ C, the above-mentioned equality turns into

eβz
− eαz = (β − α)zecα,βz. (6)

It is clear that z = 0 is a result of equation (6). We know that function f (x) = ex is continuous on the closed
interval [α, β] and also is differentiable on the open interval (α, β). So, by the classical mean value theorem,
we obtain that f (β) − f (α) = (β − α) f ′ (cα,β) for come cα,β ∈ (α, β). It means that

eβ − eα = (β − α)ecα,β .

Therefore, z = 1 is another result of equation (6). Using MATLAB software to solve equation (6), we see
that this software acquires z = 0, 1 as the results of this equation.

Based on the above discussion, we see that if A is a unital, commutative Banach algebra and a ∈ A
has the UMV-property, then S(a) ⊆ R.
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