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Abstract. Many popular iterative algorithms have been used to approximate fixed point of contractive type
operators. We define the concept of generalized φ-weakly contractive random operator T on a separable
Banach space and establish Bochner integrability of random fixed point and almost sure stability of T with
respect to several random Kirk type algorithms. Examples are included to support new results and show
their validity. Our work generalizes, improves and provides stochastic version of several earlier results by
a number of researchers.

1. Introduction

Random fixed points are stochastic generalization of classical or deterministic fixed points and are
required for various classes of random operators arising in physical systems (see [3, 4, 14, 15, 17]). Random
fixed point theory was initiated in 1950 by Prague school of probabilists. The machinery of random
fixed point theory provides a convenient way of modelling many problems arising in nonlinear analysis,
probability theory and for a solution of random equations in applied sciences. The study of nonlinear
operators has attracted the attention of many mathematicians in various spaces (see [2, 13–15, 18, 30, 32, 33]
and references therein). Several interesting random fixed point results have been established in [4, 6, 8,
13, 15, 18, 19, 27, 34]. If the exact value of a fixed point of a mapping cannot be found, we approximate
it through a convenient iterative algorithm. With the developments in random fixed point theory, there
has been a renewed interest in random iterative algorithms [4, 6, 8, 13, 27, 34]. In linear spaces, Mann and
Ishikawa iterative algorithms have been extensively applied to fixed point problems [5, 16, 25, 29].

Initially Mann [25] iterative algorithm was employed to approximate a fixed point of a non-expansive
mapping where the Picard iterative algorithm failed to converge. In 1974, Ishikawa [16] iterative algorithm
has been used to obtain convergence of a Lipschitzian pseudo-contractive operator where the Mann iterative
algorithm was not applicable. Later, Noor iterative algorithm [26] was introduced to solve variational
inequality problems. Recently, Phuengrattana and Suantai [28] introduced SP iterative algorithm and
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proved that it has better convergence rate as compared to Mann, Ishikawa and Noor iterative algorithms.
Kirk [24], Rhoades [29] and Hussain et al. [12] studied Kirk type iterative algorithms with faster convergence
rate than other existing iterative algorithms. Results on S-iterative algorithm for pseudo-contractive and
contractive maps, respectively, were established by Sahu and Peturasel [31] and Kumar et al. [23].

Stability and convergence results for various iterative algorithms have been established in [1, 5–7, 9,
13, 20–22, 27, 28, 34]. Bochner integrability of fixed point is an interesting concept related to iterative
algorithms and is used to solve different problems in functional analysis and probability theory. It is also
used to study geometry of Banach spaces and differential equations in vector spaces (see [10] and references
therein). Recently, Zhang et al. [34] studied almost sure T-stability of Ishikawa-type and Mann-type
random algorithms for certain φ-weakly contractive type random operators in the setup of a separable
Banach space. They also established Bochner integrability of a random fixed point for such random
operators. Very recently, Okeke and Abbas [27] introduced the notion of generalized φ-weakly contractive
random operator and obtained almost sure T-stability of random Ishikawa iterative algorithm for these
operators.

We prove Bochner integrability of a random fixed point by using a verity of very general iterative
algorithms like random Noor, random SP, random Kirk-Noor, random Kirk-SP for generalized φ-weakly
contractive operators satisfying the condition (2.5). Our results are improvement and generalization of the
results of Zhang et al. [34], Aweke and Abbas [27] and give random version of many important known
results.

2. Preliminaries

Let Σ be a sigma algebra of subsets of a set Ω and X be a separable Banach space. Throughout this paper,
we assume that (Ω,Σ, µ) is a complete probabilistic measure space, (Σ,B(X)) is the Borel measurable space.

A mapping ξ : Ω → X is called (a) X-valued random variable if ξ is (Σ,B(X))-measurable, (b) strongly
µ-measurable if, there exists a sequence {xn} of µ-simple functions converging to ξ, µ-almost everywhere.
In view of separability of the Banach space X, the sum of two X-valued random variables is an X-valued
random variable.

The following definitions and results will be needed in the sequel.

Definition 2.1. A mapping 1 : Ω→ C is said to be measurable if 1−1(B ∩ C) ∈ Σ for every Borel subset B of X and
nonempty subset C of X.

Definition 2.2. A function T : Ω×C→ C is said to be a random operator if T(·, x) : Ω→ C is measurable for every
x ∈ C.

Definition 2.3. A measurable mapping p : Ω → C is said to be random fixed point of the random operator
T : Ω × C→ C, if T(w, p(w)) = p(w) for all w ∈ Ω.

We denote by RF(T), the set of random fixed points of T.

Definition 2.4 ([17]). A random variable ξ : Ω→ C is Bochner integrable if for each

w ∈ Ω,

∫
Ω

‖ξ(w)‖dµ(w) < ∞, (2.1)

where ‖ξ(w)‖ is a non-negative real valued random variable.

The Bochner integral is a natural generalization of the familiar Lebesgue integral for vector-valued set
functions.

Definition 2.5 ([17]). A random variable ξ is Bochner integrable if and only if there exists a sequence of random
variables {ξn}

∞

n=1 converging strongly to ξ almost surely such that

lim
n→∞

∫
Ω

‖ξn(w) − ξ(w)‖dµ(w) = 0. (2.2)
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Definition 2.6 ([34]). Let C be a nonempty subset of a separable Banach space X. A random operator T : Ω×C→ C
is φ-weakly contractive-type operator if, there exists a continuous, non-decreasing function φ : R+

→ R+ with
φ(t) > 0 for each t ∈ (0,∞), φ(0) = 0 and for each x, y ∈ C, w ∈ Ω, we have∫

Ω

‖T(w, x) − T(w, y)‖dµ(w) ≤
∫

Ω

‖x − y‖dµ(w) − φ(
∫

Ω

‖x − y‖dµ(w)). (2.3)

Definition 2.7 ([27]). A random operator T : Ω × C → C is generalized φ-weakly contractive-type if, there exists
L(w) ≥ 0 and a continuous, non-decreasing function φ : R+

→ R+ with φ(t) > 0 for each t ∈ (0,∞), φ(0) = 0 and
for each x, y ∈ C, w ∈ Ω, we have∫

Ω

‖T(w, x) − T(w, y)‖dµ(w) ≤ eL(w)‖x−y‖
[∫

Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]
. (2.4)

Keeping in mind the above definitions, we introduce the following contractive condition.

Definition 2.8. A random operator T : Ω×C→ C is generalized φ-weakly contractive type if there exists L(w) ≥ 0
and a continuous and non-decreasing function φ : R+

→ R+ with φ(t) > 0 for each t ∈ (0,∞), φ(0) = 0 and for each
x, y ∈ C, w ∈ Ω, we have∫

Ω

‖T(w, x) − T(w, y)‖dµ(w) ≤ eL(w)‖x−T(w,x)‖

[∫
Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]
. (2.5)

Both the conditions (2.4) and (2.5) are independent of each other. If L(w) = 0 for each w ∈ Ω in (2.4) and (2.5), then
both reduce to condition (2.3).

Motivated by the fact that three-step iterative algorithm gives better approximation [11] than one-step
and two-step iterative algorithms, we consider random three-step Noor and random three-step SP iterative
algorithms associated with T.

Let T : Ω × C → C, be a random operator, where C is a nonempty convex subset of X. Let x0 : Ω → C,
be an arbitrary measurable mapping, {un(w)}, {vn(w)}, {wn(w)} be sequences of measurable mappings from
Ω→ C and 0 ≤ αn, βn, γn ≤ 1. The random versions of various iterative algorithms of T are defined below:

Random Noor iterative algorithm with errors {xn(w)}:

xn+1(w) = (1 − αn)xn(w) + αnT(w, yn(w)) + un(w)

yn(w) = (1 − βn)xn(w) + βnT(w, zn(w)) + vn(w)

zn(w) = (1 − γn)xn(w) + γnT(w, xn(w)) + wn(w),

(RN)

Random SP iterative algorithm with errors {xn(w)}:

xn+1(w) = (1 − αn)yn(w) + αnT(w, yn(w)) + un(w)

yn(w) = (1 − βn)zn(w) + βnT(w, zn(w)) + vn(w)

zn(w) = (1 − γn)xn(w) + γnT(w, xn(w)) + wn(w),

(RSP)

Random Ishikawa iterative algorithm with errors {xn(w)}:

xn+1(w) = (1 − αn) xn(w) + αnT
(
w, yn(w)

)
+ un(w)

yn(w) =
(
1 − βn

)
xn(w) + βnT (w, xn(w)) + vn(w)

(RI)

Random S-iterative algorithm with errors {xn(w)}:

xn+1(w) = T
(
w, yn(w)

)
+ un(w)

yn(w) =
(
1 − βn

)
xn(w) + βnT (w, xn(w)) + vn(w)

(RS)

Random Mann iterative algorithm with errors {xn(w)}:

xn+1(w) = (1 − αn)xn(w) + αnT(w, xn(w)) + un(w) (RM)
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Remark 2.9. Putting βn = γn = vn(w) = wn(w) = 0 and γn = wn(w) = 0, for all n ∈ N, in (RN), respectively,
we obtain (RM) and (RI). Also, putting βn = γn = vn(w) = wn(w) = 0 for all n ∈ N, in (RSP), we obtain (RM).
Similarly, putting αn = 1, γn = wn(w) = 0 and αn = 1, γn = wn(w) = 0 in (RN) and (RSP), we get (RS).

Hence, (RN) and (RSP) iterative algorithms are more general than (RM) and (RS) iterative algorithms.
However, (RSP) iterative algorithm is most useful among all these in view of its fastness and simplicity.

For αn,0 , 0, βn,0 , 0, γn,0 , 0, αn,i, βn, j, γn,k ∈ [0, 1] and fixed integers r, s, t, most general random Kirk
type iterative algorithms are defined below:

Random Kirk-Noor iterative algorithm with errors {xn(w)}:

xn+1(w) = αn,0xn(w) +

r∑
i=1

αn,iTi(w, yn) + un(w),
r∑

i=0

αn,i = 1,

yn(w) = βn,0xn(w) +

s∑
j=1

βn, jT j(w, zn) + vn(w),
s∑

j=0

βn, j = 1

zn(w) =

t∑
k=0

γn,kTk(w, xn) + wn(w),
t∑

k=0

γn,k = 1 (RKN)

Random Kirk-SP iterative algorithm with errors {xn(w)}:

xn+1(w) =

r∑
i=0

αn,iTi(w, yn) + un(w),
r∑

i=0

αn,i = 1

yn(w) =

s∑
j=0

βn, jT j(w, zn) + vn(w),
s∑

j=0

βn, j = 1

zn(w) =

t∑
k=0

γn,kTk(w, xn) + wn(w),
t∑

k=0

γn,k = 1, (RKSP)

Random Kirk-Ishikawa iterative algorithm with errors {xn(w)}:

xn+1(w) = αn,0xn(w) +

r∑
i=1

αn,iTi(w, yn) + un(w),
r∑

i=0

αn,i = 1

yn(w) = βn,0xn(w) +

s∑
j=1

βn, jT j(w, xn) + vn(w),
s∑

j=0

βn, j = 1 (RKI)

Random Kirk-S iterative algorithm with errors {xn(w)}:

xn+1(w) =

r∑
i=1

αn,iTi(w, yn) + un(w),
r∑

i=1

αn,i = 1

yn(w) = βn,0xn(w) +

s∑
j=1

βn, jT j(w, xn) + vn(w),
s∑

j=0

βn, j = 1 (RKS)

Remark 2.10. Put r = s = t = 1 in (RKN) and (RKSP) iterative algorithms and get (RN) and (RSP) iterative
algorithms, respectively, with αn,1 = αn, βn,1 = βn, γn,1 = γn.

Define a random iterative algorithm with the help of the functions xn(w) as follows:

xn+1(w) = f (T; xn(w)), n = 0, 1, 2, 3, . . . , (2.6)

where f is some function measurable in the second variable.
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Definition 2.11 ([34]). Let ξ∗(w) be a random fixed point of a random operator T and Bochner integrable with respect
to the sequence {xn(w)}. Let {yn(w)} be an arbitrary sequence of random variables. Set

εn(w) = ‖yn+1(w) − f (T; yn(w))‖ (2.7)

and assume that ‖εn(w)‖ ∈ L1(Ω(ξ, µ)), n = 0, 1, 2, 3, . . .. The iterative algorithm (2.7) is almost surely T-stable if
and only if lim

n→∞

∫
Ω
‖εn(w)‖dµ(w) = 0 implies that ξ∗(w) is Bochner integrable with respect to {yn(w)}.

Lemma 2.12 ([5, 27]). Let {δn} and {λn} be two sequences of non-negative real numbers, {σn} be a sequence of positive
numbers satisfying the conditions:

∞∑
n=1

σn = ∞ and lim
n→∞

δn

σn
= 0.

If λn+1 ≤ λn−σnφ(λn)+δn holds for each n ≥ 1, where φ : R+
→ R+ is a continuous and strictly increasing function

with φ(0) = 0, then {λn} converges to 0 as n→∞.

Lemma 2.13 ([5]). Let {an} and {bn} be two sequences satisfying an+1 ≤ an + bn for all n ≥ 1. If
∞∑

n=1
bn < ∞, then

lim
n→∞

an exists.

3. Random Noor Type Iterative Algorithms with Errors

We begin with a technical result.

Lemma 3.1. Let C be a nonempty subset of a separable Banach space X and T : Ω × C → C be a random operator
satisfying the condition (2.5). Then, ∀ i ∈ N and ∀ x, y ∈ C, we have∫

Ω

‖Ti(w, x) − Ti(w, y)‖dµ(w) ≤ e
L(w)

i∑
j=1
‖T j−1(w,x)−T j(w,x)‖

[∫
Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]
. (3.1)

Proof. It is based on mathematical induction on i.
If i = 1, then (3.1) becomes∫

Ω

‖T(w, x) − T(w, y)‖dµ(w) ≤ eL(w)‖x−T(w,x)‖

[∫
Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]
.

i.e., (3.1) reduces to (2.5) and the result holds.
Assume that (3.1) holds for i = q, q ∈ N, that is,∫

Ω

‖Tq(w, x) − Tq(w, y)‖dµ(w) ≤ e
L(w)

q∑
j=1
‖T j−1(w,x)−T j(w,x)‖

[∫
Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]
.

The statement is true for i = q + 1 as follows:

‖Tq+1x − Tq+1y‖ = ‖T(Tqx) − T(Tqy)‖

≤ eL(w)‖Tq(w,x)−Tq+1(w,x)‖

[∫
Ω

‖Tq(w, x) − Tq(w, y)‖dµ(w) − φ
(∫

Ω

‖Tq(w, x) − Tq(w, y)‖dµ(w)
)]

≤ eL(w)‖Tq(w,x)−Tq+1(w,x)‖
∫

Ω

‖Tq(w, x) − Tq(w, y)‖dµ(w).
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Remark 3.2. If y = p(w) (random fixed point of T), then (3.1) becomes∫
Ω

‖Ti(w, x) − Ti(w, p)‖dµ(w) ≤
[∫

Ω

‖x − p‖dµ(w) − φ
(∫

Ω

‖x − p‖dµ(w)
)]
.

Theorem 3.3. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RKN) admitting the
following restrictions:

(i) Σ(1 − αn,0)(1 − βn,0)(1 − γn,0) = ∞

(ii) αn,0 < α, βn,0 < β, γn,0 < γ
(iii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0, lim

n→∞
wn(w) = 0.

Then the random fixed point p(w) of T is Bochner integrable.

Proof. To show that p(w) is Bochner integrable, we shall prove that

lim
n→∞

∫
‖xn(w) − p(w)‖dµ(w) = 0

Using iterative algorithm (RKN) and Remark 3.2, we have∫
Ω

‖xn+1(w) − p(w)‖dµ(w)

≤ αn,0

∫
Ω

‖(xn(w) − p(w))‖dµ(w) +

r∑
i=1

αn,i

∫
Ω

‖Ti(w, yn) − Ti(w, p)‖ +

∫
Ω

‖un(w)‖dµ(w)

≤ αn,0

∫
Ω

‖(xn(w) − p(w))‖dµ(w) +

r∑
i=1

αn,i

[∫
Ω

‖yn − p‖dµ(w) − φ
(∫

Ω

‖yn − p‖dµ(w)
)]

+

∫
Ω

‖un(w)‖dµ(w)

≤ αn,0

∫
Ω

‖(xn(w) − p(w))‖ dµ(w) +

r∑
i=1

αn,i

[∫
Ω

‖yn − p‖dµ(w)
]

+

∫
Ω

‖un(w)‖dµ(w) (3.2)

Similarly,∫
Ω

‖yn(w) − p(w)‖ dµ(w)

≤ βn,0

∫
Ω

‖(xn(w) − p(w))‖ dµ(w) +

s∑
j=1

βn, j

[∫
Ω

‖yn − p‖dµ(w)
]

+

∫
Ω

‖vn(w)‖dµ(w) (3.3)

Also, using
t∑

k=1
γn,k = 1 − γn,0, we have

∫
Ω

‖zn(w) − p(w)‖ dµ(w) ≤ γn,0

∫
Ω

‖xn(w) − p(w)‖ dµ(w)

+

t∑
k=1

γn,k

[∫
Ω

‖xn − p‖dµ(w) − φ
(∫

Ω

‖xn − p‖dµ(w)
)]

+

∫
Ω

‖wn(w)‖dµ(w)

≤

∫
Ω

‖xn(w) − p(w)‖ dµ(w) − (1 − γn,0)φ
(∫

Ω

‖xn − p‖dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w)

(3.4)
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Putting (3.3) and (3.4) in (3.2), we get∫
Ω

‖xn+1(w) − p(w)‖ dµ(w)

≤

∫
Ω

‖
(
xn(w) − p(w)

)
‖ dµ(w) − (1 − αn,0)(1 − βn,0)(1 − γn,0)φ

(∫
Ω

‖xn(w) − p(w)‖ dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) +

∫
Ω

‖un(w)‖dµ(w) (3.5)

Using conditions (ii)-(iii), we obtain:

lim
n→∞

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖] dµ(w)

(1 − αn,0)(1 − βn,0)(1 − γn,0)
≤ lim

n→∞

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖] dµ(w)

(1 − α)(1 − β)(1 − γ)
= 0.

Now putting
∫

Ω
‖xn(w)−p(w)‖ dµ(w) = λn, (1−αn,0)(1−βn,0)(1−γn,0) = σn and

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖] dµ(w) =

δn in (3.5) and using Lemma 2.12, we get lim
n→∞

∫
Ω
‖xn(w) − p(w)‖ dµ(w) = 0.

Theorem 3.4. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RKN) admitting the
following restrictions:

(i) Σ(1 − αn,0)(1 − βn,0)(1 − γn,0) = ∞

(ii) αn,0 < α, βn,0 < β, γn,0 < γ
(iii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0, lim

n→∞
wn(w) = 0.

Then, {xn} is almost surely T-stable.

Proof. Let {pn(w)} be any sequence of random variable

‖εn(w)‖ =

∥∥∥∥∥∥∥pn+1(w) − αn,0pn(w) +

r∑
i=1

αn,iTi(w, qn) + un(w)

∥∥∥∥∥∥∥ , n = 0, 1, 2, . . . , (3.6)

where

qn(w) = βn,0pn(w) +

s∑
j=1

βn, jT j(w, rn) + vn(w),

rn(w) =

t∑
k=0

γn,kTk(w, pn) + wn(w) and

lim
n→∞

∫
Ω

‖εn(w)‖ dµ(w) = 0.

Now we prove that p(w) is Bochner integrable with respect to the sequence {pn(w)}.
Using (3.6) and Remark 3.2, we have∫

Ω

‖pn+1(w) − p(w)‖dµ(w) ≤
∫

Ω

‖pn+1(w) − αn,0pn(w) +

r∑
i=1

αn,iTi(w, qn) + un(w)‖dµ(w)

+ αn,0

∫
Ω

‖(pn(w) − p(w))‖ dµ(w)

+

r∑
i=1

αn,i

∫
Ω

‖Ti(w, qn) − Ti(w, p)‖ +

∫
Ω

‖un(w)‖dµ(w)
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≤

∫
Ω

‖εn(w)‖dµ(w) + αn,0

∫
Ω

‖(pn(w) − p(w))‖ dµ(w)

+

r∑
i=1

αn,i

[∫
Ω

‖qn − p‖dµ(w) − φ
(∫

Ω

‖yn − p‖dµ(w)
)]

+

∫
Ω

‖un(w)‖dµ(w)

≤

∫
Ω

‖εn(w)‖dµ(w) + αn,0

∫
Ω

‖(pn(w) − p(w))‖ dµ(w)

+

r∑
i=1

αn,i

[∫
Ω

‖qn − p‖dµ(w)
]

+

∫
Ω

‖un(w)‖dµ(w) (3.7)

Also ∫
Ω

‖qn(w) − p(w)‖ dµ(w) ≤ βn,0

∫
Ω

‖(pn(w) − p(w))‖ dµ(w) +

s∑
j=1

βn, j

[∫
Ω

‖rn − p‖dµ(w)
]

+

∫
Ω

‖vn(w)‖dµ(w)

∫
Ω

‖qn(w) − p(w)‖ dµ(w) ≤ βn,0

∫
Ω

‖(pn(w) − p(w))‖ dµ(w) +
(
1 − βn,0

) [∫
Ω

‖rn − p‖dµ(w)
]

+

∫
Ω

‖vn(w)‖dµ(w)

(3.8)

and ∫
Ω

‖rn(w) − p(w)‖ dµ(w) ≤
∫

Ω

‖pn(w) − p(w)‖ dµ(w) − (1 − γn,0)φ
(∫

Ω

‖pn − p‖dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w)

(3.9)

Now estimates (3.7)-(3.9) yield:∫
Ω

‖pn+1(w) − p(w)‖dµ(w)

≤

∫
Ω

‖pn(w) − p(w)‖dµ(w) − (1 − αn,0)(1 − βn,0)(1 − γn,0)φ
(∫

Ω

‖pn(w) − p(w)‖ dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) +

∫
Ω

‖un(w)‖dµ(w) +

∫
Ω

‖εn(w)‖dµ(w) (3.10)

Using lim
n→∞

∫
Ω
‖εn(w)‖ dµ(w) = 0 and conditions (ii)-(iii), we have

lim
n→∞

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖]dµ(w) +
∫

Ω
‖εn(w)‖ dµ(w)

(1 − αn,0)(1 − βn,0)(1 − γn,0)

≤ lim
n→∞

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖]dµ(w) +
∫

Ω
‖εn(w)‖ dµ(w)

(1 − α)(1 − β)(1 − γ)
= 0

Now taking λn =
∫

Ω
‖pn(w) − p(w)‖ dµ(w), σn = (1 − αn,0)(1 − βn,0)(1 − γn,0) and δn =

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ +

‖vn(w)‖]dµ(w) +
∫

Ω
‖εn(w)‖ dµ(w) in (3.10) and using Lemma 2.12, we get lim

n→∞

∫
Ω
‖pn(w) − p(w)‖ dµ(w) = 0.

Conversely, let p(w) be Bochner integrable with respect to the sequence {pn(w)}. Then we have∫
Ω

‖εn(w)‖dµ(w) =

∫
Ω

‖pn+1(w) − αn,0pn(w) +

r∑
i=1

αn,iTi(w, qn) + un(w)‖dµ(w)

≤

∫
Ω

‖(pn+1(w) − p(w))‖ dµ(w) + αn,0

∫
Ω

‖(pn(w) − p(w))‖ dµ(w)
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+

r∑
i=1

αn,i

∫
Ω

‖Ti(w, qn) − Ti(w, p)‖ +

∫
Ω

‖un(w)‖dµ(w) (3.11)

The estimates (3.8), (3.9) and (3.11) yield:∫
Ω

‖εn(w)‖dµ(w)

≤

∫
Ω

‖pn+1(w) − p(w)‖ dµ(w) − (1 − αn,0)(1 − βn,0))(1 − γn,0)(1 − γn,0)φ
(∫

Ω

‖pn(w) − p(w)‖ dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) +

∫
Ω

‖un(w)‖dµ(w) (3.12)

Using condition (iii) and Bochner integrability of p(w), (3.12) yields lim
n→∞

∫
Ω
‖εn(w)‖ dµ(w) = 0. This shows

that {xn(w)} is almost surely T-stable.

Example 3.5. Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable subsets of Ω. Take X = R,
C = [0, 2] and define random operator T : Ω × C→ C as T(w, x) = w−x

2 . Then the measurable mapping p : Ω→ X
defined by p(w) = w

3 , for every w ∈ Ω, serves as a random fixed point of T. Also, for φ(t) = t
2 and L(w) = 3, we have∫

Ω

‖T(w, x) − T(w, y)‖dµ(w) =

[∫
Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]

≤ e3 ‖x−T(w,x)‖

[∫
Ω

‖x − y‖dµ(w) − φ
(∫

Ω

‖x − y‖dµ(w)
)]
,

Hence T satisfies the condition (2.5). Taking parameters αn,0 = 1 − n2

1+n2 , βn = 1 − n3

1+n3 , γn = 1 − n3

1+n4 and choosing
error terms un(w) = w

(n+1)2 , vn(w) = w
(n+1)2 , wn(w) = w

(n+1)3 we have

0 < αn,0, βn,0, γn,0 ≤ 0.5, Σ(1 − αn,0)(1 − βn,0)(1 − γn,0) = Σ
n8

(1 + n4)(1 + n3)(1 + n2)
= ∞

and lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0, lim
n→∞

wn(w) = 0. So, all the conditions of Theorem 3.3 and Theorem 3.4 are
satisfied and hence the random fixed point p(w) of T(w, x) is Bochner integrable and (RKN) is almost surely T-stable.

Special cases of Theorems 3.3 and 3.4 provide the following series of new important results for random
operators.

Theorem 3.6. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RKI) admitting the
following restrictions:

(i) Σ(1 − αn,0)(1 − βn,0) = ∞

(ii) αn,0 < α, βn,0 < β,
(iii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0.

Then p(w) is Bochner integrable and (RKI) is almost surely T-stable.

Proof. Put t = 0, wn(w) = 0 in the proofs of Theorems 3.3 and 3.4.

Theorem 3.7. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RKS) admitting the
following restrictions:

(i) Σ(1 − βn,0) = ∞
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(ii) βn,0 < β,
(iii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0.

Then p(w) is Bochner integrable and (RKS) is almost surely T-stable.

Proof. Set t = 0, αn,0 = 0, wn(w) = 0 in the proofs of Theorems 3.3 and 3.4.

Theorem 3.8. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RN) admitting the following
restrictions:

(i) Σαnβnγn = ∞
(ii) 0 < α ≤ αn, 0 < β ≤ βn and 0 < γ ≤ γn(n ≥ 1)

(iii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0, lim
n→∞

wn(w) = 0.

Then p(w) is Bochner integrable and (RN) is almost surely T-stable.

Proof. Put r = s = t = 1, αn,1 = αn, αn,0 = 1 − αn, βn,1 = βn, βn,0 = 1 − βn, γn,1 = γn,0 = 1 − γn in the proofs of
Theorems 3.3 and 3.4.

Theorem 3.9. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RS) admitting the following
restrictions:

(i) Σβn = ∞
(ii) 0 < β ≤ βn(n ≥ 1)

(iii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0.

Then p(w) is Bochner integrable and (RS) is almost surely T-stable.

Proof. Put r = s = 1, t = 0, αn,0 = 0, βn,1 = βn, βn,0 = 1 − βn in the proofs of Theorems 3.3 and 3.4.

Theorem 3.10 ([34]). Let C be a nonempty closed and convex subset of X and T : Ω × C → C a random operator
satisfying the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RI) admitting
the following restrictions:

(i) Σαnβn = ∞
(ii) 0 < α ≤ αn, 0 < β ≤ βn(n ≥ 1)

Then p(w) is Bochner integrable and (RI) is almost surely T-stable.

Proof. Put r = s = 1, t = 0, αn,1 = αn, αn,0 = 1 − αn, βn,1 = βn, βn,0 = 1 − βn, un(w) = 0, vn(w) = 0, wn(w) = 0,
L = 0 in the proofs of Theorems 3.3 and 3.4.

We now extend Theorem 3.3 for three generalized φ-weakly contractive random operators as follows:

Theorem 3.11. Let C be a nonempty closed and convex subset of X and let Ti : Ω × C → C, i = 1, 2, 3 be three
random operators satisfying the condition (2.5) with CRF =

⋂3
i=1 RF(Ti) , φ. Let p(w) be a common random fixed

point of the random operators {Ti, i = 1, 2, 3} and {xn(w)} be the random Kirk-Noor algorithm of three operators with
errors defined as follows:

xn+1(w) = αn,0xn(w) +

r∑
i=1

αn,iTi
1(w, yn) + un(w),

r∑
i=0

αn,i = 1,

yn(w) = βn,0xn(w) +

s∑
j=1

βn, jT
j
2(w, zn) + vn(w),

s∑
j=0

βn, j = 1

zn(w) =

t∑
k=0

γn,kTk
3 (w, xn) + wn(w),

t∑
k=0

γn,k = 1

(RKNTO)
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where {un(w)}, {vn(w)}, {wn(w)} are sequences of measurable mappings from Ω to C with Σ
∫

Ω
un(w) dµ(w) < ∞,

Σ
∫

Ω
vn(w) dµ(w) < ∞, Σ

∫
Ω

wn(w) dµ(w) < ∞ and 0 ≤ αn, βn, γn ≤ 1. Then common random fixed point of the
random operators {Ti, i = 1, 2, 3} is Bochner integrable if and only if for all w ∈ Ω, lim

n→∞
inf

∫
Ω

d(xn(w),CRF)dµ(w) =

0, where d(xn(w),CRF) = inf{‖xn(w) − ξ(w)‖ : ξ ∈ CRF}, provided
∫

Ω
‖Ti(w, ξ(w)) − ξ(w)‖dµ(w) = 0 implies

‖Ti(w, ξ(w)) − ξ(w)‖ = 0.

Proof. The necessity is obvious and hence omitted. Now to prove the sufficiency part, we show that
lim
n→∞

∫
‖xn(w) − p(w)‖ dµ(w) = 0, where p(w) ∈ CRF.

Following the same steps as in the proof of Theorem 3.3, we have the following estimate:∫
Ω

‖xn+1(w) − p(w)‖ dµ(w)

≤

∫
Ω

‖(xn(w) − p(w))‖ dµ(w) − (1 − αn,0)(1 − βn,0)(1 − γn,0)φ
(∫

Ω

‖xn(w) − p(w)‖ dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) +

∫
Ω

‖un(w)‖dµ(w)

≤

∫
Ω

‖(xn(w) − p(w))‖ dµ(w) +

∫
Ω

‖wn(w)‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) +

∫
Ω

‖un(w)‖dµ(w) (3.13)

It follows from (3.13), in view of d(xn(w),CRF) = inf{‖xn(w) − ξ(w)‖ : ξ ∈ CRF}:∫
Ω

d(xn+1(w),CRF)dµ(w) ≤
∫

Ω

d(xn(w),CRF)dµ(w) + bn(w), (3.14)

where bn(w) = (
∫

Ω
‖wn(w)‖ +

∫
Ω
‖vn(w)‖ +

∫
Ω
‖un(w)‖)dµ(w).

Clearly,
∞∑

n=0
bn < ∞. So by Lemma 2.13, lim

n→∞

∫
Ω

d(xn(w),RF)dµ(w) exists.

Therefore, using the given condition in the theorem, we have for all w ∈ Ω,

lim
n→∞

∫
Ω

d(xn(w),RF)dµ(w) = 0.

Now, if an =
∫

Ω
‖xn(w)−p(w)‖ dµ(w) in (3.13), then it follows that for any natural number m and for all n ≥ m,

‖an+m(w)‖ ≤ ‖an+m−1(w)‖ + bn+m−1(w)
≤ ‖an+m−2(w)‖ + bn+m−2(w) + bn+m−1(w)

≤ · · · ≤ ‖an(w)‖ +

n+m−1∑
k=n

bk(w). (3.15)

Therefore, we have

‖an+m(w) − an(w)‖ ≤ ‖an(w)‖ +

n+m−1∑
k=n

bk(w) + ‖an(w)‖

= 2‖an(w)‖ +

n+m−1∑
k=n

bk(w) (3.16)

As
∞∑

n=0
bn < ∞ and lim

n→∞

∫
Ω

d(xn(w),CRF)dµ(w) = 0, so there exists m1 ∈ N such that for all n ≥ m1, we have∫
Ω

d(xn(w),CRF)dµ(w) < ε
4 and

∞∑
k=n

bk(w) < ε
2 .
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Hence there exists q ∈ CRF such that∫
Ω

‖xn(w) − q(w)‖dµ(w) <
ε
4

for all n ≥ m1.

So from (3.16), we have that for all w ∈ Ω, for all n ≥ m1 and for any positive integer m,

‖an+m(w) − an(w)‖ ≤ 2‖an(w)‖ +

n+m−1∑
k=n

bk(w) < 2
ε
4

+
ε
2

= ε,

or ∫
Ω

‖xn+m(w) − xn(w)‖dµ(w) < ε,

from which it follows that
{∫

Ω
‖xn(w)‖dµ(w)

}
is a Cauchy sequence for each w ∈ Ω. So,

∫
Ω
‖xn(w)‖dµ(w) →∫

Ω
‖ξ(w)‖dµ(w) as n→∞ for each w ∈ Ω, where

∫
Ω
‖ξ(w)‖dµ(w) : Ω→ X, being the limit of the sequence of

measurable functions is also measurable.
Now we prove that ξ(w) ∈ CRF. As for each w ∈ Ω,

∫
Ω
‖xn(w)‖dµ(w)→

∫
Ω
‖ξ(w)‖dµ(w), when n→∞, so

there exists m2 ∈ N such that∫
Ω

‖xn(w) − ξ(w)‖dµ(w) <
ε
4

for all n ≥ m2.

Let m3 = max{m1,m2}. Then for all w ∈ Ω and n ≥ m3, we have∫
Ω

‖T1(w, ξ(w)) − ξ(w)‖dµ(w)

≤

∫
Ω

‖T1(w, ξ(w)) − ξ∗(w)‖dµ(w) +

∫
Ω

‖ξ∗(w) − ξ(w)‖dµ(w)

≤

∫
Ω

‖ξ∗(w) − ξ(w)‖dµ(w) − ϕ(
∫

Ω

‖ξ∗(w) − ξ(w)‖dµ(w)) +

∫
Ω

‖ξ∗(w) − ξ(w)‖dµ(w)

≤ 2
∫

Ω

‖ξ∗(w) − ξ(w)‖dµ(w)

≤ 2
∫

Ω

‖ξ∗(w) − xn(w)‖dµ(w) + 2
∫

Ω

‖ξ∗(w) − xn(w)‖dµ(w)

< 2
ε
4

+ 2
ε
4

= ε

which yields T1(w, ξ(w)) = ξ(w) for each w ∈ Ω. As ξ is measurable, so ξ ∈ RF(T1). In the same way, we can
show that ξ ∈ RF(T2) and ξ ∈ RF(T3). Hence we have ξ ∈ CRF. Thus common random fixed point of T1, T2,
T3 is Bochner integrable.

4. Random SP Type Iterative Algorithm With Errors

Theorem 4.1. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RKSP) admitting the
following restrictions:

(i) Σ(1 − γn,0) = ∞ or Σ(1 − βn,0) = ∞ or Σ(1 − αn,0) = ∞

(ii) γn,0 < γ or βn,0 < β or αn,0 < α
(iii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0, lim

n→∞
wn(w) = 0.
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Then p(w) of T is Bochner integrable and (RKSP) is almost surely T-stable.

Proof. Using iterative algorithm (RKSP) and following the corresponding steps in the proof of Theorem 3.3,
we have∫

Ω

‖xn+1(w) − p(w)‖dµ(w)

≤ αn,0

∫
Ω

‖(yn(w) − p(w))‖dµ(w) +

r∑
i=1

αn,i

[∫
Ω

‖yn − p‖dµ(w)
]

+

∫
Ω

‖un(w)‖dµ(w)

≤

∫
Ω

‖(yn(w) − p(w))‖ dµ(w) +

∫
Ω

‖un(w)‖dµ(w) (4.1)

Similarly,∫
Ω

‖yn(w) − p(w)‖ dµ(w) ≤
∫

Ω

‖(zn(w) − p(w))‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) (4.2)

Also, ∫
Ω

‖zn(w) − p(w)‖ dµ(w)

≤

∫
Ω

‖xn(w) − p(w)‖ dµ(w) − (1 − γn,0)φ
(∫

Ω

‖xn − p‖dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w) (4.3)

Using estimates (4.1)-(4.3), we arrive at∫
Ω

‖xn+1(w) − p(w)‖ dµ(w)

≤

∫
Ω

‖(xn(w) − p(w))‖ dµ(w) − (1 − γn,0)φ
(∫

Ω

‖xn(w) − p(w)‖ dµ(w)
)

+

∫
Ω

‖wn(w)‖dµ(w) +

∫
Ω

‖vn(w)‖dµ(w) +

∫
Ω

‖un(w)‖dµ(w) (4.4)

Using conditions (ii)-(iii), we have

lim
n→∞

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖]dµ(w)

(1 − γn,0)
≤ lim

n→∞

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖]dµ(w)

(1 − γ)
= 0.

Now, if λn =
∫

Ω
‖xn(w) − p(w)‖ dµ(w), σn = 1 − γn,0 and

δn =

∫
Ω

[‖wn(w)‖ + ‖un(w)‖ + ‖vn(w)‖]dµ(w)

in (4.4), then using Lemma 2.12, we get lim
n→∞

∫
Ω
‖xn(w) − p(w)‖ dµ(w) = 0.

The almost sure T-stability of (RKSP) can be proved as in the proof of Theorem 3.4.

Remark 4.2. As (1 − αn,0)(1 − βn,0)(1 − γn,0) ≤ 1 − γn,0 implies Σ(1 − αn,0)(1 − βn,0)(1 − γn,0) ≤ Σ(1 − γn,0), so
Σ(1−αn,0)(1−βn,0)(1−γn,0) = ∞ implies Σ(1−γn,0) = ∞; hence we conclude that random SP iterative algorithm with
errors requires weaker restriction (Σ(1 − γn,0) = ∞) on parameters as compared to random Noor iterative algorithm
with errors which requires Σ(1 − αn,0)(1 − βn,0)(1 − γn,0) = ∞, as far as Bochner integrability of fixed point p(w) is
concerned.

Special cases of Theorem 4.1 provide the following new important random fixed points results.
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Theorem 4.3. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RSP) admitting the
following restrictions:

(i) Σγn = ∞

(ii) 0 < γ ≤ γn(n ≥ 1)
(iii) lim

n→∞
un(w) = 0, lim

n→∞
vn(w) = 0, lim

n→∞
wn(w) = 0.

Then p(w) is Bochner integrable and (RSP) is almost surely T-stable.

Proof. Put r = s = t = 1, αn,1 = αn, αn,0 = 1 − αn, βn,1 = βn, βn,0 = 1 − βn, γn,1 = γn,0 = 1 − γn in the proof of
Theorem 4.1.

Theorem 4.4. Let C be a nonempty closed and convex subset of X and T : Ω × C→ C a random operator satisfying
the condition (2.5) with RF(T) , φ. Let p(w) be a random fixed point of T and {xn(w)} be (RM) admitting the
following restrictions:

(i) Σαn = ∞

(ii) 0 < α ≤ αn(n ≥ 1)
(iii) lim

n→∞
un(w) = 0.

Then p(w) is Bochner integrable and (RM) is almost surely T-stable.

Proof. Put r = 1, s = t = 0, αn,1 = αn, αn,0 = 1 − αn in the proof of Theorem 4.1.

Theorem 4.5. Let C be a nonempty closed and convex subset of X and let Ti : Ω×C→ C, i = 1, 2, 3 be three random
operators satisfying the condition (2.5) with CRF =

⋂3
i=1 RF(Ti) , φ. Let p(w) be a common random fixed point of

the random operators {Ti, i = 1, 2, 3} and {xn(w)} be the random SP algorithm of three operators with errors defined
as follows:

xn+1(w) = (1 − αn)yn(w) + αnT1(w, yn(w)) + un(w)

yn(w) = (1 − βn)yn(w) + βnT2(w, zn(w)) + vn(w)

zn(w) = (1 − γn)yn(w) + γnT3(w, xn(w)) + wn(w),

(RSPTO)

where {un(w)}, {vn(w)}, {wn(w)} are sequences of measurable mappings from Ω to C with Σ
∫

Ω
un(w) dµ(w) < ∞,

Σ
∫

Ω
vn(w) dµ(w) < ∞, Σ

∫
Ω

wn(w) dµ(w) < ∞ and 0 ≤ αn, βn, γn ≤ 1. Then the common random fixed point of the
random operators {Ti, i = 1, 2, 3} is Bochner integrable if and only if for all w ∈ Ω, lim

n→∞
inf

∫
Ω

d(xn(w),CRF)dµ(w) =

0, provided∫
Ω

‖Ti(w, ξ(w)) − ξ(w)‖dµ(w) = 0 implies ‖Ti(w, ξ(w)) − ξ(w)‖ = 0.

Proof. Verbatim repetition of the proof of Theorem 3.11 and is omitted.

5. Conclusions

We have studied Bochner integrability of random fixed point and almost sure stability with respect to
random Kirk type algorithms of generalized φ-weakly contractive operators on a separable Banach space.
Our results include generalization, refinement and random version of some well-known results:

(1) Our Theorems 3.3 and 3.4 extend and generalize, respectively, Theorems 1 and 3 by Zhang et al. [34]
and provide random version of Theorems 3, 4, 5, 10-11 by Rhoades [29] and many results given in the
book of Berinde [5].
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(2) Our fixed point result, Theorem 3.11, corrects and sets analogue of Theorems 3.1 and 3.4 by Okeke and
Abbas [27].

(3) A random analogue of Theorems 2.6 and 2.4 by Hussain et al. [12] is given in Theorems 3.4 and 4.1,
respectively.

(4) Theorem 3.7 extends and provides random version of Theorems 9-10 by Gursoy and Karakaya [9].
(5) Stochastic generalization of Theorem 8 by Kumar et al. [23] is presented in Theorem 3.9.
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