C-Class Functions and Pair (\mathcal{F}, h) upper Class on Common Best Proximity Points Results for New Proximal C-Contraction mappings

A.H.Ansari ${ }^{\text {a }}$, Geno Kadwin Jacob ${ }^{\text {b }}$, D. Chellapillai ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
${ }^{b}$ Department of Mathematics, Bharathidasan University,Trichy- 620 024, Tamil Nadu, India.

Abstract

In this paper, using the concept of C-class and Upper class functions we prove the existence of unique common best proximity point. Our main result generalizes results of Kumam et al. [[17]] and Parvaneh et al. [[21]].

> To the memory of Professor Lj. Ćirić (1935-2016)

1. Introduction and Preliminaries

Consider a pair (A, B) of nonempty subsets of a metric space (X, d). Assume that f is a function from A into B. An element $w \in A$ is said to be a best proximity point whenever $d(w, f w)=d(A, B)$, where

$$
d(A, B)=\inf \{d(s, t): s \in A, t \in B\}
$$

Best proximity point theory of non-self functions was initiated by Fan [1] and Kirk et al. [[16]]; see also [[19][15][11][13] [4][8][9][24][25][20][18]].

Definition 1.1. Consider non-self functions $f_{1}, f_{2}, \ldots, f_{n}: A \rightarrow B$. We say the a point $s \in A$ is a common best proximity point of $f_{1}, f_{2}, \ldots, f_{n}$ if

$$
d\left(s, f_{1}(s)\right)=d\left(s, f_{2}(s)\right)=\cdots=d\left(s, f_{n}(s)\right)=d(A, B)
$$

Definition 1.2. ([17])Let (X, d) be a metric space and $\emptyset \neq A, B \subset X$. We say the pair (A, B) has the V-property if for every sequence $\left\{t_{n}\right\}$ of B satisfying $d\left(s, t_{n}\right) \rightarrow d(s, B)$ for some $s \in A$, there exists a $t \in B$ such that $d(s, t)=d(s, B)$.

Definition 1.3. ([5]) A continuous function $F:[0, \infty)^{2} \rightarrow \mathbb{R}$ is called C-class function if for any $s, t \in[0, \infty)$, the following conditions hold:
(1) $F(s, t) \leq s$;
(2) $F(s, t)=s$ implies that either $s=0$ or $t=0$.

[^0]An extra condition on F that $F(0,0)=0$ could be imposed in some cases if required. The letter C will denote the class of all C - functions.

Example 1.4. ([5]) Following examples show that the class C is nonempty:

1. $F(s, t)=s-t$.
2. $F(s, t)=m s$,for some $m \in(0,1)$.
3. $F(s, t)=\frac{s}{(1+t)^{r}}$ for some $r \in(0, \infty)$.
4. $F(s, t)=\log \left(t+a^{s}\right) /(1+t)$, for some $a>1$.
5. $F(s, t)=\frac{s}{\Gamma(1 / 2)} \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}+t} d x$, where Γ is the Euler Gamma function.

Definition 1.5. [6, 7]We say that the function $h: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a function of subclass of type I, if $x \geq 1 \Longrightarrow$ $h(1, y) \leq h(x, y)$ for all $y \in \mathbb{R}^{+}$.

Example 1.6. [6, 7]Define $h: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ by:
(a) $h(x, y)=(y+l)^{x}, l>1$;
(b) $h(x, y)=(x+l)^{y}, l>1$;
(c) $h(x, y)=x^{n} y, n \in \mathbb{N}$;
(d) $h(x, y)=y$;
(e) $h(x, y)=\frac{1}{n+1}\left(\sum_{i=0}^{n} x^{i}\right) y, n \in \mathbb{N}$;
(f) $h(x, y)=\left[\frac{1}{n+1}\left(\sum_{i=0}^{n} x^{i}\right)+l\right]^{y}, l>1, n \in \mathbb{N}$
for all $x, y \in \mathbb{R}^{+}$. Then h is a function of subclass of type I.
Definition 1.7. [6, 7]Let $h, \mathcal{F}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$, then we say that the pair (\mathcal{F}, h) is an upper class, if h is a function of subclass of type I and: (i) $0 \leq s \leq 1 \Longrightarrow \mathcal{F}[s, t] \leq \mathcal{F}[1, t]$, (ii) $h(1, y) \leq \mathcal{F}[1, t] \Longrightarrow y \leq t$ for all $t, y \in \mathbb{R}^{+}$.

Example 1.8. [6, 7]Define $h, \mathcal{F}: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ by:
(a) $h(x, y)=(y+l)^{x}, l>1$ and $\mathcal{F}[s, t]=s t+l$;
(b) $h(x, y)=(x+l)^{y}, l>1$ and $\mathcal{F}[s, t]=(1+l)^{s t}$;
(c) $h(x, y)=x^{m} y, m \in \mathbb{N}$ and $\mathcal{F}[s, t]=s t$;
(d) $h(x, y)=y$ and $\mathcal{F}[s, t]=t$;
(d) $h(x, y)=\frac{1}{n+1}\left(\sum_{i=0}^{n} x^{i}\right) y, n \in \mathbb{N}$ and $\mathcal{F}[s, t]=s t$;
(e) $h(x, y)=\left[\frac{1}{n+1}\left(\sum_{i=0}^{n} x^{i}\right)+l\right]^{y}, l>1, n \in \mathbb{N}$ and $\mathcal{F}[s, t]=(1+l)^{s t}$
for all $x, y, s, t \in \mathbb{R}^{+}$. Then the pair (\mathcal{F}, h) is an upper class of type I.
Let Φ_{u} denote the class of the functions $\varphi:[0,+\infty) \times[0,+\infty) \rightarrow[0,+\infty)$ which satisfy the following conditions:
(a) φ continuous;
(b) $\varphi(u, v)>0,(u, v) \neq(0,0)$ and $\varphi(0,0) \geq 0$.

Let Ψ_{a} be a set of all continuous functions $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying the following conditions:
$\left(\psi_{1}\right) \psi$ is continuous and strictly increasing.
$\left(\psi_{2}\right) \psi(t)=0$ if and only of $t=0$.
Also we denote by Ψ the family of all continuous functions from $[0,+\infty) \times[0,+\infty)$ to $[0,+\infty)$ such that $\psi(u, v)=0$ if and only if $u=v=0$ where $\psi \in \Psi$.

Lemma 1.9. ([14])Suppose (X, d) is a metric space. Let $\left\{x_{n}\right\}$ be a sequence in Xsuch that $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exist an $\varepsilon>0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with
$m(k)>n(k)>k$ such that $d\left(x_{m(k)}, x_{n(k)}\right) \geq \varepsilon, d\left(x_{m(k)-1}, x_{n(k)}\right)<\varepsilon$ and
(i) $\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)+1}\right)=\varepsilon$;
(ii) $\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)}\right)=\varepsilon$;
(iii). $\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}\right)=\varepsilon$

We note that also can see $\lim _{k \rightarrow \infty} d\left(x_{m(k)+1}, x_{n(k)+1}\right)=\varepsilon$ and $\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)-1}\right)=\varepsilon$
Definition 1.10. ([21])Let (X, d) be a metric space, $\emptyset \neq A, B \subset X, \alpha: A \times A \rightarrow[0, \infty)$ a function and $f, g: A \rightarrow B$ non-self mappings. We say that (f, g) is a triangular α-proximal admissible pair, iffor all $p, q, r, t 1, t 2, s 1, s 2 \in A$,

$$
\begin{aligned}
& T_{1}:\left\{\begin{array}{l}
\alpha\left(t_{1}, t_{2}\right) \geq 1 \\
d\left(s_{1}, f\left(t_{1}\right)\right)=d(A, B) \\
d\left(s_{2}, g\left(t_{2}\right)\right)=d(A, B)
\end{array} \quad \Longrightarrow \alpha\left(s_{1}, s_{2}\right) \geq 1\right. \\
& T_{2}:\left\{\begin{array}{l}
\alpha(p, r) \geq 1 \\
\alpha(r, q) \geq 1
\end{array} \Longrightarrow \alpha(p, q) \geq 1 .\right.
\end{aligned}
$$

Let (X, d) be a metric space, $\emptyset \neq A, B \subset X$. We define

$$
\begin{align*}
& A_{0}=\{x \in A: d(x, y)=d(A, B) \text { for some } y \in B\} \\
& B_{0}=\{y \in B: d(x, y)=d(A, B) \text { for some } x \in A\} \tag{1}
\end{align*}
$$

Definition 1.11. ([21])Let Let (X, d) be a metric space, $\emptyset \neq A, B \subset X$, and $f, g: A \rightarrow B$ non-self mappings. We say that (f, g) is a generalized proximal C-contraction pair if, for all $s, t, p, q \in A$,

$$
\left.\begin{array}{l}
d(s, f(p))=d(A, B) \tag{2}\\
d(t, g(q))=d(A, B)
\end{array}\right\} \Longrightarrow d(s, t) \leq \frac{1}{2}(d(p, t)+d(q, s))-\psi(d(p, t), d(q, s))
$$

in which $\psi \in \Psi$.
Definition 1.12. ([21])Let (X, d) be a metric space, $\emptyset \neq A, B \subset X, \alpha: A \times A \rightarrow[0, \infty)$ a function and $f, g: A \rightarrow B$ non-self functions. If, for all $s, t, p, q \in A$,

$$
\left.\begin{array}{l}
d(s, f(p))=d(A, B) \tag{3}\\
d(t, g(q))=d(A, B)
\end{array}\right\} \Longrightarrow \alpha(p, q) d(s, t) \leq \frac{1}{2}(d(p, t)+d(q, s))-\psi(d(p, t), d(q, s))
$$

then (f, g) is said to be an α-proximal C_{1}-contraction pair.
If in the definition above, we replace (2) by

$$
\begin{equation*}
(\alpha(p, q)+l)^{d(s, t)} \leq(l+1)^{\frac{1}{2}(d(p, t)+d(q, s))-\psi(d(p, t), d(q, s))} \tag{4}
\end{equation*}
$$

where $l>0$, then (f, g) is said to be an α-proximal C_{2}-contraction pair.
In this paper, we generalize some results of Parvaneh et al. [[21]] to obtain some new common best proximity point theorems. Next, by an example and some fixed point results, we support our main result.

2. Main Results

Definition 2.1. Let A and B are two nonempty subsets of a metric space, (X, d). Let $\mu: A \times A \rightarrow[0, \infty)$ a function and $f, g: A \rightarrow B$ non-self mappings. We say that (f, g) is a triangular μ - subproximal admissible pair, if for all $p, q, r, s, t_{1}, t_{2}, s_{1}, s_{2} \in A$,

$$
\begin{aligned}
& T_{1}:\left\{\begin{array}{l}
\mu\left(t_{1}, t_{2}\right) \leq 1, \\
d\left(s_{1}, f\left(t_{1}\right)\right)=d(A, B), \quad \Longrightarrow \mu\left(s_{1}, s_{2}\right) \leq 1 \\
d\left(s_{2}, f\left(t_{2}\right)\right)=d(A, B)
\end{array}\right. \\
& T_{2}:\left\{\begin{array}{l}
\mu(p, r) \leq 1, \\
\mu(r, q) \leq 1
\end{array} \Longrightarrow \mu(p, q) \leq 1\right.
\end{aligned}
$$

Definition 2.2. Let Let (X, d) be a metric space, $\emptyset \neq A, B \subset X$, and $f, g: A \rightarrow B$ non-self mappings. We say that (f, g) is a generalized proximal C-contraction pair of type C-class if, for all $s, t, p, q \in A$,

$$
\left.\begin{array}{l}
d(s, f(p))=d(A, B) \tag{5}\\
d(t, g(q))=d(A, B)
\end{array}\right\} \Longrightarrow d(s, t) \leq F\left(\frac{1}{2}(d(p, t)+d(q, s)), \psi(d(p, t), d(q, s))\right)
$$

in which $\psi \in \Psi_{u}$.
Definition 2.3. Let (X, d) be a metric space, $\emptyset \neq A, B \subset X, \alpha: A \times A \rightarrow[0, \infty)$ a function and $f, g: A \rightarrow B$ non-self functions. If, for all $s, t, p, q \in A$,

$$
\left.\begin{array}{l}
d(s, f(p))=d(A, B) \tag{6}\\
d(t, g(q))=d(A, B)
\end{array}\right\} \Longrightarrow \mathrm{h}(\alpha(p, q), d(s, t)) \leq \mathcal{F}\left(\mu(p, q), F\left(\frac{1}{2}(d(p, t)+d(q, s)), \psi(d(p, t), d(q, s))\right)\right)
$$

then (f, g) is said to be an α, μ-proximal C-contraction pair of type C-class.
Theorem 2.4. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A_{0} be nonempty. Moreover, assume that the non-self functions $f, g: A \rightarrow B$ satisfy;
(i). f, g are continuous,
(ii). $f\left(A_{0}\right) \subset B_{0}$ and $g\left(A_{0}\right) \subset B_{0}$,
(iii). (f, g) is a generalised proximal C-contraction pair of type C-class,

Then, the functions f and g have a unique common best proximity point.
Proof. Choose, $s_{0} \in A_{0}$ be arbitrary. Since $f\left(A_{0}\right) \subset B_{0}$, there exists $s_{1} \in A_{0}$ such that

$$
d\left(s_{1}, f\left(s_{0}\right)\right)=d(A, B)
$$

Since $g\left(A_{0}\right) \subset B_{0}$, there exists $s_{2} \in A_{0}$ such that $d\left(s_{2}, g\left(s_{1}\right)\right)=d(A, B)$. Now as $f\left(A_{0}\right) \subset B_{0}$, there exists $s_{3} \in A_{0}$ such that $d\left(s_{3}, f\left(s_{2}\right)\right)=d(A, B)$.
We continue this process and construct a sequence $\left\{s_{n}\right\}$ such that

$$
\left\{\begin{array}{l}
d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right)=d(A, B) \tag{7}\\
d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)
\end{array}\right.
$$

for each $n \in \mathbb{N}$

Claim(1).

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(s_{n}, s_{n+1}\right)=0 \tag{8}
\end{equation*}
$$

From (5) we get,

$$
\begin{align*}
d\left(s_{2 n+1}, s_{2 n+2}\right) & \leq F\left(\frac{1}{2}\left(d\left(s_{2 n}, s_{2 n+2}\right)+d\left(s_{2 n+1}, s_{2 n+1}\right)\right), \Psi\left(d\left(s_{2 n}, s_{2 n+2}\right), d\left(s_{2 n+1}, s_{2 n+1}\right)\right)\right) \\
& =F\left(\frac{1}{2} d\left(s_{2 n}, s_{2 n+2}\right), \Psi\left(d\left(s_{2 n}, s_{2 n+2}\right), 0\right)\right) \\
& \leq \frac{1}{2} d\left(s_{2 n}, s_{2 n+2}\right) \tag{9}\\
& \leq \frac{1}{2}\left[d\left(s_{2 n}, s_{2 n+1}\right)+d\left(s_{2 n+1}, s_{2 n+2}\right)\right]
\end{align*}
$$

which implies $d\left(s_{2 n+1}, s_{2 n+2}\right) \leq d\left(s_{2 n}, s_{2 n+1}\right)$. Therfore, $\left\{d\left(s_{2 n}, s_{2 n+1}\right)\right\}$ is an non-negative decreasing sequence and so converges to $d>0$. Now, as $n \rightarrow \infty$ in (9), we getget

$$
d \leq \frac{1}{2} d\left(s_{2 n}, s_{2 n+1}\right) \leq \frac{1}{2}(d+d)=d
$$

that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(s_{2 n}, s_{2 n+1}\right)=2 d \tag{10}
\end{equation*}
$$

Again, taking $n \rightarrow \infty$ in (9), and using (10)we get

$$
F(d, \Psi(2 d, 0))=d
$$

So, $d=0$, or , $\Psi(2 d, 0)=0$ and hence $d=0$.
Claim(2). $\left\{s_{n}\right\}$ is cauchy.
By, (8) it is enough to show that subsequence $\left\{s_{2 n}\right\}$ is cauchy. Suppose, to the contrary, that $\left\{s_{2 n}\right\}$ is not a Cauchy sequence.By lemma (1.9) there exists $\epsilon>0$ for which we can find subsequences $\left\{s_{2 n_{k}}\right\}$ and $\left\{s_{2 m_{k}}\right\}$ of $\left\{s_{2 n}\right\}$ with $2 n_{k}>2 m_{k}>2 k$ such that

$$
\begin{align*}
\epsilon & =\lim _{k \rightarrow \infty} d\left(s_{2 m(k)}, s_{2 n(k)}\right)=\lim _{k \rightarrow \infty} d\left(s_{2 m(k)}, s_{2 n(k)+1}\right) \tag{11}\\
& =\lim _{k \rightarrow \infty} d\left(s_{2 m(k)+1}, s_{2 n(k)}\right)=\lim _{k \rightarrow \infty} d\left(s_{2 m(k)+1}, s_{2 n(k)+1}\right)
\end{align*}
$$

From (5) we have

$$
\begin{equation*}
d\left(s_{2 n_{k+1}}, s_{2 m_{k}}\right) \leq F\left(\frac{1}{2}\left(d\left(s_{2 m_{k}}, s_{2 n_{k}}\right)+s_{2 n_{k+1}}, s_{2 m_{k-1}}\right), \Psi\left(d\left(s_{2 m_{k}}, s_{2 n_{k}}\right), s_{2 n_{k+1}}, s_{2 m_{k-1}}\right)\right) \tag{12}
\end{equation*}
$$

Taking $k \rightarrow \infty$ in the above inequality and using (11), and the continuity of F, Ψ, we would obtain

$$
F\left(\frac{1}{2}(\epsilon+\epsilon), \Psi(\epsilon, \epsilon)\right)=\epsilon
$$

and therefore, $\epsilon=0$, or,$\Psi(\epsilon, \epsilon)=0$, which would imply $\epsilon=0$, a contradiction. Thus, $\left\{s_{n}\right\}$ is a cauchy sequence. Since A is complete, there is a $z \in A$ such that $s_{n} \rightarrow z$. Now, from
$d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right)=d(A, B), \quad d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)$
By continuity of f ang g, taking $n \rightarrow \infty$ we have $d(z, f(z))=d(z, g(z))=d(A, B)$. So, z is a common best proximity point of the mappings f and g. Let, w is also a common best proximity point of mappings f and g. From (1) we have

$$
\begin{align*}
d(z, w) & \leq F\left(\frac{1}{2}(d(z, w)+d(w, z)),-\Psi(d(z, w), d(w, z))\right) \\
& =F(d(z, w), \Psi(d(z, w), d(w, z))) \tag{13}
\end{align*}
$$

So, $d(z, w)=0$, or , $\Psi(d(z, w), d(z, w))=0$,Hence $d(z, w)=0$, and therefore $z=w$.

Theorem 2.5. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A_{0} be nonempty. Moreover, assume that the non-self functions $f, g: A \rightarrow B$ satisfy;
(i). f, g are continuous,
(ii). $f\left(A_{0}\right) \subset B_{0}$ and $g\left(A_{0}\right) \subset B_{0}$,
(iii). (f, g) is an α, μ-proximal C-contraction pair of type C-class,
(iv). (f, g) is a triangular α-proximal admissible pair and a triangular μ-subproximal admissible pair,
(v). there exist $s_{0}, s_{1} \in A_{0}$ such that $d\left(s_{1}, f\left(s_{0}\right)\right)=d(A, B), \alpha\left(s_{1}, s_{0}\right) \geq 1, \mu\left(s_{1}, s_{0}\right) \leq 1$. Then, the functions f and g have a common best proximity point.Furthermore, if $z, w \in X$ are common best proximity points and $\alpha(z, w) \geq 1, \mu(z, w) \leq 1$, then common best proximity point is unique.

Proof. By (iv), we can find $s_{0}, s_{1} \in A_{0}$ such that

$$
d\left(s_{1}, f\left(s_{0}\right)\right)=d(A, B), \quad \alpha\left(s_{1}, s_{0}\right) \geq 1, \mu\left(s_{1}, s_{0}\right) \leq 1
$$

Define the sequence $\left\{s_{n}\right\}$ as in (7) of the theorem(2.4). Since, (f, g) is triangular α-proximal admissible and triangular μ-subproximal admissible, we have $\alpha\left(s_{n}, s_{n+1}\right) \geq 1, \mu\left(s_{n}, s_{n+1}\right) \leq 1$. Then

$$
\left\{\begin{array}{l}
\alpha\left(s_{n}, s_{n+1}\right) \geq 1 \tag{14}\\
d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right)=d(A, B) \\
d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mu\left(s_{n}, s_{n+1}\right) \leq 1 \tag{15}\\
d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right)=d(A, B) \\
d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)
\end{array}\right.
$$

If $s=s_{2 n+1}, t=s_{2 n+2}, p=s_{2 n}, q=s_{2 n+1}$, and (f, g) is an α, μ-proximal C-contraction pair of type C-class. Then,

$$
\begin{aligned}
\mathrm{h}\left(1, d\left(s_{2 n+1}, s_{2 n+2}\right)\right) & \leq \mathrm{h}\left(\alpha\left(s_{2 n}, s_{2 n+1}\right), d\left(s_{2 n+1}, s_{2 n+2}\right)\right) \\
& \leq \mathcal{F}\left[\mu\left(s_{2 n}, s_{2 n+1}\right), F\left(\frac{1}{2}\left(d\left(s_{2 n}, s_{2 n+2}\right)+d\left(s_{2 n+1}, s_{2 n+1}\right)\right), \psi\left(d\left(s_{2 n}, s_{2 n+2}\right), d\left(s_{2 n+1}, s_{2 n+1}\right)\right)\right)\right] \\
& \leq \mathcal{F}\left[1, F\left(\frac{1}{2}\left(d\left(s_{2 n}, s_{2 n+2}\right)+d\left(s_{2 n+1}, s_{2 n+1}\right)\right), \psi\left(d\left(s_{2 n}, s_{2 n+2}\right), d\left(s_{2 n+1}, s_{2 n+1}\right)\right)\right)\right]
\end{aligned}
$$

so,

$$
\begin{align*}
d\left(s_{2 n+1}, s_{2 n+2}\right) & \leq F\left(\frac{1}{2}\left(d\left(s_{2 n}, s_{2 n+2}\right)+d\left(s_{2 n+1}, s_{2 n+1}\right)\right), \Psi\left(d\left(s_{2 n}, s_{2 n+2}\right), d\left(s_{2 n+1}, s_{2 n+1}\right)\right)\right) \\
& =F\left(\frac{1}{2} d\left(s_{2 n}, s_{2 n+2}\right), \Psi\left(d\left(s_{2 n}, s_{2 n+2}\right), 0\right)\right) \\
& \leq \frac{1}{2} d\left(s_{2 n}, s_{2 n+2}\right) \tag{16}\\
& \leq \frac{1}{2}\left[d\left(s_{2 n}, s_{2 n+1}\right)+d\left(s_{2 n+1}, s_{2 n+2}\right)\right]
\end{align*}
$$

which implies $d\left(s_{2 n+1}, s_{2 n+2}\right) \leq d\left(s_{2 n}, s_{2 n+1}\right)$. Therfore, $\left\{d\left(s_{2 n}, s_{2 n+1}\right)\right\}$ is an non-negative decreasing sequence and so converges to $d>0$. Now, as $n \rightarrow \infty$ in (16), we get

$$
d \leq \frac{1}{2} d\left(s_{2 n}, s_{2 n+1}\right) \leq \frac{1}{2}(d+d)=d
$$

that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(s_{2 n}, s_{2 n+1}\right)=2 d \tag{17}
\end{equation*}
$$

Again, taking $n \rightarrow \infty$ in (9), and using (17) we get

$$
F(d, \Psi(2 d, 0))=d
$$

So, $d=0$, or,$\Psi(2 d, 0)=0$ and hence $d=0$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(s_{n}, s_{n+1}\right)=0 \tag{18}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\alpha\left(s_{2 m_{k}-1}, s_{2 n_{k}}\right) \geq 1, \mu\left(s_{2 m_{k}-1}, s_{2 n_{k}}\right) \leq 1, \quad n_{k}>m_{k}>k \tag{19}
\end{equation*}
$$

Since (f, g) is triangular $\alpha-$ proximal admissible and triangular $\mu-$ subproximal admissible and

$$
\begin{aligned}
& \left\{\begin{array}{l}
\alpha\left(s_{2 m_{k}-1}, s_{2 m_{k}}\right) \geq 1 \\
\alpha\left(s_{2 m_{k}}, s_{2 m_{k}+1}\right) \geq 1
\end{array}\right. \\
& \left\{\begin{array}{l}
\mu\left(s_{2 m_{k}-1}, s_{2 m_{k}}\right) \leq 1 \\
\mu\left(s_{2 m_{k}}, s_{2 m_{k}+1}\right) \leq 1
\end{array}\right.
\end{aligned}
$$

From $\left(T_{2}\right)$ of definition(1.10) and definition(2.1) we have

$$
\begin{aligned}
& \alpha\left(s_{2 m_{k}-1}, s_{2 m_{k}+1}\right) \geq 1 \\
& \mu\left(s_{2 m_{k}-1}, s_{2 m_{k}+1}\right) \leq 1
\end{aligned}
$$

Again, since (f, g) is triangular α-proximal admissible and triangular μ-subproximal admissible and

$$
\begin{gathered}
\left\{\begin{array}{l}
\alpha\left(s_{2 m_{k}-1}, s_{2 m_{k}+1}\right) \geq 1 \\
\alpha\left(s_{2 m_{k}+1}, s_{2 m_{k}+2}\right) \geq 1
\end{array}\right. \\
\left\{\begin{array}{l}
\mu\left(s_{2 m_{k}-1}, s_{2 m_{k}+1}\right) \leq 1 \\
\mu\left(s_{2 m_{k}+1}, s_{2 m_{k}+2}\right) \leq 1
\end{array}\right.
\end{gathered}
$$

From $\left(T_{2}\right)$ of definition(1.10) and definition(2.1) again, we have

$$
\begin{aligned}
& \alpha\left(s_{2 m_{k}-1}, s_{2 m_{k}+2}\right) \geq 1 \\
& \mu\left(s_{2 m_{k}-1}, s_{2 m_{k}+2}\right) \leq 1
\end{aligned}
$$

By continuing this process, we get (19).
Now, we prove that $\left\{s_{n}\right\}$ is cauchy.
By, (18) it is enough to show that subsequence $\left\{s_{2 n}\right\}$ is cauchy. Suppose, to the contrary, that $\left\{s_{2 n}\right\}$ is not a Cauchy sequence.By lemma (1.9) there exists $\epsilon>0$ for which we can find subsequences $\left\{s_{2 n_{k}}\right\}$ and $\left\{s_{2 m_{k}}\right\}$ of $\left\{s_{2 n}\right\}$ with $2 n_{k}>2 m_{k}>2 k$ such that

$$
\begin{align*}
\epsilon & =\lim _{k \rightarrow \infty} d\left(s_{2 m(k)}, s_{2 n(k)}\right)=\lim _{k \rightarrow \infty} d\left(s_{2 m(k)}, s_{2 n(k)+1}\right) \tag{20}\\
& =\lim _{k \rightarrow \infty} d\left(s_{2 m(k)+1}, s_{2 n(k)}\right)=\lim _{k \rightarrow \infty} d\left(s_{2 m(k)+1}, s_{2 n(k)+1}\right)
\end{align*}
$$

Now if let $s=s_{2 n_{k}+1}, t=s_{2 m_{k}}, p=s_{2 n_{k}}, q=s_{2 m_{k}}-1$, then

$$
\begin{aligned}
\mathrm{h}\left(1, d\left(s_{2 n_{k}+1}, s_{2 m_{k}}\right)\right) & \leq \mathrm{h}\left(\alpha\left(s_{2 n_{k}}, s_{2 m_{k}-1}\right), d\left(s_{2 n_{k}+1}, s_{2 m_{k}}\right)\right) \\
& \leq \mathcal{F}\left[\mu\left(s_{2 n_{k}}, s_{2 m_{k}-1}\right), F\left(\frac{1}{2}\left(d\left(s_{2 n_{k}}, s_{2 m_{k}}\right)+d\left(s_{2 m_{k}-1}, s_{2 n_{k}+1}\right)\right), \psi\left(d\left(s_{2 n_{k}}, s_{2 m_{k}}\right), d\left(s_{2 m_{k}-1}, s_{2 n_{k}+1}\right)\right)\right)\right] \\
& \leq \mathcal{F}\left[1, F\left(\frac{1}{2}\left(d\left(s_{2 n_{k}}, s_{2 m_{k}}\right)+d\left(s_{2 m_{k}-1}, s_{2 n_{k}+1}\right)\right), \psi\left(d\left(s_{2 n_{k}}, s_{2 m_{k}}\right), d\left(s_{2 m_{k}-1}, s_{2 n_{k}+1}\right)\right)\right)\right]
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
d\left(s_{2 n_{k+1}}, s_{2 m_{k}}\right) \leq F\left(\frac{1}{2}\left(d\left(s_{2 m_{k}}, s_{2 n_{k}}\right)+s_{2 n_{k+1}}, s_{2 m_{k-1}}\right), \Psi\left(d\left(s_{2 m_{k}}, s_{2 n_{k}}\right), d\left(s_{2 n_{k+1}}, s_{2 m_{k-1}}\right)\right)\right) \tag{21}
\end{equation*}
$$

Taking $k \rightarrow \infty$ in the above inequality and using (20), and the continuity of F, Ψ, we would obtain

$$
F\left(\frac{1}{2}(\epsilon+\epsilon), \Psi(\epsilon, \epsilon)\right)=\epsilon
$$

and therefore, $\epsilon=0$, or,$\Psi(\epsilon, \epsilon)=0$, which would imply $\epsilon=0$, a contradiction. Thus, $\left\{s_{n}\right\}$ is a cauchy sequence. Since A is complete, there is a $z \in A$ such that $s_{n} \rightarrow z$. Now, from $d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right)=d(A, B), \quad d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)$
By continuity of f and g, taking $n \rightarrow \infty$ we have $d(z, f(z))=d(z, g(z))=d(A, B)$. So, z is a common best proximity point of the mappings f and g. Let, w is also a common best proximity point of mappings f and g. Since $\alpha(z, w) \geq 1, \mu(z, w) \leq 1$ from (6) we have

$$
\begin{aligned}
\mathrm{h}(1, d(z, w)) & \leq \mathrm{h}(\alpha(z, w), d(z, w)) \\
& \leq \mathcal{F}\left[\mu(z, w), F\left(\frac{1}{2}(d(z, w)+d(w, z)), \psi(d(z, w), d(w, z))\right)\right] \\
& \leq \mathcal{F}\left[1, F\left(\frac{1}{2}(d(z, w)+d(w, z)), \psi(d(z, w), d(w, z))\right)\right)
\end{aligned}
$$

therefore,

$$
\begin{aligned}
d(z, w) & \leq F\left(\frac{1}{2}(d(z, w)+d(w, z)),-\Phi(d(z, w), d(w, z))\right) \\
& =F(d(z, w), \Phi(d(z, w), d(w, z)))
\end{aligned}
$$

So, $d(z, w)=0$, or , $\Psi(d(z, w), d(z, w))=0$,Hence $d(z, w)=0$, and therefore $z=w$.
Definition 2.6. ([21])Let $\alpha: X \times X \rightarrow \mathbb{R}$ be a function and $f, g: X \rightarrow X$ self-mappings and $p, q, r \in X$ be any three elements. We say that (f, g) is a triangular α-admissible pair if
$(i) \alpha(p, q) \geq 1 \quad \Longrightarrow \quad \alpha(f(p), g(q)) \geq 1$ or $\alpha(g(p), f(q)) \geq 1$,
(ii) $\left\{\begin{array}{l}\alpha(p, r) \geq 1 \\ \alpha(r, q) \geq 1\end{array} \quad \Longrightarrow \quad \alpha(p, q) \geq 1\right.$

Definition 2.7. Let $\mu: X \times X \rightarrow \mathbb{R}$ be a function and $f, g: X \rightarrow X$ self-mappings and $p, q, r \in X$ be any three elements. We say that (f, g) is a triangular $\mu-$ subadmissible pair if
$(i) \mu(p, q) \leq 1 \quad \Longrightarrow \quad \mu(f(p), g(q)) \leq 1$ or $\mu(g(p), f(q)) \leq 1$,
(ii) $\left\{\begin{array}{l}\mu(p, r) \leq 1 \\ \mu(r, q) \leq 1\end{array} \quad \Longrightarrow \quad \mu(p, q) \leq 1\right.$

The corollary is an consequence of the last theorem.
Corollary 2.8. Let (X, d) be a complete metric space and $f, g: X \rightarrow X$. Moreover, let the self functions f and g satisfy:
(i) f and g are continuous,
(ii)there exists $s_{0} \in X$ such that $\alpha\left(s_{0}, f\left(s_{0}\right)\right) \geq 1$,
(iii) (f, g) is a triangular α-admissible pair and triangular μ-subadmissible pair,
(iv)for all $p, q \in X$,

$$
\alpha(p, q) d(f(p), g(q)) \leq \frac{1}{2} \mu(p, q)(d(p, g(q))+d(q, f(p)))-\Psi(d(p, g(q)), d(q, f(p))
$$

(or)
$(\alpha(p, q)+l)^{d(f(p), g(q))} \leq(l+1)^{\frac{1}{2} \mu(p, q)(d(p, g(q))+d(q, f(p)))-\psi(d(p, g(q)), d(q, f(p))}$
Then f and g have common fixed point. Moreover, if $x, y \in X$ are common fixed points and $\alpha(x, y) \geq 1, \mu(x, y) \leq 1$, then the common fixed point of f and g is unique, that is $x=y$.

Now, we remove the continuity hypothesis of f and g and get the following theorem.
Theorem 2.9. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete, the pair (A, B) have the V-property, and A_{0} be nonempty. Moreover, assume that the non-self functions $f, g: A \rightarrow B$ satisfy;
(i). $f\left(A_{0}\right) \subset B_{0}$ and $g\left(A_{0}\right) \subset B_{0}$,
(ii). (f, g) is a generalised proximal C-contraction pairof type C-class,

Then, the functions f and g have a unique common best proximity point.
Proof. By Theorem(2.4), there is a cauchy sequence $\left\{s_{n}\right\} \subset A$ and $z \in A_{0}$ such that (7) holds and $s_{n} \rightarrow z$. Moreover, we have

$$
\begin{aligned}
d(z, B) & \leq d\left(z, f\left(s_{2 n}\right)\right) \\
& \leq d\left(z, s_{2 n+1}\right)+d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right) \\
& \leq d\left(z, s_{2 n+1}\right)+d(A, B)
\end{aligned}
$$

we take $n \rightarrow \infty$ in the above inequality, and we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z, f\left(s_{n}\right)\right)=d(z, B)=d(A, B) \tag{22}
\end{equation*}
$$

Since the pair (A, B) has the V-property, there is a $p \in B$ such that $d(z, p)=d(A, B)$ and so $z \in A_{0}$. Moreover, Since $f\left(A_{0}\right) \subset B_{0}$, there is a $q \in A$ such that

$$
\begin{equation*}
d(q, f(z))=d(A, B) \tag{23}
\end{equation*}
$$

Furthermore $d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)$ for every $n \in \mathbb{N}$.
Since (f, g) is a generalised proximal C-contraction pair, we have

$$
d\left(q, s_{2 n+2}\right) \leq F\left(\frac{1}{2}\left(d\left(z, s_{2 n+2}\right)+d\left(s_{2 n+1}, q\right)\right), \Psi\left(d\left(z, s_{2 n+2}\right), d\left(s_{2 n+1}, q\right)\right)\right)
$$

Letting $n \rightarrow \infty$ in the above inequality, we have

$$
d(q, z) \leq F\left(\frac{1}{2}(d(z, q)), \Psi(d(z, q), 0)\right)
$$

So, $d(q, z)=0$, or,$\Psi(d(q, z), 0)=0$,Thus $d(z, q)=0$, which implies that $z=q$. Then, by $(23), z$ is a best proximity point of f.
Similiarly, it is easy to prove that z is a best proximity point of g. Then, z is a common best proximity point of f and g. By the proof of Theorem(2.4), we conclude that f and g have unique common best proximity point.

Theorem 2.10. Let A and B be two nonempty subsets of complete metric space (X, d). Let A be complete, the pair (A, B) have V-property and A_{0} is non-empty. Moreover, suppose that the non-self functions $f, g: A \rightarrow B$ satisfy:
(i) $f\left(A_{0}\right) \subset B_{0}$ and $g\left(A_{0}\right) \subset B_{0}$,
(ii) (f, g) is an α, μ-proximal C-contraction pair of type C-class,
(iii) (f, g) is a triangular α-proximal admissible pair, and a triangular μ-subproximal admissible pair
(iv)there exist $s_{0}, s_{1} \in A_{0}$ such that $d\left(s_{1}, f\left(s_{0}\right)\right)=d(A, B), \alpha\left(s_{1}, s_{0}\right) \geq 1, \mu\left(s_{1}, s_{0}\right) \leq 1$.
(v) if $\left\{s_{n}\right\}$ is a sequence in A such that $\alpha\left(s_{n}, s_{n+1}\right) \geq 1, \mu\left(s_{n}, s_{n+1}\right) \leq 1$ and $s_{n} \rightarrow s_{0}$ as $n \rightarrow \infty$, then $\alpha\left(s_{n}, s_{0}\right) \geq$ $1, \mu\left(s_{n}, s_{0}\right) \leq 1$ for all $n \in \mathbb{N} \bigcup\{0\}$.
Then f and g have a common best proximity point. Furthermore, if $z, w \in X$ are common best proximity points and $\alpha(z, w) \geq 1, \mu(z, w) \leq 1$, then common best proximity point is unique.

Proof. As similiar to the proof of Theorem (2.5) that there exist a sequence $\left\{s_{n}\right\}$ and z in A such that $s_{n} \rightarrow z$ and $\alpha\left(s_{n}, s_{n+1}\right) \geq 1, \mu\left(s_{n}, s_{n+1}\right) \leq 1$. Now, we have

$$
\begin{aligned}
d(z, B) & \leq d\left(z, f\left(s_{2 n}\right)\right) \\
& \leq d\left(z, s_{2 n+1}\right)+d\left(s_{2 n+1}, f\left(s_{2 n}\right)\right) \\
& \leq d\left(z, s_{2 n+1}\right)+d(A, B)
\end{aligned}
$$

we take $n \rightarrow \infty$ in the above inequality, and we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z, f\left(s_{n}\right)\right)=d(z, B)=d(A, B) \tag{24}
\end{equation*}
$$

Since the pair (A, B) has the V-property, there is a $p \in B$ such that $d(z, p)=d(A, B)$ and so $z \in A_{0}$. Moreover, Since $f\left(A_{0}\right) \subset B_{0}$, there is a $q \in A$ such that

$$
\begin{equation*}
d(q, f(z))=d(A, B) \tag{25}
\end{equation*}
$$

Furthermore $d\left(s_{2 n+2}, g\left(s_{2 n+1}\right)\right)=d(A, B)$ for every $n \in \mathbb{N}$. Also, by $(v), \alpha\left(s_{n}, z\right) \geq 1, \mu\left(s_{n}, z\right) \leq 1$ for every $n \in \mathbb{N} \bigcup\{0\}$. By (f, g) is an α, μ-proximal C-contraction pair of type C-class, we have

$$
\begin{aligned}
& \left.\mathrm{h}\left(1, d\left(q, s_{2 n+2}\right)\right)\right) \\
\leq & \mathrm{h}\left(\alpha\left(z, s_{2 n+1}\right), d\left(q, s_{2 n+2}\right)\right) \\
\leq & \mathcal{F}\left[\mu\left(z, s_{2 n+1}\right), F\left(\frac{1}{2}\left(d\left(z, s_{2 n+2}\right)+d\left(s_{2 n+1}, q\right)\right)-\Psi\left(d\left(z, s_{2 n+2}\right), d\left(s_{2 n+1}, q\right)\right)\right)\right] \\
\leq & \mathcal{F}\left[1, F\left(\frac{1}{2}\left(d\left(z, s_{2 n+2}\right)+d\left(s_{2 n+1}, q\right)\right), \psi\left(d\left(z, s_{2 n+2}\right), d\left(s_{2 n+1}, q\right)\right)\right)\right]
\end{aligned}
$$

Therefore

$$
\left.d\left(q, s_{2 n+2}\right)\right) \leq F\left(\frac{1}{2}\left(d\left(z, s_{2 n+2}\right)+d\left(s_{2 n+1}, q\right)\right), \psi\left(d\left(z, s_{2 n+2}\right), d\left(s_{2 n+1}, q\right)\right)\right)
$$

Letting $n \rightarrow \infty$ in the above inequality, we have

$$
d(q, z)) \leq F\left(\frac{1}{2}(d(z, q)), \psi(0, d(z, q))\right)
$$

So, $d(q, z)=0$, or , $\Psi(0, d(q, z))=0$, thus $d(z, q)=0$, which implies that $z=q$. Then, by (25), z is a best proximity point of f. Similiarly, we can prove z is a best proximity point of g. Therefore, z is an common
best proximity point of f and g. If $z, w \in X$ are common best proximity points and $\alpha(z, w) \geq 1, \mu(z, w) \leq 1$, then we get

$$
\begin{aligned}
d(z, w) & \leq F\left(\frac{1}{2}(d(z, w)+d(w, z)), \Phi(d(z, w), d(w, z))\right) \\
& =F(d(z, w), \Phi(d(z, w), d(w, z))) \\
& \leq d(z, w)
\end{aligned}
$$

So, $d(z, w)=0$, or , $\Psi(d(z, w), d(z, w))=0$,Therefore, $d(z, w)=0$ and hence $z=w$.
The following corollary is an immediate consequence of the main theorem of this section.
Corollary 2.11. Let (X, d) be a complete metric space and $f, g: X \rightarrow X$. Moreover, let the self functions f and g satisfy:
(i)there exists $s_{0} \in X$ such that $\alpha\left(s_{0}, f\left(s_{0}\right)\right) \geq 1$,
(ii) (f, g) is a triangular α-admissible pair,
(iii)for all $p, q \in X$,

$$
\alpha(p, q) d(f(p), g(q)) \leq \frac{1}{2} \mu(p, q)(d(p, g(q))+d(q, f(p)))-\Psi(d(p, g(q)), d(q, f(p))
$$

(or)

$$
(\alpha(p, q)+l)^{d(f(p), g(q))} \leq(l+1)^{\frac{1}{2} \mu(p, q)(d(p, g(q))+d(q, f(p)))-\Psi(d(p, g(q)), d(q, f(p))}
$$

(iv)if $\{s n\}$ is a sequence in A such that $\alpha\left(s_{n}, s_{n+1}\right) \geq 1$ and $s_{n} \rightarrow s_{0}$ as $n \rightarrow \infty$, then $\alpha\left(s_{n}, s_{0}\right) \geq 1$ for all $n \in \mathbb{N} \bigcup\{0\}$. Then f and g have common fixed point. Moreover, if $x, y \in X$ are common fixed points and $\alpha(x, y) \geq 1$, then the common fixed point of f and g is unique, that is $x=y$.

Example 2.12. Consider $X=R$ with the usual metric, $A=\{-8,0,8\}$ and $B=\{-4,-2,4\}$. Then, A and B are nonempty closed subsets of X with $d(A, B)=2, A_{0}=\{0\}$ and $B_{0}=\{-2\}$. Define $f, g: A \rightarrow B$ by $f(0)=-2, \quad f(8)=4, \quad f(-8)=-4$ and $g(x)=-2$ for all $x \in A$.
and $\Psi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ by $\Psi(s, t)=\sqrt{s t}$ also $F(s, t)=s-t$. If,

$$
\left\{\begin{array}{l}
d(u, f(p))=d(A, B)=2 \\
d(v, f(q))=d(A, B)=2
\end{array}\right.
$$

then, $u=v=p=0$ and $q \in A$. Hence all the conditions of Theorem(2.4) hold for this example and clearly 0 is the unique best proximity point of f and g.

Example 2.13. Let $X=[0,2] \times[0,2]$ and d be the Euclidean metric. Let
$A=\{(0, m): 0 \leq m \leq 2)\} \quad B=\{(2, m): 0 \leq m \leq 2)\}$
Then, $d(A, B)=2, A_{0}=A$ and $B_{0}=B$. Define $f, g: A \rightarrow B$ by $f(0, m)=(2, m)$ and $g(0, m)=(2,2)$. Also define $\alpha, \mu: A \times A \rightarrow[0, \infty)$ by $\mu(p, q)=1$ and

$$
\alpha(p, q)=\left\{\begin{array}{l}
\frac{10}{9} \quad \text { if } p, q \in(0,2) \times\{(0,0),(0,2)\} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

and $\Psi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ by

$$
\Psi(s, t)=2 \quad \text { for all } s, t \in X
$$

also $F(s, t)=\frac{s}{1+t}, h(x, y)=x y$, and $\mathcal{F}(s, t)=s t$. Assume that

$$
\left\{\begin{array}{l}
d(u, f(p))=d(A, B)=2 \\
d(v, f(q))=d(A, B)=2
\end{array}\right.
$$

Hence, $u=p$ and $v=(0,2)$, then $u=v$ and (2) holds. If $p \neq(0,2)$, then $\alpha(p, q)=0$ and (2) holds, which implies that (f, g) is an α-proximal C-contraction pair of type C-class. Hence, all the hypothesis of the Theorem(*) are satisfied. Moreover, if $\left\{s_{n}\right\}$ is a sequence such that $\alpha\left(s_{n}, s_{n+1}\right) \geq 1$ for every $n \in \mathbf{N} \cup\{0\}$ and $s_{n} \rightarrow s_{0}$, then $s_{n}=(0,2)$ for all $n \in \mathbf{N} \cup\{0\}$ and hence $s_{0}=(0,2)$. Then $\alpha\left(s_{n}, s_{0}\right) \geq 1$ for every $n \in \mathbf{N} \cup\{0\}$. Clearly, (A, B) has the V - property and then all the conclusions of Theorem(2.10) hold. Clearly, $(0,2)$ is the unique common best proximity point of f and g.

Example 2.14. Let $X=[0,3] \times[0,3]$ and d be the Euclidean metric. Let
$A=\{(0, m): 0 \leq m \leq 3)\} \quad B=\{(3, m): 0 \leq m \leq 3)\}$
Then, $d(A, B)=3, A_{0}=A$ and $B_{0}=B$. Define $f, g: A \rightarrow B$ by

$$
f(0, m)=\left\{\begin{array}{lc}
(3,3) & m=\frac{3}{2} \\
\left(3, \frac{m}{2}\right) & m \neq \frac{3}{2}
\end{array}\right.
$$

and $g(0, m)=(3,3)$. Also define $\alpha, \mu: A \times A \rightarrow[0, \infty)$ by $\mu(p, q)=1$ and

$$
\alpha(p, q)= \begin{cases}3 & \text { if } p, q \in\left(0, \frac{3}{2}\right) \times A \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \text { and } \Psi:[0, \infty) \times[0, \infty) \rightarrow[0, \infty) \text { by } \\
& \qquad \Psi(s, t)=\frac{1}{2}(s+t) \quad \text { for all } s, t \in X
\end{aligned}
$$

also $F(s, t)=s-t, h(x, y)=x y$, and $\mathcal{F}(s, t)=s t$.
It is easy to see that all required hypothesis of Theorem(2.10) are satisfied unless (iii). Clearly f and g have no common best proximity point.It is worth noting that pair (f, g) does not have the triangular α-proximal admissible property.

References

[1] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
[2] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145-174.
[3] P. Erdös, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) 207-214.
[4] F. Akbar, M. A. Kutbi, M. H. Shah, N. Shafqat, Random coupled and tripled best proximity results with cyclic contraction in metric spaces, J. Nonlinear Sci. Appl. 9(3) (2016) 940-956.
[5] A. H.Ansari, Note on $\varphi-\psi$-contractive type mappings and related fixed point, The 2 nd Regional Conference onMathematics And Applications, Payame Noor University (2014) 377-380.
[6] A. H.Ansari, Note on α-admissible mappings and related fixed point theorems, The 2 nd Regional Conference onMathematics And Applications, PNU (2014), 373-376.
[7] A. H. Ansari and Satish Shukla, Some fixed point theorems for ordered $F-(\mathcal{F}, h)$-contraction and subcontractions in 0 - f-orbitally complete partial metric spaces, J. Adv. Math. Stud.Vol. 9 (2016) 37-53.
[8] H. Aydi, A. Felhi, E. Karapınar, On common best proximity points for generalized $\alpha-\psi$-proximal contractions, J. Nonlinear Sci. Appl. 9(5) (2016) 2658-2670.
[9] H.Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea-Ciric type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9(5) (2016) 2458-2466.
[10] V. Berinde, Comparing Krasnoselskij and Mann iterative methods for Lipschitzian generalized pseudocontractions, In Proceedings of the International Conference on Fixed Point Theory and Its Applications, Valencia, Spain, July 13-19, 2003 (Garcia-Falset, J. et al., Eds.), Yokohama Publishers, Yokohama (2004) 15-26.
[11] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69 (2008) $3790-3794$.
[12] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 12 (1969) 234-240.
[13] M. Gabeleh, Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces, J. Optim. Theory Appl. 158 (2013) 615-625.
[14] G.V.R. Babu and P.D. Sailaja, A Fixed Point Theorem of Generalized Weakly Contractive Maps in Orbitally Complete Metric Spaces, Thai Journal of Mathematics 9 (2011) 1-10.
[15] M. Z. Haddadi, Best proximity point iteration for nonexpensive mapping in Banach spaces, J. Nonlinear Sci. Appl. 7(2) (2014) 126-130.
[16] W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003) 851-862.
[17] P. Kumam, P. Salimi, C. Vetro, Best proximity point results for modified α-proximal C-contraction mappings, Fixed Point Theory Appl. (2014).
[18] A. Latif, M. Abbas, A. Hussain, Coincidence best proximity point of Fg-weak contractive mappings in partially ordered metric spaces, J. Nonlinear Sci. Appl. 9(5) (2016) 2448-2457.
[19] C. Mongkolkeha, W. Sintunavarat, Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces, J. Nonlinear Sci. Appl. 8(6) (2015) 1134-1140.
[20] V. Pragadeeswarar, M. Marudai, P. Kumam, Best proximity point theorems for multivalued mappings on partially ordered metric spaces, J. Nonlinear Sci. Appl. 9(4), 1911-1921.
[21] Parvaneh Lo'lo', Seiyed Mansour Vaezpour, Reza Saadati, Common best proximity points results for new proximal C-contraction mappings, Fixed Point Theory and Applications (2016).
[22] X. Qin, and Y. Su, Viscosity approximation methods for nonexpansive mappings in Banach spaces, Carpathian J. Math. 22 (2006) No.1-2 163-172.
[23] I. A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory: 1950 - 2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca (2002).
[24] S. Sadiq Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl. 42 (2012).
[25] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. 71 (2009) 2918-2926.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25
 Keywords. common best proximity point; triangular α-proximal admissible;proximal C-contraction,C-class functions , pair (\mathcal{F}, h) upper class

 Received: 17 September 2016; Accepted: 30 january 2017
 Communicated by Vladimir Rakočević
 Email addresses: analsisamirmath2@gmail.com (A.H.Ansari), genomaths@gmail.com (Geno Kadwin Jacob), chellapillai2@gmail.com (D. Chellapillai)

