Filomat 31:11 (2017), 3459-3471 https://doi.org/10.2298/FIL1711459A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

C-Class Functions and Pair (\mathcal{F}, h) upper Class on Common Best **Proximity Points Results for New Proximal** *C***-Contraction mappings**

A.H.Ansari^a, Geno Kadwin Jacob^b, D. Chellapillai^b

^aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran. ^bDepartment of Mathematics, Bharathidasan University, Trichy- 620 024, Tamil Nadu, India.

Abstract. In this paper, using the concept of *C*-class and Upper class functions we prove the existence of unique common best proximity point. Our main result generalizes results of Kumam et al. [[17]] and Parvaneh et al. [[21]].

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

Consider a pair (A, B) of nonempty subsets of a metric space (X, d). Assume that f is a function from A into B. An element $w \in A$ is said to be a best proximity point whenever d(w, fw) = d(A, B), where

 $d(A, B) = \inf\{d(s, t) : s \in A, t \in B\}.$

Best proximity point theory of non-self functions was initiated by Fan [1] and Kirk et al. [[16]]; see also [[19][15][11][13][4][8][9][24][25][20][18]].

Definition 1.1. Consider non-self functions $f_1, f_2, \ldots, f_n : A \to B$. We say the a point $s \in A$ is a common best proximity point of f_1, f_2, \ldots, f_n if

 $d(s, f_1(s)) = d(s, f_2(s)) = \cdots = d(s, f_n(s)) = d(A, B).$

Definition 1.2. ([17])Let (X, d) be a metric space and $\emptyset \neq A, B \subset X$. We say the pair (A, B) has the V-property if for every sequence $\{t_n\}$ of B satisfying $d(s, t_n) \rightarrow d(s, B)$ for some $s \in A$, there exists a $t \in B$ such that d(s, t) = d(s, B).

Definition 1.3. ([5]) A continuous function $F : [0, \infty)^2 \to \mathbb{R}$ is called C-class function if for any $s, t \in [0, \infty)$, the following conditions hold:

(1) $F(s,t) \leq s;$

(2) F(s, t) = s implies that either s = 0 or t = 0.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Keywords. common best proximity point; triangular α -proximal admissible; proximal C-contraction, C-class functions, pair (\mathcal{F}, h) upper class

Received: 17 September 2016; Accepted: 30 january 2017 Communicated by Vladimir Rakočević

Email addresses: analsisamirmath2@gmail.com (A.H.Ansari), genomaths@gmail.com (Geno Kadwin Jacob),

chellapillai2@gmail.com (D. Chellapillai)

An extra condition on *F* that F(0, 0) = 0 could be imposed in some cases if required. The letter *C* will denote the class of all *C*- functions.

Example 1.4. ([5]) Following examples show that the class *C* is nonempty:

- 1. F(s,t) = s t.
- 2. F(s, t) = ms, for some $m \in (0, 1)$.
- 3. *F*(*s*, *t*) = $\frac{s}{(1+t)^r}$ for some *r* ∈ (0, ∞).
- 4. $F(s, t) = \log(t + a^s)/(1 + t)$, for some a > 1.
- 5. $F(s,t) = \frac{s}{\Gamma(1/2)} \int_0^\infty \frac{e^{-x}}{\sqrt{x+t}} dx$, where Γ is the Euler Gamma function.

Definition 1.5. [6, 7]We say that the function $h: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is a function of subclass of type I, if $x \ge 1 \Longrightarrow h(1, y) \le h(x, y)$ for all $y \in \mathbb{R}^+$.

Example 1.6. [6, 7] Define $h: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

(a) $h(x, y) = (y + l)^{x}, l > 1;$ (b) $h(x, y) = (x + l)^{y}, l > 1;$ (c) $h(x, y) = x^{n}y, n \in \mathbb{N};$ (d) h(x, y) = y;(e) $h(x, y) = \frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) y, n \in \mathbb{N};$ (f) $h(x, y) = \left[\frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) + l \right]^{y}, l > 1, n \in \mathbb{N}$

for all $x, y \in \mathbb{R}^+$. Then h is a function of subclass of type I.

Definition 1.7. [6, 7]Let $h, \mathcal{F} : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$, then we say that the pair (\mathcal{F}, h) is an upper class, if h is a function of subclass of type I and: (i) $0 \le s \le 1 \Longrightarrow \mathcal{F}[s, t] \le \mathcal{F}[1, t]$, (ii) $h(1, y) \le \mathcal{F}[1, t] \Longrightarrow y \le t$ for all $t, y \in \mathbb{R}^+$.

Example 1.8. [6, 7] *Define* $h, \mathcal{F} \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ *by:*

- (a) $h(x, y) = (y + l)^{x}, l > 1$ and $\mathcal{F}[s, t] = st + l;$ (b) $h(x, y) = (x + l)^{y}, l > 1$ and $\mathcal{F}[s, t] = (1 + l)^{st};$ (c) $h(x, y) = x^{m}y, m \in \mathbb{N}$ and $\mathcal{F}[s, t] = st;$ (d) h(x, y) = y and $\mathcal{F}[s, t] = t;$ (d) $h(x, y) = \frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) y, n \in \mathbb{N}$ and $\mathcal{F}[s, t] = st;$ (e) $h(x, y) = \left[\frac{1}{n+1} \left(\sum_{i=0}^{n} x^{i} \right) + l \right]^{y}, l > 1, n \in \mathbb{N}$ and $\mathcal{F}[s, t] = (1 + l)^{st}$
- for all $x, y, s, t \in \mathbb{R}^+$. Then the pair (\mathcal{F}, h) is an upper class of type I.

Let Φ_u denote the class of the functions $\varphi : [0, +\infty) \times [0, +\infty) \rightarrow [0, +\infty)$ which satisfy the following conditions:

- (a) φ continuous ;
- (b) $\varphi(u, v) > 0, (u, v) \neq (0, 0)$ and $\varphi(0, 0) \ge 0$.

Let Ψ_a be a set of all continuous functions $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ satisfying the following conditions:

- $(\psi_1) \psi$ is continuous and strictly increasing.
- $(\psi_2) \ \psi(t) = 0$ if and only of t = 0.

Also we denote by Ψ the family of all continuous functions from $[0, +\infty) \times [0, +\infty)$ to $[0, +\infty)$ such that $\psi(u, v) = 0$ if and only if u = v = 0 where $\psi \in \Psi$.

Lemma 1.9. ([14])Suppose (X, d) is a metric space. Let $\{x_n\}$ be a sequence in Xsuch that $d(x_n, x_{n+1}) \to 0$ as $n \to \infty$. If $\{x_n\}$ is not a Cauchy sequence then there exist an $\varepsilon > 0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with

 $m(k) > n(k) > k \text{ such that } d(x_{m(k)}, x_{n(k)}) \ge \varepsilon, d(x_{m(k)-1}, x_{n(k)}) < \varepsilon \text{ and}$ (i) $\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)+1}) = \varepsilon;$ (ii) $\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) = \varepsilon;$ (iii) $\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) = \varepsilon$ We note that also can see $\lim_{k \to \infty} d(x_{m(k)+1}, x_{n(k)+1}) = \varepsilon$ and $\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)-1}) = \varepsilon$

Definition 1.10. ([21])Let (X, d) be a metric space, $\emptyset \neq A, B \subset X, \alpha : A \times A \rightarrow [0, \infty)$ a function and $f, g : A \rightarrow B$ non-self mappings. We say that (f, g) is a triangular α -proximal admissible pair, if for all $p, q, r, t1, t2, s1, s2 \in A$,

$$T_1: \begin{cases} \alpha(t_1, t_2) \ge 1\\ d(s_1, f(t_1)) = d(A, B)\\ d(s_2, g(t_2)) = d(A, B) \end{cases} \implies \alpha(s_1, s_2) \ge 1$$
$$T_2: \begin{cases} \alpha(p, r) \ge 1\\ \alpha(r, q) \ge 1 \end{cases} \implies \alpha(p, q) \ge 1.$$

Let (X, d) be a metric space, $\emptyset \neq A, B \subset X$. We define

$$A_0 = \{x \in A : d(x, y) = d(A, B) \text{ for some } y \in B\}$$

$$B_0 = \{y \in B : d(x, y) = d(A, B) \text{ for some } x \in A\}$$
(1)

Definition 1.11. ([21])Let Let (X, d) be a metric space, $\emptyset \neq A, B \subset X$, and $f, g : A \rightarrow B$ non-self mappings. We say that (f, g) is a generalized proximal *C*-contraction pair if, for all $s, t, p, q \in A$,

$$d(s, f(p)) = d(A, B) d(t, g(q)) = d(A, B)$$

$$\} \Longrightarrow d(s, t) \le \frac{1}{2} \Big(d(p, t) + d(q, s) \Big) - \psi \Big(d(p, t), d(q, s) \Big),$$
 (2)

in which $\psi \in \Psi$.

Definition 1.12. ([21])Let (X, d) be a metric space, $\emptyset \neq A, B \subset X, \alpha : A \times A \rightarrow [0, \infty)$ a function and $f, g : A \rightarrow B$ non-self functions. If, for all $s, t, p, q \in A$,

$$d(s, f(p)) = d(A, B) d(t, g(q)) = d(A, B)$$

$$\} \Longrightarrow \alpha(p, q)d(s, t) \le \frac{1}{2} \left(d(p, t) + d(q, s) \right) - \psi \left(d(p, t), d(q, s) \right),$$
 (3)

then (f, q) is said to be an α -proximal C_1 -contraction pair.

If in the definition above, we replace (2) by

$$(\alpha(p,q)+l)^{d(s,t)} \le (l+1)^{\frac{1}{2}\left(d(p,t)+d(q,s)\right)-\psi\left(d(p,t),d(q,s)\right)},\tag{4}$$

where l > 0, then (f, g) is said to be an α -proximal C_2 -contraction pair.

In this paper, we generalize some results of Parvaneh et al. [[21]] to obtain some new common best proximity point theorems. Next, by an example and some fixed point results, we support our main result.

2. Main Results

Definition 2.1. Let A and B are two nonempty subsets of a metric space, (X, d). Let $\mu : A \times A \rightarrow [0, \infty)$ a function and $f, g : A \rightarrow B$ non-self mappings. We say that (f, g) is a triangular μ – subproximal admissible pair, if for all $p, q, r, s, t_1, t_2, s_1, s_2 \in A$,

$$T_{1}: \begin{cases} \mu(t_{1}, t_{2}) \leq 1, \\ d(s_{1}, f(t_{1})) = d(A, B), \\ d(s_{2}, f(t_{2})) = d(A, B) \end{cases} \implies \mu(s_{1}, s_{2}) \leq 1$$
$$T_{2}: \begin{cases} \mu(p, r) \leq 1, \\ \mu(r, q) \leq 1 \end{cases} \implies \mu(p, q) \leq 1$$

Definition 2.2. Let Let (X, d) be a metric space, $\emptyset \neq A, B \subset X$, and $f, g : A \rightarrow B$ non-self mappings. We say that (f, g) is a generalized proximal C-contraction pair of type C-class if, for all $s, t, p, q \in A$,

$$d(s, f(p)) = d(A, B) d(t, g(q)) = d(A, B)$$

$$\} \Longrightarrow d(s, t) \le F\left(\frac{1}{2}\left(d(p, t) + d(q, s)\right), \psi\left(d(p, t), d(q, s)\right)\right),$$
 (5)

in which $\psi \in \Psi_u$.

Definition 2.3. Let (X, d) be a metric space, $\emptyset \neq A, B \subset X, \alpha : A \times A \rightarrow [0, \infty)$ a function and $f, g : A \rightarrow B$ non-self functions. If, for all $s, t, p, q \in A$,

$$d(s, f(p)) = d(A, B) d(t, g(q)) = d(A, B)$$

$$\} \Longrightarrow h(\alpha(p, q), d(s, t)) \le \mathcal{F}\left(\mu(p, q), F\left(\frac{1}{2}\left(d(p, t) + d(q, s)\right), \psi\left(d(p, t), d(q, s)\right)\right)\right),$$
 (6)

then (f, g) is said to be an α , μ -proximal C-contraction pair of type C-class.

Theorem 2.4. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A_0 be nonempty. Moreover, assume that the non-self functions $f, g : A \to B$ satisfy; (i). f, g are continuous,

(*ii*). $f(A_0) \subset B_0$ and $q(A_0) \subset B_0$,

(iii). (f, g) is a generalised proximal C-contraction pair of type C-class,

Then, the functions f and g have a unique common best proximity point.

Proof. Choose, $s_0 \in A_0$ be arbitrary. Since $f(A_0) \subset B_0$, there exists $s_1 \in A_0$ such that

$$d(s_1, f(s_0)) = d(A, B).$$

Since $g(A_0) \subset B_0$, there exists $s_2 \in A_0$ such that $d(s_2, g(s_1)) = d(A, B)$. Now as $f(A_0) \subset B_0$, there exists $s_3 \in A_0$ such that $d(s_3, f(s_2)) = d(A, B)$.

We continue this process and construct a sequence $\{s_n\}$ such that

$$\begin{cases} d(s_{2n+1}, f(s_{2n})) = d(A, B), \\ d(s_{2n+2}, g(s_{2n+1})) = d(A, B). \end{cases}$$
(7)

for each $n \in \mathbb{N}$ Claim(1).

1

$$\lim_{n \to \infty} d(s_n, s_{n+1}) = 0 \tag{8}$$

From (5) we get,

$$d(s_{2n+1}, s_{2n+2}) \leq F\left(\frac{1}{2}\left(d(s_{2n}, s_{2n+2}) + d(s_{2n+1}, s_{2n+1})\right), \Psi\left(d(s_{2n}, s_{2n+2}), d(s_{2n+1}, s_{2n+1})\right)\right)$$

$$= F\left(\frac{1}{2}d(s_{2n}, s_{2n+2}), \Psi\left(d(s_{2n}, s_{2n+2}), 0\right)\right)$$

$$\leq \frac{1}{2}d(s_{2n}, s_{2n+2})$$

$$\leq \frac{1}{2}\left[d(s_{2n}, s_{2n+1}) + d(s_{2n+1}, s_{2n+2})\right]$$
(9)

which implies $d(s_{2n+1}, s_{2n+2}) \le d(s_{2n}, s_{2n+1})$. Therfore, $\{d(s_{2n}, s_{2n+1})\}$ is an non-negative decreasing sequence and so converges to d > 0. Now, as $n \to \infty$ in (9), we getget

$$d \leq \frac{1}{2}d(s_{2n}, s_{2n+1}) \leq \frac{1}{2}(d+d) = d$$

that is,
$$\lim_{n \to \infty} d(s_{2n}, s_{2n+1}) = 2d.$$
 (10)

Again, taking $n \rightarrow \infty$ in (9), and using (10)we get

$$F(d, \Psi(2d, 0)) = d$$

So, d = 0, or , $\Psi(2d, 0) = 0$ and hence d = 0. **Claim(2)**.{ s_n } is cauchy.

By, (8) it is enough to show that subsequence $\{s_{2n}\}$ is cauchy. Suppose, to the contrary, that $\{s_{2n}\}$ is not a Cauchy sequence.By lemma (1.9) there exists $\epsilon > 0$ for which we can find subsequences $\{s_{2n_k}\}$ and $\{s_{2m_k}\}$ of $\{s_{2n}\}$ with $2n_k > 2m_k > 2k$ such that

$$\epsilon = \lim_{k \to \infty} d(s_{2m(k)}, s_{2n(k)}) = \lim_{k \to \infty} d(s_{2m(k)}, s_{2n(k)+1})$$

$$= \lim_{k \to \infty} d(s_{2m(k)+1}, s_{2n(k)}) = \lim_{k \to \infty} d(s_{2m(k)+1}, s_{2n(k)+1})$$
(11)

From (5) we have

$$d(s_{2n_{k+1}}, s_{2m_k}) \le F\left(\frac{1}{2}\left(d(s_{2m_k}, s_{2n_k}) + s_{2n_{k+1}}, s_{2m_{k-1}}\right), \Psi\left(d(s_{2m_k}, s_{2n_k}), s_{2n_{k+1}}, s_{2m_{k-1}}\right)\right)$$
(12)

Taking $k \to \infty$ in the above inequality and using (11), and the continuity of F, Ψ , we would obtain

$$F\Big(\frac{1}{2}(\epsilon+\epsilon),\Psi(\epsilon,\epsilon)\Big)=\epsilon$$

and therefore, $\epsilon = 0$, or , $\Psi(\epsilon, \epsilon) = 0$, which would imply $\epsilon = 0$, a contradiction. Thus, $\{s_n\}$ is a cauchy sequence. Since *A* is complete, there is a $z \in A$ such that $s_n \to z$. Now, from $d(s_{2n+1}, f(s_{2n})) = d(A, B)$, $d(s_{2n+2}, g(s_{2n+1})) = d(A, B)$

By continuity of *f* ang *g*, taking $n \to \infty$ we have d(z, f(z)) = d(z, g(z)) = d(A, B). So, *z* is a common best proximity point of the mappings *f* and *g*. Let, *w* is also a common best proximity point of mappings *f* and *g*. From (1) we have

$$d(z,w) \leq F\left(\frac{1}{2}\left(d(z,w) + d(w,z)\right), -\Psi\left(d(z,w), d(w,z)\right)\right)$$

= $F\left(d(z,w), \Psi\left(d(z,w), d(w,z)\right)\right)$ (13)

So, d(z, w) = 0, or , $\Psi(d(z, w), d(z, w)) = 0$, Hence d(z, w) = 0, and therefore z = w. \Box

3463

Theorem 2.5. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete and A_0 be nonempty. Moreover, assume that the non-self functions $f, g : A \to B$ satisfy;

(i). f, g are continuous,

(*ii*). $f(A_0) \subset B_0$ and $g(A_0) \subset B_0$,

(iii). (f, g) is an α , μ -proximal C-contraction pair of type C-class ,

(iv). (f,g) is a triangular α -proximal admissible pair and a triangular μ – subproximal admissible pair,

(v). there exist $s_0, s_1 \in A_0$ such that $d(s_1, f(s_0)) = d(A, B)$, $\alpha(s_1, s_0) \ge 1, \mu(s_1, s_0) \le 1$. Then, the functions f and g have a common best proximity point. Furthermore, if $z, w \in X$ are common best proximity points and $\alpha(z, w) \ge 1, \mu(z, w) \le 1$, then common best proximity point is unique.

Proof. By (*iv*), we can find $s_0, s_1 \in A_0$ such that

 $d(s_1, f(s_0)) = d(A, B), \qquad \alpha(s_1, s_0) \ge 1, \mu(s_1, s_0) \le 1.$

Define the sequence $\{s_n\}$ as in (7) of the theorem(2.4). Since, (f, g) is triangular α -proximal admissible and triangular μ – *sub*proximal admissible, we have $\alpha(s_n, s_{n+1}) \ge 1$, $\mu(s_n, s_{n+1}) \le 1$. Then

$$\begin{cases} \alpha(s_n, s_{n+1}) \ge 1, \\ d(s_{2n+1}, f(s_{2n})) = d(A, B) \\ d(s_{2n+2}, g(s_{2n+1})) = d(A, B). \end{cases}$$
(14)

and

7

$$\begin{cases} \mu(s_n, s_{n+1}) \le 1, \\ d(s_{2n+1}, f(s_{2n})) = d(A, B) \\ d(s_{2n+2}, g(s_{2n+1})) = d(A, B). \end{cases}$$
(15)

If $s = s_{2n+1}$, $t = s_{2n+2}$, $p = s_{2n}$, $q = s_{2n+1}$, and (f, g) is an α , μ -proximal *C*-contraction pair of type *C*-class. Then,

$$\begin{split} h\big(1, d(s_{2n+1}, s_{2n+2})\big) &\leq h\big(\alpha(s_{2n}, s_{2n+1}), d(s_{2n+1}, s_{2n+2})\big) \\ &\leq \mathcal{F}\Big[\mu(s_{2n}, s_{2n+1}), F\Big(\frac{1}{2}\big(d(s_{2n}, s_{2n+2}) + d(s_{2n+1}, s_{2n+1})\big), \psi\big(d(s_{2n}, s_{2n+2}), d(s_{2n+1}, s_{2n+1})\big)\Big)\Big], \\ &\leq \mathcal{F}\Big[1, F\Big(\frac{1}{2}\big(d(s_{2n}, s_{2n+2}) + d(s_{2n+1}, s_{2n+1})\big), \psi\big(d(s_{2n}, s_{2n+2}), d(s_{2n+1}, s_{2n+1})\big)\Big)\Big], \end{split}$$

so,

$$d(s_{2n+1}, s_{2n+2}) \leq F\left(\frac{1}{2}\left(d(s_{2n}, s_{2n+2}) + d(s_{2n+1}, s_{2n+1})\right), \Psi\left(d(s_{2n}, s_{2n+2}), d(s_{2n+1}, s_{2n+1})\right)\right)$$

$$= F\left(\frac{1}{2}d(s_{2n}, s_{2n+2}), \Psi\left(d(s_{2n}, s_{2n+2}), 0\right)\right)$$

$$\leq \frac{1}{2}d(s_{2n}, s_{2n+2})$$

$$\leq \frac{1}{2}\left[d(s_{2n}, s_{2n+1}) + d(s_{2n+1}, s_{2n+2})\right]$$
(16)

which implies $d(s_{2n+1}, s_{2n+2}) \le d(s_{2n}, s_{2n+1})$. Therfore, $\{d(s_{2n}, s_{2n+1})\}$ is an non-negative decreasing sequence and so converges to d > 0. Now, as $n \to \infty$ in (16), we get

$$d \le \frac{1}{2}d(s_{2n}, s_{2n+1}) \le \frac{1}{2}(d+d) = d$$

that is,

$$\lim_{n \to \infty} d(s_{2n}, s_{2n+1}) = 2d.$$
(17)

Again, taking $n \to \infty$ in (9), and using (17) we get

$$F(d, \Psi(2d, 0)) = d$$

So, d = 0, or , $\Psi(2d, 0) = 0$ and hence d = 0. Therefore,

$$\lim_{n \to \infty} d(s_n, s_{n+1}) = 0 \tag{18}$$

Now we prove that

$$\alpha(s_{2m_k-1}, s_{2n_k}) \ge 1, \, \mu(s_{2m_k-1}, s_{2n_k}) \le 1, \qquad n_k > m_k > k.$$
(19)

Since (f, g) is triangular α – proximal admissible and triangular μ – subproximal admissible and

```
\begin{cases} \alpha(s_{2m_k-1}, s_{2m_k}) \ge 1\\ \alpha(s_{2m_k}, s_{2m_k+1}) \ge 1 \end{cases}\begin{cases} \mu(s_{2m_k-1}, s_{2m_k}) \le 1\\ \mu(s_{2m_k}, s_{2m_k+1}) \le 1 \end{cases}
```

From (T_2) of definition(1.10) and definition(2.1) we have

 $\begin{array}{llll} \alpha(s_{2m_k-1}, s_{2m_k+1}) &\geq & 1 \\ \mu(s_{2m_k-1}, s_{2m_k+1}) &\leq & 1. \end{array}$

Again, since (f, g) is triangular α -proximal admissible and triangular μ - *sub*proximal admissible and

```
\begin{cases} \alpha(s_{2m_k-1}, s_{2m_k+1}) \ge 1\\ \alpha(s_{2m_k+1}, s_{2m_k+2}) \ge 1 \end{cases}\begin{cases} \mu(s_{2m_k-1}, s_{2m_k+1}) \le 1\\ \mu(s_{2m_k+1}, s_{2m_k+2}) \le 1 \end{cases}
```

From (T_2) of definition(1.10) and definition(2.1) again, we have

```
\begin{array}{llll} \alpha(s_{2m_k-1}, s_{2m_k+2}) & \geq & 1 \\ \mu(s_{2m_k-1}, s_{2m_k+2}) & \leq & 1. \end{array}
```

By continuing this process, we get (19).

Now, we prove that $\{s_n\}$ is cauchy.

By, (18) it is enough to show that subsequence $\{s_{2n}\}$ is cauchy. Suppose, to the contrary, that $\{s_{2n}\}$ is not a Cauchy sequence.By lemma (1.9) there exists $\epsilon > 0$ for which we can find subsequences $\{s_{2n_k}\}$ and $\{s_{2m_k}\}$ of $\{s_{2n}\}$ with $2n_k > 2m_k > 2k$ such that

$$\epsilon = \lim_{k \to \infty} d(s_{2m(k)}, s_{2n(k)}) = \lim_{k \to \infty} d(s_{2m(k)}, s_{2n(k)+1})$$

$$= \lim_{k \to \infty} d(s_{2m(k)+1}, s_{2n(k)}) = \lim_{k \to \infty} d(s_{2m(k)+1}, s_{2n(k)+1})$$
(20)

Now if let $s = s_{2n_k+1}$, $t = s_{2m_k}$, $p = s_{2n_k}$, $q = s_{2m_k} - 1$, then

$$\begin{split} h(1, d(s_{2n_{k}+1}, s_{2m_{k}})) &\leq h(\alpha(s_{2n_{k}}, s_{2m_{k}-1}), d(s_{2n_{k}+1}, s_{2m_{k}})) \\ &\leq \mathcal{F}\Big[\mu(s_{2n_{k}}, s_{2m_{k}-1}), F\Big(\frac{1}{2}\Big(d(s_{2n_{k}}, s_{2m_{k}}) + d(s_{2m_{k}-1}, s_{2n_{k}+1})\Big), \psi\Big(d(s_{2n_{k}}, s_{2m_{k}}), d(s_{2m_{k}-1}, s_{2n_{k}+1})\Big)\Big)\Big] \\ &\leq \mathcal{F}\Big[1, F\Big(\frac{1}{2}\Big(d(s_{2n_{k}}, s_{2m_{k}}) + d(s_{2m_{k}-1}, s_{2n_{k}+1})\Big), \psi\Big(d(s_{2n_{k}}, s_{2m_{k}}), d(s_{2m_{k}-1}, s_{2n_{k}+1})\Big)\Big)\Big]$$

Therefore,

$$d(s_{2n_{k+1}}, s_{2m_k}) \le F\left(\frac{1}{2}\left(d(s_{2m_k}, s_{2n_k}) + s_{2n_{k+1}}, s_{2m_{k-1}}\right), \Psi\left(d(s_{2m_k}, s_{2n_k}), d(s_{2n_{k+1}}, s_{2m_{k-1}})\right)\right)$$
(21)

Taking $k \to \infty$ in the above inequality and using (20), and the continuity of F, Ψ , we would obtain

$$F\left(\frac{1}{2}(\epsilon+\epsilon),\Psi(\epsilon,\epsilon)\right) = \epsilon$$

and therefore, $\epsilon = 0$, or , $\Psi(\epsilon, \epsilon) = 0$, which would imply $\epsilon = 0$, a contradiction. Thus, $\{s_n\}$ is a cauchy sequence. Since *A* is complete, there is a $z \in A$ such that $s_n \to z$. Now, from

 $d(s_{2n+1}, f(s_{2n})) = d(A, B),$ $d(s_{2n+2}, g(s_{2n+1})) = d(A, B)$ By continuity of f and g, taking $n \to \infty$ we have d(z, f(z)) = d(z, g(z)) = d(A, B). So, z is a common best proximity point of the mappings f and g. Let, w is also a common best proximity point of mappings f and g. Since $\alpha(z, w) \ge 1, \mu(z, w) \le 1$ from (6) we have

$$\begin{split} h(1,d(z,w)) &\leq h(\alpha(z,w),d(z,w)) \\ &\leq \mathcal{F}\Big[\mu(z,w),F\Big(\frac{1}{2}\big(d(z,w)+d(w,z)\big),\psi\big(d(z,w),d(w,z)\big)\big)\Big], \\ &\leq \mathcal{F}\Big[1,F\Big(\frac{1}{2}\big(d(z,w)+d(w,z)\big),\psi\big(d(z,w),d(w,z)\big)\big)\Big), \end{split}$$

therefore,

$$d(z,w) \le F\left(\frac{1}{2}\left(d(z,w) + d(w,z)\right), -\Phi\left(d(z,w), d(w,z)\right)\right)$$
$$= F\left(d(z,w), \Phi\left(d(z,w), d(w,z)\right)\right)$$

So, d(z, w) = 0, or , $\Psi(d(z, w), d(z, w)) = 0$, Hence d(z, w) = 0, and therefore z = w. \Box

Definition 2.6. ([21])Let $\alpha : X \times X \to \mathbb{R}$ be a function and $f, g : X \to X$ self-mappings and $p, q, r \in X$ be any three elements. We say that (f, g) is a triangular α -admissible pair if

$$\begin{aligned} (i)\alpha(p,q) &\geq 1 &\implies \quad \alpha(f(p),g(q)) \geq 1 \text{ or } \alpha(g(p),f(q)) \geq 1, \\ (ii) \begin{cases} \alpha(p,r) \geq 1 \\ \alpha(r,q) \geq 1 \end{cases} \implies \quad \alpha(p,q) \geq 1 \end{aligned}$$

Definition 2.7. Let $\mu : X \times X \to \mathbb{R}$ be a function and $f, g : X \to X$ self-mappings and $p, q, r \in X$ be any three elements. We say that (f, g) is a triangular μ – subadmissible pair if

$$\begin{aligned} (i)\mu(p,q) &\leq 1 & \Longrightarrow & \mu(f(p),g(q)) \leq 1 \text{ or } \mu(g(p),f(q)) \leq 1, \\ (ii) \begin{cases} \mu(p,r) \leq 1 \\ \mu(r,q) \leq 1 \end{cases} & \Longrightarrow & \mu(p,q) \leq 1 \end{aligned}$$

3466

The corollary is an consequence of the last theorem.

Corollary 2.8. Let (X, d) be a complete metric space and $f, g : X \to X$. Moreover, let the self functions f and g satisfy:

(i) f and g are continuous,

(ii) there exists $s_0 \in X$ such that $\alpha(s_0, f(s_0)) \ge 1$,

(iii) (f, g) is a triangular α -admissible pair and triangular μ - subadmissible pair ,

(*iv*)for all $p, q \in X$,

 $\alpha(p,q)d(f(p),g(q)) \le \frac{1}{2}\mu(p,q)(d(p,g(q)) + d(q,f(p))) - \Psi(d(p,g(q)),d(q,f(p)))$

(or)

 $\left(\alpha(p,q)+l\right)^{d(f(p),g(q))} \leq (l+1)^{\frac{1}{2}\mu(p,q)\left(d(p,g(q))+d(q,f(p))\right)-\Psi\left(d(p,g(q)),d(q,f(p))\right)}$

Then f and g have common fixed point. Moreover, if $x, y \in X$ are common fixed points and $\alpha(x, y) \ge 1$, $\mu(x, y) \le 1$, then the common fixed point of f and g is unique, that is x = y.

Now, we remove the continuity hypothesis of *f* and *g* and get the following theorem.

Theorem 2.9. Let A and B are two nonempty subsets of a metric space, (X, d). Let A be complete, the pair (A, B) have the V-property, and A_0 be nonempty. Moreover, assume that the non-self functions $f, g : A \to B$ satisfy; (i). $f(A_0) \subset B_0$ and $g(A_0) \subset B_0$, (ii). (f, q) is a generalised proximal C-contraction pair ftype C-class,

Then, the functions f and q have a unique common best proximity point.

Proof. By Theorem(2.4), there is a cauchy sequence $\{s_n\} \subset A$ and $z \in A_0$ such that (7) holds and $s_n \rightarrow z$. Moreover, we have

 $d(z, B) \le d(z, f(s_{2n}))$ $\le d(z, s_{2n+1}) + d(s_{2n+1}, f(s_{2n}))$ $\le d(z, s_{2n+1}) + d(A, B).$

we take $n \to \infty$ in the above inequality, and we get

$$\lim_{n \to \infty} d(z, f(s_n)) = d(z, B) = d(A, B).$$
(22)

Since the pair (A, B) has the V-property, there is a $p \in B$ such that d(z, p) = d(A, B) and so $z \in A_0$. Moreover, Since $f(A_0) \subset B_0$, there is a $q \in A$ such that

$$d(q, f(z)) = d(A, B).$$
 (23)

Furthermore $d(s_{2n+2}, g(s_{2n+1})) = d(A, B)$ for every $n \in \mathbb{N}$. Since (f, g) is a generalised proximal C-contraction pair, we have

$$d(q, s_{2n+2}) \le F\Big(\frac{1}{2}\Big(d(z, s_{2n+2}) + d(s_{2n+1}, q)\Big), \Psi\Big(d(z, s_{2n+2}), d(s_{2n+1}, q)\Big)\Big)$$

Letting $n \to \infty$ *in the above inequality, we have*

$$d(q,z) \le F\left(\frac{1}{2}(d(z,q)), \Psi(d(z,q),0)\right)$$

So, d(q, z) = 0, or, $\Psi(d(q, z), 0) = 0$, Thus d(z, q) = 0, which implies that z = q. Then, by (23), z is a best proximity point of f.

Similarly, it is easy to prove that z is a best proximity point of g. Then, z is a common best proximity point of f and g. By the proof of Theorem(2.4), we conclude that f and g have unique common best proximity point. \Box

Theorem 2.10. Let A and B be two nonempty subsets of complete metric space (X, d). Let A be complete, the pair (A, B) have V-property and A_0 is non-empty. Moreover, suppose that the non-self functions $f, g : A \to B$ satisfy: $(i)f(A_0) \subset B_0$ and $g(A_0) \subset B_0$,

(*ii*)(f, q) is an α , μ -proximal C-contraction pair of type C-class,

(iii)(f, g) is a triangular α -proximal admissible pair, and a triangular μ – subproximal admissible pair

(*iv*)there exist $s_0, s_1 \in A_0$ such that $d(s_1, f(s_0)) = d(A, B), \alpha(s_1, s_0) \ge 1, \mu(s_1, s_0) \le 1$.

(v)if $\{s_n\}$ is a sequence in A such that $\alpha(s_n, s_{n+1}) \ge 1$, $\mu(s_n, s_{n+1}) \le 1$ and $s_n \to s_0$ as $n \to \infty$, then $\alpha(s_n, s_0) \ge 1$, $\mu(s_n, s_0) \le 1$ for all $n \in \mathbb{N} \bigcup \{0\}$.

Then *f* and *g* have a common best proximity point. Furthermore, if $z, w \in X$ are common best proximity points and $\alpha(z, w) \ge 1$, $\mu(z, w) \le 1$, then common best proximity point is unique.

Proof. As similar to the proof of Theorem (2.5) that there exist a sequence $\{s_n\}$ and z in A such that $s_n \to z$ and $\alpha(s_n, s_{n+1}) \ge 1$, $\mu(s_n, s_{n+1}) \le 1$. Now, we have

$$d(z, B) \le d(z, f(s_{2n}))$$

$$\le d(z, s_{2n+1}) + d(s_{2n+1}, f(s_{2n}))$$

$$\le d(z, s_{2n+1}) + d(A, B).$$

we take $n \rightarrow \infty$ in the above inequality, and we get

$$\lim_{n \to \infty} d(z, f(s_n)) = d(z, B) = d(A, B).$$
(24)

Since the pair (*A*, *B*) has the *V*-property, there is a $p \in B$ such that d(z, p) = d(A, B) and so $z \in A_0$. Moreover, Since $f(A_0) \subset B_0$, there is a $q \in A$ such that

$$d(q, f(z)) = d(A, B).$$
 (25)

Furthermore $d(s_{2n+2}, g(s_{2n+1})) = d(A, B)$ for every $n \in \mathbb{N}$. Also, by (v), $\alpha(s_n, z) \ge 1$, $\mu(s_n, z) \le 1$ for every $n \in \mathbb{N} \bigcup \{0\}$. By (f, g) is an α, μ -proximal *C*-contraction pair of type *C*-class, we have

$$\begin{aligned} & h(1, d(q, s_{2n+2}))) \\ & \leq & h(\alpha(z, s_{2n+1}), d(q, s_{2n+2})) \\ & \leq & \mathcal{F}\Big[\mu(z, s_{2n+1}), F\Big(\frac{1}{2}\Big(d(z, s_{2n+2}) + d(s_{2n+1}, q)\Big) - \Psi\Big(d(z, s_{2n+2}), d(s_{2n+1}, q)\Big)\Big)\Big] \\ & \leq & \mathcal{F}\Big[1, F\Big(\frac{1}{2}\Big(d(z, s_{2n+2}) + d(s_{2n+1}, q)\Big), \psi\Big(d(z, s_{2n+2}), d(s_{2n+1}, q)\Big)\Big)\Big] \end{aligned}$$

Therefore

$$d(q, s_{2n+2})) \le F\Big(\frac{1}{2}\Big(d(z, s_{2n+2}) + d(s_{2n+1}, q)\Big), \psi\Big(d(z, s_{2n+2}), d(s_{2n+1}, q)\Big)\Big)$$

Letting $n \to \infty$ in the above inequality, we have

$$d(q,z)) \leq F\left(\frac{1}{2}(d(z,q)), \psi(0,d(z,q))\right)$$

So, d(q, z) = 0, or , $\Psi(0, d(q, z)) = 0$, thus d(z, q) = 0, which implies that z = q. Then, by (25), z is a best proximity point of f. Similarly, we can prove z is a best proximity point of g. Therefore, z is an common

best proximity point of *f* and *g*. If $z, w \in X$ are common best proximity points and $\alpha(z, w) \ge 1, \mu(z, w) \le 1$, then we get

$$\begin{aligned} d(z,w) &\leq F\Big(\frac{1}{2}\Big(d(z,w) + d(w,z)\Big), \Phi\Big(d(z,w), d(w,z)\Big)\Big) \\ &= F\Big(d(z,w), \Phi\Big(d(z,w), d(w,z)\Big)\Big) \\ &\leq d(z,w) \end{aligned}$$

So, d(z, w) = 0, or, $\Psi(d(z, w), d(z, w)) = 0$, Therefore, d(z, w) = 0 and hence z = w.

The following corollary is an immediate consequence of the main theorem of this section.

Corollary 2.11. Let (X, d) be a complete metric space and $f, g : X \to X$. Moreover, let the self functions f and g satisfy:

(i) there exists $s_0 \in X$ such that $\alpha(s_0, f(s_0)) \ge 1$, (ii) (f, g) is a triangular α -admissible pair, (iii) for all $p, q \in X$, $\alpha(p,q)d(f(p), g(q)) \le \frac{1}{2}\mu(p,q)(d(p, g(q)) + d(q, f(p))) - \Psi(d(p, g(q)), d(q, f(p)))$

(or)

 $\left(\alpha(p,q)+l\right)^{d(f(p),g(q))} \leq (l+1)^{\frac{1}{2}\mu(p,q)\left(d(p,g(q))+d(q,f(p))\right)-\Psi\left(d(p,g(q)),d(q,f(p))\right)}$

(*iv*)*if* {*sn*} *is a sequence in A such that* $\alpha(s_n, s_{n+1}) \ge 1$ *and* $s_n \to s_0$ *as* $n \to \infty$ *, then* $\alpha(s_n, s_0) \ge 1$ *for all* $n \in \mathbb{N} \bigcup \{0\}$ *. Then f and g have common fixed point. Moreover, if* $x, y \in X$ *are common fixed points and* $\alpha(x, y) \ge 1$ *, then the common fixed point of f and g is unique, that is* x = y.

Example 2.12. Consider X = R with the usual metric, $A = \{-8, 0, 8\}$ and $B = \{-4, -2, 4\}$. Then, A and B are nonempty closed subsets of X with d(A, B) = 2, $A_0 = \{0\}$ and $B_0 = \{-2\}$. Define $f, g : A \to B$ by f(0) = -2, f(8) = 4, f(-8) = -4 and g(x) = -2 for all $x \in A$. and $\Psi : [0, \infty) \times [0, \infty) \to [0, \infty)$ by $\Psi(s, t) = \sqrt{st}$ also F(s, t) = s - t. If,

 $\begin{cases} d(u, f(p)) = d(A, B) = 2\\ d(v, f(q)) = d(A, B) = 2 \end{cases}$

then, u = v = p = 0 and $q \in A$. Hence all the conditions of Theorem(2.4) hold for this example and clearly 0 is the unique best proximity point of f and g.

Example 2.13. Let $X = [0, 2] \times [0, 2]$ and d be the Euclidean metric. Let $A = \{(0, m) : 0 \le m \le 2)\}$ Then, d(A, B) = 2, $A_0 = A$ and $B_0 = B$. Define $f, g : A \to B$ by f(0, m) = (2, m) and g(0, m) = (2, 2). Also define $\alpha, \mu : A \times A \to [0, \infty)$ by $\mu(p, q) = 1$ and

 $\alpha(p,q) = \begin{cases} \frac{10}{9} & if \ p,q \in (0,2) \times \{(0,0),(0,2)\}, \\ 0 & otherwise \end{cases}$

and $\Psi : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ by

 $\Psi(s,t) = 2$ for all $s,t \in X$

also $F(s,t) = \frac{s}{1+t}$, h(x,y) = xy, and $\mathcal{F}(s,t) = st$. Assume that

$$\begin{cases} d(u, f(p)) = d(A, B) = 2\\ d(v, f(q)) = d(A, B) = 2 \end{cases}$$

Hence, u = p and v = (0, 2), then u = v and (2) holds. If $p \neq (0, 2)$, then $\alpha(p, q) = 0$ and (2) holds, which implies that (f, g) is an α -proximal C-contraction pair of type C-class. Hence, all the hypothesis of the Theorem(*) are satisfied. Moreover, if $\{s_n\}$ is a sequence such that $\alpha(s_n, s_{n+1}) \ge 1$ for every $n \in \mathbb{N} \cup \{0\}$ and $s_n \to s_0$, then $s_n = (0, 2)$ for all $n \in \mathbb{N} \cup \{0\}$ and hence $s_0 = (0, 2)$. Then $\alpha(s_n, s_0) \ge 1$ for every $n \in \mathbb{N} \cup \{0\}$. Clearly, (A, B) has the V-property and then all the conclusions of Theorem(2.10) hold. Clearly, (0, 2) is the unique common best proximity point of f and g.

Example 2.14. Let $X = [0,3] \times [0,3]$ and d be the Euclidean metric. Let $A = \{(0,m) : 0 \le m \le 3)\}$ $B = \{(3,m) : 0 \le m \le 3)\}$ Then, d(A, B) = 3, $A_0 = A$ and $B_0 = B$. Define $f, g : A \to B$ by

$$f(0,m) = \begin{cases} (3,3) & m = \frac{3}{2} \\ (3,\frac{m}{2}) & m \neq \frac{3}{2} \end{cases}$$

and g(0,m) = (3,3). Also define $\alpha, \mu : A \times A \rightarrow [0,\infty)$ by $\mu(p,q) = 1$ and

$$\alpha(p,q) = \begin{cases} 3 & if \ p,q \in (0,\frac{3}{2}) \times A, \\ 0 & otherwise \end{cases}$$

and $\Psi : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ by

$$\Psi(s,t) = \frac{1}{2}(s+t) \quad for \ all \ s,t \in X$$

also F(s,t) = s - t, h(x, y) = xy, and $\mathcal{F}(s,t) = st$.

It is easy to see that all required hypothesis of Theorem(2.10) are satisfied unless (iii). Clearly *f* and *g* have no common best proximity point. It is worth noting that pair (*f*, *g*) does not have the triangular α -proximal admissible property.

References

- [1] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [2] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145–174.
- [3] P. Erdös, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) 207–214.
- [4] F. Akbar, M. A. Kutbi, M. H. Shah, N. Shafqat, Random coupled and tripled best proximity results with cyclic contraction in metric spaces, J. Nonlinear Sci. Appl. 9(3) (2016) 940–956.
- [5] A. H.Ansari, Note on φ-ψ-contractive type mappings and related fixed point, The 2nd Regional Conference onMathematics And Applications, Payame Noor University (2014) 377–380.
- [6] A. H.Ansari, Note on α-admissible mappings and related fixed point theorems, The 2nd Regional Conference onMathematics And Applications, PNU (2014), 373–376.
- [7] A. H. Ansari and Satish Shukla, Some fixed point theorems for ordered F-(F, h)-contraction and subcontractions in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud.Vol. 9 (2016) 37–53.
- [8] H. Aydi, A. Felhi, E. Karapınar, On common best proximity points for generalized α-ψ-proximal contractions, J. Nonlinear Sci. Appl. 9(5) (2016) 2658–2670.
- [9] H.Aydi, A. Felhi, Best proximity points for cyclic Kannan-Chatterjea-Ciric type contractions on metric-like spaces, J. Nonlinear Sci. Appl. 9(5) (2016) 2458–2466.
- [10] V. Berinde, Comparing Krasnoselskij and Mann iterative methods for Lipschitzian generalized pseudocontractions, In Proceedings of the International Conference on Fixed Point Theory and Its Applications, Valencia, Spain, July 13-19, 2003 (Garcia-Falset, J. et al., Eds.), Yokohama Publishers, Yokohama (2004) 15–26.
- [11] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69 (2008) 3790–3794.
- [12] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 12 (1969) 234–240.
- [13] M. Gabeleh, Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces, J. Optim. Theory Appl. 158 (2013) 615–625.

- [14] G.V.R. Babu and P.D. Sailaja, A Fixed Point Theorem of Generalized Weakly Contractive Maps in Orbitally Complete Metric Spaces, Thai Journal of Mathematics 9 (2011) 1–10.
- [15] M. Z. Haddadi, Best proximity point iteration for nonexpensive mapping in Banach spaces, J. Nonlinear Sci. Appl. 7(2) (2014) 126–130.
- [16] W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003) 851–862.
- [17] P. Kumam, P. Salimi, C. Vetro, Best proximity point results for modified α-proximal C-contraction mappings, Fixed Point Theory Appl. (2014).
- [18] A. Latif, M. Abbas, A. Hussain, Coincidence best proximity point of Fg-weak contractive mappings in partially ordered metric spaces, J. Nonlinear Sci. Appl. 9(5) (2016) 2448–2457.
- [19] C. Mongkolkeha, W. Sintunavarat, Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces, J. Nonlinear Sci. Appl. 8(6) (2015) 1134–1140.
- [20] V. Pragadeeswarar, M. Marudai, P. Kumam, Best proximity point theorems for multivalued mappings on partially ordered metric spaces, J. Nonlinear Sci. Appl. 9(4), 1911–1921.
- [21] Parvaneh Lo'lo', Seiyed Mansour Vaezpour, Reza Saadati, Common best proximity points results for new proximal C-contraction mappings, Fixed Point Theory and Applications (2016).
- [22] X. Qin, and Y. Su, Viscosity approximation methods for nonexpansive mappings in Banach spaces, Carpathian J. Math. 22 (2006) No.1-2 163–172.
- [23] I. A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory: 1950 2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca (2002).
- [24] S. Sadiq Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl. 42 (2012).
- [25] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. 71 (2009) 2918–2926.