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Available at: http://www.pmf.ni.ac.rs/filomat

A New φ-Generalized Quasi Metric Space with
Some Fixed Point Results and Applications

Mujahid Abbasa, Bahru Tsegaye Leyewb, Safeer Hussain Khanc

aDepartment of Mathematics, Government College University, Lahore-54000, Pakistan and Department of Mathematics,
King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

bDepartment of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa
cDepartment of Mathematics, Statistics and Physics, Qatar University, Doha 2713, Qatar

Abstract. In this paper, the concept of a new φ-generalized quasi metric space is introduced. A number of
well-known quasi metric spaces are retrieved from φ-generalized quasi metric space. Some general fixed
point theorems in a φ-generalized quasi metric spaces are proved, which generalize, modify and unify
some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed
points for contraction mappings in the domain of words and to prove the existence of periodic solutions of
delay differential equations.
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1. Introduction and Preliminaries

Banach contraction principle is one of the most celebrated result in metric fixed theory. Many authors
have given various generalizations of this principle in ambient different spaces (see e.g. [1]-[14]).

In the past few years, quasi metric spaces have been one of the interesting topics for the researchers in
the field of fixed point theory due to two reasons. The first reason is that the assumptions of quasi metric are
weaker than the more general metric. Consequently, the obtained fixed point results in this space are more
general and hence the corresponding results in metric space are covered. The second reason is the fact that
fixed point problems in metric space can be reduced to related fixed point problems in the context of quasi
metric space (see [4]). Very recently, Karapinar [18] introduced (α-ψ)-contraction mappings on generalized
quasi metric spaces without the Hausdorffness assumption. Zhu et al. [19] introduced a new concept of
quasi-b-metric-like spaces as a generalization of b-metric-like spaces and quasi metric-like spaces and some
fixed point theorems were investigated in quasi-b-metric-like spaces.

In this article, we prove the existence of fixed point of (α-ψ)-contraction mappings in the context of our
newly introduced φ-generalized quasi metric space without the Hausdorffness assumption. Consequently,
our results generalize, modify and unify several results in the literature.

In this paper, we arrange our work as follows.

2010 Mathematics Subject Classification. Primary 47H10, 47H04; Secondary 47H07
Keywords. φ-generalized quasi metric space, fixed point, (α-ψ)-contractions, domain of words, delay differential equations
Received: 24 August 2016; Accepted: 20 April 2017
Communicated by Vladimir Rakočević
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In section 2, we define the φ-generalized quasi metric spaces and discuss some of their topological
concepts.

In section 3, we recover some well-known quasi metric spaces like standard quasi metric spaces, dislo-
cated quasi metric spaces, b-quasi metric spaces and generalized quasi metric spaces from φ-generalized
quasi metric spaces.

In section 4, we define the (α-ψ)-contraction mapping, prove the main theorem of uniqueness of fixed
point of this mapping on φ-generalized quasi metric space and consider immediate consequences of our
main theorem on the existence and uniqueness of fixed point of k-contraction and ψ-contraction mappings.

In section 5, we present some applications of our results.
Before we proceed to our actual work, let us recall the following.
Let X be a nonempty set and T : X −→ X a self map. We say that x ∈ X is a fixed point of T if Tx = x

and denote by F(T) or Fix(T) the set of all fixed points of T. For any given x ∈ X we define Tnx inductively
by T0x = x0 and Tn+1x = T(Tnx), we call Tnx, the nth iterate of x under T. For any x0 ∈ X, the sequence
{xn}n≥0 ⊆ X given by

xn = T(xn−1) = Tnx0, n = 1, 2, · · ·

is called the sequence of successive approximations with the initial value x0. It is also known as the Picard
iteration starting at x0.

A mapping T : X −→ X where (X, d) is a metric space, is said to be a contraction if there exists k ∈ [0, 1)
such that for all x, y ∈ X

d(T(x),T(y)) ≤ kd(x, y). (1)

If the metric space (X, d) is complete, the mapping satisfying (1) has a unique fixed point (Banach
contraction principle).

Inequality (1) implies continuity of T. We have some contraction condition which will imply existence
of fixed point in a complete metric space but do not imply continuity (see [3]).

1.1. φ-generalized quasi metric space

Real life is full of instances where symmetry with respect to distance is not necessary. Such a distance
is referred to as a quasi metric in contrast with a metric needing symmetry. For example, given a set X of
mountain villages, the typical walking times between elements of X form a quasi metric because traveling
up hill takes longer than traveling down hill. Another example is a geometry topology having one-way
streets, where a path from point A to point B comprises a different set of streets than a path from B to A.There
is an abundant literature devoted to distances where the requirement of symmetry is omitted. Quasi metrics
have some interest in topology, but they are also used in applied mathematics in the calculus of variation.

Since quasi metric spaces form a generalization of metric spaces, any sound completion theory for such
spaces should strictly generalize the usual completion theory for metric spaces. Traditionally this is done
by generalizing the concept of Cauchy sequence and/or that of the convergence of a sequence.

We now define our φ-generalized quasi metric. Let φ : [0,+∞] −→ [0,+∞) be a continuous and
nondecreasing for all t > 0 and φ(0) = 0. Let X be a nonempty set and Dφ : X × X −→ [0,+∞] a given
mapping. For every x ∈ X, let us define the set

(Dφ,X, x) =
{
{xn} ⊆ X : lim

n−→∞
Dφ(xn, x) = 0

}
.

Definition 1.1. Let X be a nonempty set. A function Dφ : X ×X −→ [0,+∞] is called a φ-generalized quasi metric
on X if the following two conditions are met:

(Dφ)1 for every x, y ∈ X

Dφ(x, y) = 0 =⇒ x = y.
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(Dφ)2 there exists φ such that if (x, y) ∈ X × X, {xn} ∈ (Dφ,X, x), then

Dφ(x, y) ≤ φ
(
lim sup

n→∞
Dφ(xn, y)

)
.

The pair (X,Dφ) is called a φ-generalized quasi metric space.

Remark 1.2.

(i) The notion of a φ-generalized quasi metric space is a generalization of the notion of a φ-generalized metric space.

(ii) In Definition 1.1, if (Dφ)1 is replaced by Dφ(x, x) = 0 for all x ∈ X, then Dφ is called a φ−generalized quasi-
pseudometric on X.

(iii) For a φ-generalized quasi metric Dφ on X, the conjugate φ-generalized quasi metric D−1
φ on X of Dφ is defined by

D−1
φ (x, y) = Dφ(y, x).

(iv) If Dφ is a generalized T0-quasi-pseudometric on X, then the function Du
φ defined by Du

φ = D−1
φ

∨
Dφ that is,

Du
φ(x, y) = max

{
Dφ(x, y),Dφ(y, x)

}
, defines a φ-generalized metric on X.

(v) The general quasi metric spaces retrieve standard quasi metric spaces, quasi-partial metric spaces, quasi-b-metric
spaces, dislocated quasi metric spaces and so on.

The lack of symmetry in the definition of quasi metric spaces may cause a lot of troubles, mainly
concerning completeness, compactness and total boundedness in such spaces. However, there are a lot of
completeness notions in quasi metric spaces, all agreeing with the usual notion of completeness in the case
of metric spaces, each of them having its advantages and weaknesses.

We describe briefly some of these notions along with some of their properties.

Definition 1.3. A sequence {xn} in a φ-generalized quasi metric space (X,Dφ) converges to x, called

(a) Dφ-convergent or left convergence if

xn
Dφ
−→ x⇐⇒ Dφ(x, xn) −→ 0.

(b) D−1
φ -convergent or right convergence if

xn
D−1
φ
−→ x⇐⇒ Dφ(xn, x) −→ 0.

(c) Du
φ-convergent if

xn
Du
φ
−→ x⇐⇒ xn

Dφ
−→ x and xn

D−1
φ
−→ x

Definition 1.4. A sequence {xn} in a φ-generalized quasi metric space (X,Dφ) is called

(d) left (right) K-Cauchy if for every ε > 0 there exists nε ∈ N such that Dφ(xk, xn) < ε for all n, k ∈ N with
nε ≤ k ≤ n (nε ≤ n ≤ k).

(e) Du
φ-Cauchy if for every ε > 0 there exists nε ∈N such that Dφ(xn, xk) < ε for all n, k ∈Nwith n, k ≥ nε.

Remark 1.5. From the above definitions we conclude that:

(i) a sequence is left K-Cauchy with respect to Dφ if and only if it is right K-Cauchy with respect to D−1
φ .
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(ii) a sequence is Du
φ-Cauchy if and only if it is both left and right K-Cauchy.

We now give an example of a φ-generalized quasi metric space and also show that left K-Cauchy does
not necessarily imply Du

φ-Cauchy.

Example 1.6. Let X = (0, 1) and define Dφ on X by

Dφ(x, y) :=
{

x − y, if x ≥ y,
1, if y > x. (2)

and define φ(t) := 2t for all t > 0.

We now show that (X,Dφ) is a φ-generalized quasi metric space. Clearly, from the definition Dφ(x, y) = 0
implies x = y. So the property (Dφ)1 is satisfied. For (Dφ)2, we assume {xn} ∈ (Dφ,X, x) and consider the
following cases.

Case 1. Let xn ≥ y ∀n ∈N and limn−→∞Dφ(xn, x) = 0. Then it follows that x ≥ y.

φ

(
lim sup

n→∞
Dφ(xn, y)

)
= 2

(
lim sup

n→∞
(xn − y)

)
≥ (x − y) = Dφ(x, y).

Case 2. Let y > xn ∀n ∈ N and limn−→∞Dφ(xn, x) = 0. Then it follows that y ≥ x. If x = y, then (Dφ)2 is
satisfied. Otherwise

φ

(
lim sup

n→∞
Dφ(xn, y)

)
= 2

(
lim

n−→∞
1
)
≥ 1 = Dφ(x, y).

Case 3. Let xn ≥ y for infinitely many n ∈ N and limn−→∞Dφ(xn, x) = 0. Then the same result holds as in
Case (1).

Case 4. Let y > xn for infinitely many n ∈ N and limn−→∞Dφ(xn, x) = 0. Then the same result holds as in
Case (2).

Case 5. Let xn ≥ y for finitely many n ∈N and limn−→∞Dφ(xn, x) = 0. Then either xn is ultimately constant
sequence and the same result holds as in Case 1 or there exists n0 ∈ N such that y > xn for all n ≥ n0
and the same result holds as in Case 2.

Hence property (Dφ)2 is satisfied in all the cases. Therefore, (X,Dφ) is a φ-generalized quasi metric
space.

Let {xn} be the sequence in X defined as follows:

xn =
1
4

+
1
2n

for all n ∈N.
Then for all k < n, Dφ(xk, xn) → 0 as k,n → ∞, so that {xn} is left K-Cauchy. However, {xn} is not right

K-Cauchy because for all n < k, Dφ(xk, xn) = 1 and {xn} is not Du
φ -Cauchy sequence. Then left K-Cauchy

does not necessarily imply Du
φ-Cauchy.

Definition 1.7. A φ-generalized quasi metric space (X,Dφ) is called

(i) left-K-complete if every left K-Cauchy sequence in X is Dφ-convergent.

(ii) Smyth-complete if every left K-Cauchy sequence in X is Du
φ-convergent.

(iii) bicomplete if (X,Du
φ) is a complete general metric space.

The definition implies that every Smyth-complete quasi metric space is left K-complete. Dually, right-
completeness notions are derived from the above definition.
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1.2. Retrieving other quasi metrics from φ-generalized quasi metric spaces
In this section, we see that the φ-generalized quasi metric spaces retrieve a number of various other

metrics. Hence it ends with a true generalization of a quasi metric spaces. We recall the following concepts.

(1) Let X be a nonempty set. A function d : X × X −→ [0,+∞) is called a standard quasi metric on X
provided that, for all x, y, z ∈ X if it satisfies the following conditions:

(d1) d(x, y) = 0⇐⇒ x = y;
(d2) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is said to be standard quasi metric space.

(2) Let X be a nonempty set and let s ≥ 1 be a given real number. A function d : X ×X −→ [0,+∞) is called
a b-quasi metric on X provided that, for all x, y, z ∈ X if it satisfies the following conditions:

(b1) d(x, y) = 0⇐⇒ x = y;
(b2) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is said to be b-quasi metric space. It is clear that definition of b-quasi metric space is
a extension of standard quasi metric space. The topological concept of convergence in such spaces is
similar to that of standard quasi metric spaces.

(3) Let X be a nonempty set. A function d : X × X −→ [0,+∞) is called a dislocated quasi metric on X
provided that, for all x, y, z ∈ X if it satisfies the following conditions:

(HS1) d(x, y) = 0 =⇒ x = y;
(HS2) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is said to be a dislocated quasi metric space. The topological concept of convergence
in such spaces is similar to that of standard quasi metric spaces.

(4) Let X be a nonempty set and a mapping D : X × X −→ [0,+∞]. For every x ∈ X, define the set

C(D,X, x) =
{
{xn} ⊆ X : lim

n−→∞
D(xn, x) = 0

}
. (3)

Then D is said to be a generalized quasi metric on X if it satisfies the following conditions:

(D1) for every (x, y) ∈ X × X, we have

D(x, y) = 0 =⇒ x = y.

(D2) there exists C > 0 such that if (x, y) ∈ X × X, {xn} ∈ C(D,X, x), then

D(x, y) ≤ C
(
lim sup

n→∞
D(xn, y)

)
.

The pair (X,D) is called a generalized quasi metric space. The quasi metric spaces (1) − (3) are special
cases of the generalized quasi metric (4) above.

We now give the following important proposition which shows that our φ-generalized quasi metric is
more general than the generalized quasi metric space as in (4) above.

Proposition 1.8. Any generalized quasi metric on X is a φ-generalized quasi metric on X.
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Proof. We have just to prove that D satisfies the property (Dφ)2. Let D be a generalized quasi metric on X. Let x ∈ X
and xn ∈ C(D,X, x). For every y ∈ X, by the property (D2), we have

D(x, y) ≤ C
(
lim sup

n→∞
D(xn, y)

)
,

for every natural number n. Then the property (Dφ)2 is satisfied with φ(t) = Ct for all t ∈ [0,+∞).

Remark 1.9. Although all the quasi metrics given in (1)− (3) are now special cases of our φ-generalized quasi metric
by the above proposition, yet we can retrieve them independently. Note that in all the cases only (Dφ)2 needs to
be satisfied. Now (1) and (3) follow by taking φ(t) = t for all t ∈ [0,+∞). (2) follows by taking φ(t) = st for all
t ∈ [0,+∞) and s ≥ 1.

1.3. Generalized (α-ψ)-contractions in a φ-generalized quasi metric space
In this section, we characterize (α-ψ)-contraction mappings in the setting of φ-generalized quasi metric

spaces and investigate the existence and uniqueness of a fixed point of such mappings.

Definition 1.10. Let Ψ be the family of functions ψ : [0,+∞] −→ [0,+∞) which is monotone nondecreasing and
limn−→∞ ψn(t) = 0, for a given t > 0 and ψ(0) = 0.

Lemma 1.11. [16] Let t > 0, ψ(t) < t if and only if limn−→∞ ψn(t) = 0, where ψn is the n-times repeated composition
of ψ with itself.

Definition 1.12. Let (X,Dφ) be a φ-generalized quasi metric space and T : X −→ X be a given mapping. We say
that T is an (α-ψ)-contraction mapping if there exist two functions α : X × X −→ [0,+∞) and ψ ∈ Ψ such that

α(x, y)Dφ(Tx,Ty) ≤ ψ
(
Dφ(x, y)

)
, ∀x, y ∈ X. (4)

Remark 1.13. From Definition 1.12, we see that a k-contraction mapping is an (α-ψ)-contraction mapping with
α(x, y) = 1 for all x, y ∈ X and ψ(t) = kt, k ∈ [0, 1), t ≥ 0 and a ψ-contraction mapping is an (α-ψ)-contraction
mapping with α(x, y) = 1 for all x, y ∈ X.

Definition 1.14. [17] Let T : X −→ X and α : X × X −→ [0,+∞).We say that T is α-admissible if for all x, y ∈ X,
we have

α(x, y) ≥ 1 =⇒ α(Tx,Ty) ≥ 1.

Definition 1.15. [20] Let T : X −→ X and α : X × X −→ [0,+∞).We say that T is a triangular α-admissible if

(T1) α(x, y) ≥ 1 implies α(Tx,Ty) ≥ 1, x, y ∈ X,

(T2) α(x, z) ≥ 1, and α(z, y) ≥ 1, imply α(x, y) ≥ 1, x, y, z ∈ X.

Lemma 1.16. [20] Let T be a triangular α-admissible mapping. Assume that there exists x0 ∈ X such that
α(x0,Tx0) ≥ 1. Define a sequence {xn} by xn = Tnx0. Then

α(xm, xn) ≥ 1 for all m,n ∈N with m < n.

For every x ∈ X, let

δ(Dφ,T, x) = sup
{
Dφ(Ti(x),T j(x)) : i , j ∈N ∪ {0}

}
.

Theorem 1.17. Let (X,Dφ) be a generalized Smyth-complete quasi metric space and T : X −→ X is a (α-ψ)-
contraction map which satisfies
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i) T is a triangular α-admissible;

ii) there exists x0 ∈ X such that α(Tx0, x0) ≥ 1 and α(x0,Tx0) ≥ 1;

iii) q, q′ ∈ F(T) implies Dφ(q, q′) < ∞, α(q, q′) ≥ 1 and α(x0, q) ≥ 1.

If there exists x0 ∈ X such that δ(Dφ,T, x0) < ∞, then {Tnx0} Dφ-converges to a unique fixed point q of T.

Proof. By ii), there exists x0 ∈ X such that α(Tx0, x0) ≥ 1 and α(x0,Tx0) ≥ 1. Let us define a sequence {xn} ∈ X
by xn+1 = Txn = Tnx0 for all n ∈N. If xn0 = xn0+1 for some n0 ∈N∪ {0}, then xn0 is a fixed point of T. For the
rest of the proof, we assume that xn+1 , xn for all n ∈N. Regarding the assumption i), we derive

α(x1, x0) = α(Tx0, x0) ≥ 1 =⇒ α(Tx1,Tx0) = α(x2, x1) ≥ 1. (5)

Recursively, we get

α(xn+1, xn) = α(Tnx0,Tn−1x0) ≥ 1 ∀n ∈N. (6)

For i, j ∈N∪ {0}, assume that i , j. Taking (4) into account and applying Lemma 1.16, we find that

Dφ(Tn+ix0,Tn+ jx0) ≤ α(Tn−1+ix0,Tn−1+ jx0)Dφ(Tn+ix0,Tn+ jx0)

≤ ψ
(
Dφ(Tn−1+ix0,Tn−1+ jx0)

)
,

which implies that

δ(Dφ,T,Tnx0) ≤ ψ
(
δ(Dφ,T,Tn−1x0)

)
.

Then for every n ∈N, we have

δ(Dφ,T,Tnx0) ≤ ψn
(
δ(Dφ,T, x0)

)
.

Thus for every n,m ∈N, we have

Dφ(Tnx0,Tn+mx0) ≤ δ(Dφ,T,Tnx0) ≤ ψn
(
δ(Dφ,T, x0)

)
.

Using the definition of ψ in (1.10) and the fact δ(Dφ,T, x0) < ∞, we obtain

lim
n,m−→∞

Dφ(Tnx0,Tn+mx0) = 0,

and this amounts to saying that {Tnx0} is a left K-Cauchy sequence in (X,Dφ). Since the space (X,Dφ) is
generalized Smyth-complete quasi metric space, there exits a q ∈ X such that

lim
n−→∞

Du
φ(Tnx0, q) = 0.

Thus we have

lim
n−→∞

Dφ(Tnx0, q) = 0 and lim
n−→∞

Dφ(q,Tnx0) = 0.

On the other hand, we have, since T is a (α-ψ)-contractive and by (Dφ)2, for all n ∈N,

Dφ(q,Tq) ≤ φ

(
lim sup

n→∞
Dφ(Tnx0,Tq)

)
≤ φ

(
lim sup

n→∞
α(Tn−1x0, q)Dφ(Tnx0,Tq)

)
≤ φ

(
ψ

(
lim sup

n→∞
Dφ(Tn−1x0, q)

))
= 0.
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This yields Dφ(q,Tq) = 0 and by (Dφ)1, we get Tq = q, that is, q is a fixed point of T.Now, suppose that q′ ∈ X
is another fixed point of T such that Dφ(q, q′) < ∞. Since T is an (α-ψ)-contraction, we have

Dφ(q, q′) = Dφ(Tq,Tq′) ≤ α(q, q′)Dφ(Tq,Tq′) ≤ ψ
(
Dφ(q, q′)

)
,

If Dφ(q, q′) > 0, then by Lemma 1.11 we have

Dφ(q, q′) = Dφ(Tq,Tq′) ≤ ψ
(
Dφ(q, q′)

)
< Dφ(q, q′),

which is a contradiction. Thus we have Dφ(q, q′) = 0. From the property (Dφ)1 it follows that q = q′.

Remark 1.18. Theorem 1.17 also holds if δ(Dφ,T, x0) < ∞ is replaced by

sup
{
Dφ(x0,Trx0) : r ∈N

}
< ∞.

Indeed, there exists x0 ∈ X such that

sup
{
Dφ(x0,Trx0) : r ∈N

}
< ∞.

Since T is an (α-ψ)-contraction mapping, we have

δ(Dφ,T, x0) ≤ sup
{
Dφ(x0,Trx0) : r ∈N

}
.

The result now follows as above.

Corollary 1.19. Let (X,D) be a complete generalized quasi metric space and T : X −→ X be a mapping. Suppose
that, we have

D(Tx,Ty) ≤ ψ(D(x, y))

for all x, y ∈ X. If there exists x0 ∈ X such that

δ(Dφ,T, x) = sup
{
Dφ(Ti(x),T j(x)) : i , j ∈N ∪ {0}

}
< ∞.

then the sequence {Tnx0} left D-converges to a fixed point of T. Moreover, T has one and only one fixed point.

Now we give an example in order to validate our Theorem 1.17.

Example 1.20. Let X = [0,∞) and define

Dφ(x, y) :=
{

2(x − y), if x > y,
y − x, if y ≥ x.

φ(t) = 2t for all t ∈ [0,∞).With a similar procedure as in Example 1.23 given below, one can show that (X,Dφ) is a
Smyth-complete quasi metric space. Let T : X −→ X be a mapping defined as

T(x) :=


x
8

, if x ∈ [0, 1],
x
4

, if x ∈ (1,∞).

Let

α(x, y) :=


2, if (x, y) ∈ [0, 1] × [0, 1],
0, if (x, y) ∈ [0, 1] × (1,∞),
0, if (x, y) ∈ (1,∞) × [0, 1],
0, if (x, y) ∈ (1,∞) × (1,∞).

and ψ(t) = t
2 . Obviously, one can show that T is (α-ψ)-contraction map. We now show that T is a triangular

α-admissible mapping. Let x, y ∈ X, if α(x, y) ≥ 1, then x, y ∈ [0, 1]. On the other hand, for all x, y ∈ [0, 1] we have
T(x) ≤ 1 and T(y) ≤ 1. It follows that α(Tx,Ty) ≥ 1. Also, if α(x, z) ≥ 1 and α(z, y) ≥ 1, then x, y, z ∈ [0, 1] and
hence α(x, y) ≥ 1. Thus, the assertion holds by the same arguments as above. Notice that α(0,T0) ≥ 1.
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Hence, all the conditions of Theorem 1.17 hold and 0 is a unique fixed point of T.
We now present an extension of k-contraction and ψ-contraction type mappings [15] to the setting of

φ-generalized quasi metric spaces.

Definition 1.21. A mapping T is a

(i) k-contraction if there exists k ∈ [0, 1) such that

Dφ(Tx,Ty) ≤ kDφ(x, y),

for all x, y ∈ X.

(ii) ψ-contraction if

Dφ(Tx,Ty) ≤ ψ
(
Dφ(x, y)

)
,

for every (x, y) ∈ X × X.

Note that if ψ(t) = kt for all t ≥ 0 and k ∈ [0, 1), then k-contraction is ψ-contraction.

Corollary 1.22. Let (X,Dφ) be a generalized Smyth-complete quasi metric space and T : X −→ X is a k-contraction.
Suppose there exists x0 ∈ X such that δ

(
Dφ,T, x0

)
< ∞. Then {Tnx0} Dφ-converges to q ∈ X, a fixed point of T.

Moreover, if q′ ∈ X is another fixed point of T such that Dφ(q, q′) < ∞, then q = q′.

Proof. In Theorem 1.17, we take α
(
x, y

)
= 1 for all x, y ∈ X and ψ(t) = kt for all t ≥ 0 and k ∈ [0, 1).

Here is an example in support of the above corollary.

Example 1.23. Let X =
{

1
2n : n = 0, 1, 2, · · ·

}
∪ {0} and define

Dφ(x, y) :=
{

2(x − y), if x > y,
y − x, if y ≥ x.

for all x, y ∈ X and define φ(t) = 2t for all t ∈ [0,∞). We now show that (X,Dφ) is a Smyth-complete quasi metric
space. Clearly Dφ satisfies property (Dφ)1.

Let {xn} and {yn} be sequences in X such that either xn = 1
2n or yn = c, where c is constant for all n ∈N∪ {0}. Let

{xn} ∈ (Dφ,X, x), that is, limn−→∞Dφ(xn, x) = 0.

Case 1. Let xn > y for all n ∈N. It follows that x ≥ y. If x = y, then (Dφ)2 is satisfied. Otherwise

Dφ(x, y) = 2(x − y) = lim
n−→∞

2(xn − y) ≤ 2(lim sup
n→∞

2(xn − y))

= φ

(
lim sup

n→∞
2(xn − y)

)
= φ

(
lim sup

n→∞
Dφ(xn, y)

)
.

Case 2. Let y ≥ xn for all n ∈N. It follows that y ≥ x.

Dφ(x, y) = y − x = lim
n−→∞

(y − xn) ≤ 2(lim sup
n→∞

(y − xn))

= φ

(
lim sup

n→∞
(y − xn)

)
= φ

(
lim sup

n→∞
Dφ(xn, y)

)
.
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Case 3. Let xn > y for infinitely many n ∈N. Then the same result holds as in Case 1.

Case 4. Let y ≥ xn for infinitely many n ∈N. Then the same result holds as in Case 2.

Case 5. Let xn > y for finitely many n ∈N. Then either xn is ultimately constant sequence and the same result holds
as in case 1 or there exists n0 ∈N such that y ≥ xn for all n ≥ n0 and the same result holds as in Case 2.

Hence Dφ satisfies property (Dφ)2. Therefore (X,Dφ) is a φ-generalized quasi metric space.
Note that Dφ(xk, xn) = 2( 1

2k −
1
2n ) < 1

2k−1 for all n > k and Dφ(yk, yn) = Dφ(c, c) = 0 for all n > k, so that {xn} and
{yn} are left K-Cauchy in X. Since Dφ(0, 1

2n ) = Dφ( 1
2n , 0) −→ 0 and Dφ(c, c) = 0 for all n ∈N∪ {0}, hence sequences

{xn} and {yn} are Du
φ-convergent. Therefore (X,Dφ) is a generalized Smyth-complete quasi metric space.

Let T : X −→ X be a mapping defined as follows:

T(x) :=

 1
2n+1 , if x =

1
2n , n = 0, 1, 2, . . . ,

0, if x = 0.

Then T is k-contraction for k ∈ [0, 1) as shown below.

Case 1. Let x = y.

Dφ(Tx,Ty) = 0 ≤ kDφ(x, y).

Case 2. Let x = 0 and y = 1
2n (n = 0, 1, 2, · · · ).

Dφ(Tx,Ty) = Dφ

(
0,

1
2n+1

)
=

1
2n+1 ≤

1
2

( 1
2n

)
= kDφ(x, y).

Case 3. Let x = 1
2n (n = 0, 1, 2, · · · ) and y = 0.

Dφ(Tx,Ty) = Dφ

( 1
2n+1 , 0

)
= 2

( 1
2n+1 − 0

)
≤

1
2

(
2
( 1

2n − 0
))

= kDφ(x, y).

Case 4. Let x = 1
2n and y = 1

2m (m > n).

Dφ(Tx,Ty) = Dφ

( 1
2n+1 ,

1
2m+1

)
= 2

( 1
2n+1 −

1
2m+1

)
=

1
2

(
2
( 1

2n −
1

2m

))
=

1
2

Dφ(x, y) = kDφ(x, y).

Case 5. Let x = 1
2m and y = 1

2n (m > n).

Dφ(Tx,Ty) = Dφ

( 1
2m+1 ,

1
2n+1

)
=

1
2n+1 −

1
2m+1 =

1
2

( 1
2n −

1
2m

)
=

1
2

Dφ(x, y) = kDφ(x, y).

Hence, all the conditions of Corollary 1.22 hold. Thus T has a unique fixed point. Note that for any x0 ∈ X, we
have δ

(
Dφ,T, x0

)
< ∞. Then {Tnx0} Dφ-converges to a fixed point of T.

Corollary 1.24. Suppose that (X,Dφ) is a generalized Smyth-complete quasi metric space and T is a ψ-contraction
for some ψ as in Definition 1.10. If there exists x0 ∈ X such that δ

(
Dφ,T, x0

)
< ∞, then {Tnx0} Dφ-converges to a

fixed point q of T. Moreover, if q′ ∈ X is another fixed point of T such that Dφ(q, q′) < ∞, then q = q′.

Proof. In Theorem 1.17, we put α(x, y) = 1 for all x, y ∈ X.

Example 1.25. Define ψ(t) := t
2 for all t ≥ 0. In Example 1.23, it is easy to show that T is ψ-contraction by the same

argument as we showed that T is k-contraction. Hence, all conditions of Corollary 1.24 hold. Thus T has a unique
fixed point. For any x0 ∈ X, we have δ

(
Dφ,T, x0

)
< ∞. Then {Tnx0} Dφ-converges to a fixed point of T.
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1.4. Applications
1.4.1. An application to the domain of words

Let
∑

be a nonempty set of alphabets and the set of all (finite or infinite) sequences (”words”) over
∑

is
denoted by

∑
∞. Conventionally, we denote the empty sequence (word) by ∅ and suppose that ∅ ∈

∑
∞. Let

the prefix order v on
∑
∞ be defined as:

x v y⇐⇒ x is a prefix of y.

Now, for each sequence (word) x , ∅ in
∑
∞, let `(x) ∈ [1,∞] be the length of x and assume that `(∅) = 0.

Also, if x ∈
∑
∞ has finite length, then

x := x1x2 · · · x`(x),

otherwise (i.e., in the case of infinite sequence) we write

x := x1x2 . . . .

Now, if x, y ∈
∑
∞, then x u y denotes the common prefix of x and y. Note that x = y if and only if x v y

and y v x and `(x) = `(y). Define a mapping Dφ :
∑
∞
×

∑
∞
−→ [0,∞] (with convention 2−∞ = 0) by

Dφ(x, y) :=


0, iff x = y,

2−`(x), iff `(x) > `(y),
2−`(y), iff `(y) > `(x),
2−`(xuy), otherwise.

and φ(x) = 2t for all t ∈ [0,∞). We now show that (
∑
∞,Dφ) is a φ-generalized quasi metric space. Since

Dφ(x, y) = 0 implies x = y, hence property (Dφ)1 is satisfied.
Let {xn} ∈ Dφ(

∑
∞, x), that is, limn−→∞Dφ(xn, x) = 0.

Case 1. Let `(xn) > `(y) for all n ∈N. Then it follows that `(x) > `(y).

Dφ(x, y) ≤ 2Dφ(x, y) = 2 × 2−`(x) = 2
(

lim
n−→∞

2−`(xn)
)

≤ 2
(
lim sup

n→∞
2−`(xn)

)
= φ

(
lim sup

n→∞
2−`(xn)

)
= φ

(
lim sup

n→∞
Dφ(xn, y)

)
.

Case 2. Let `(y) > `(xn) for all n ∈N. Then it follows that `(y) > `(x).

Dφ(x, y) ≤ 2Dφ(x, y) = 2 × 2−`(y) = 2
(

lim
n−→∞

2−`(y)
)

= 2
(
lim sup

n→∞
2−`(y)

)
= φ

(
lim sup

n→∞
2−`(y)

)
= φ

(
lim sup

n→∞
Dφ(xn, y)

)
.

Case 3. Let xn , y, `(y) ≥ `(xn) or `(xn) ≥ `(y) for all n ∈ N. Then it follows that x , y, `(y) ≥ `(x) or
`(x) ≥ `(y).

Dφ(x, y) ≤ 2Dφ(x, y) = 2 × 2−`(xuy) = 2
(

lim
n−→∞

2−`(xnuy)
)

= 2
(
lim sup

n→∞
2−`(y)

)
= φ

(
lim sup

n→∞
2−`(xuy)

)
= φ

(
lim sup

n→∞
Dφ(xn, y)

)
.
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In all the cases, we have Dφ(x, y) ≤ φ
(
lim supn→∞Dφ(xn, y)

)
for all n ∈ N and for all x, y ∈

∑
∞. Hence

Dφ satisfies property (Dφ)2. Therefore (
∑
∞,Dφ) is a φ-generalized quasi metric space.

Next, we consider the average case time complexity analysis of sorting algorithm called Quicksort,
according to (see [21], [22]). Precisely, it yields the following recurrence relation

T(n) =

{
0, if n = 1
2(n−1)

n + n+1
n T(n − 1), if n ≥ 2.

(7)

Consider
∑
∞ = [0,∞), say the set of nonnegative real numbers. We associate to T the functional

Θ :
∑
∞
−→

∑
∞ that corresponds Θ(x) := (Θ(x))1(Θ(x))2 · · · to x := x1x2 · · · and is defined as follows:{

(Θ(x))1 = T1 = 0,
(Θ(x))n =

2(n−1)
n + n+1

n xn−1, for all n ≥ 2.

Lemma 1.26. [23] `(Θ(x)) = `(x) + 1 for all x ∈
∑
∞ (in particular, `(Θ(x)) = ∞ whenever `(x) = ∞) and

`(Θ(x u y)) ≤ `(Θ(x) uΘ(y)) = ∞ for all x, y ∈
∑
∞.

Next we show the existence and uniqueness of solution for the recurrence equation (7). We claim that
Θ is a k-contraction on the Smyth-complete quasi metric (

∑
∞,Dφ), with contraction constant 1

2 .

Case 1. Let Θ(x) = Θ(y).

Dφ(Θ(x),Θ(y)) = 0 ≤
1
2

Dφ(x, y) = kDφ(x, y).

Case 2. Let `
(
Θ(y)

)
> ` (Θ(x)). Then it follows that `(x) > `(y).

Dφ(Θ(x),Θ(y)) ≤ 2−`(Θ(y)) = 2−{`(y)+1}

=
1
2
× 2−`(y) = kDφ(x, y).

Case 3. Let ` (Θ(x)) > `
(
Θ(y)

)
. Then it follows that `(x) > `(y).

Dφ(Θ(x),Θ(y)) ≤ 2−`(Θ(x)) = 2−{`(x)+1}

=
1
2
× 2−`(x) = kDφ(x, y).

Case 4. Let Θ(x) , Θ(y), `(Θ(y)) ≥ `(Θ(x)) or `(Θ(x)) ≥ `(Θ(y)).

Dφ(Θ(x),Θ(y)) = 2−`(Θ(x)uΘ(y))
≤ 2−`(Θ(xuy))

= 2−{`(xuy)+1}

=
1
2
× 2−`(xuy) = kDφ(x, y).

Therefore Θ is a k-contraction on (
∑
∞,Dφ) with contraction constant 1

2 . So, by corollary 1.22, Θ has a
unique fixed point z = z1z2 · · · , which is obviously the unique solution to the recurrence equation T, that
is, z1 = 0 and zn =

2(n−1)
n + n+1

n zn−1 for all n ≥ 2.
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1.4.2. An application in delay differential equations
In this section, we prove the existence of periodic solution to delay differential equation as an application

of obtained results. We consider the following problem:

dx(t)
dt

= f (t, xt), t ∈ I, (8)

x(0) = η(0) = x(η)(a),
x(θ) = η(θ), θ ∈ [−τ, 0],

where I = [0, a], a > 0 and f : I × Rn
−→ Rn is a continuous function, x(t) ∈ Rn and xt(θ) = x(t + θ),

η : [−τ, 0] −→ Rn, that is, η ∈ C([−τ, 0],Rn) (the space of all continuous functions defined on [−τ, 0] intoRn),
where −τ ≤ θ ≤ 0, τ > 0. It is well known that a delay differential equation from its theory admits a unique
solution x(t) = x(t; η) of (8) for every Lipschitz continuous function f and every initial condition

x(0) = η(0), x(θ) = η(θ), − τ ≤ θ ≤ 0,

and the solution x(., η) continuously depends on η and f . For more details on delay differential equations
we refer the reader to [24] and the references therein.

Lemma 1.27. [24] Problem (8) is equivalent to the integral equation:

xt(η)(θ) =

 e−λθ
a∫

0
G(t, s)( f (s, xs) + λx(s))ds, if t + θ ≥ 0,

η(t + θ), if t + θ ≤ 0,
(9)

where

G(t, s) =


e−λ(t−s)

1 − e−λa , if 0 ≤ s ≤ t + θ,

e−λ(t+a−s)

1 − e−λa , if t + θ ≤ s ≤ a.
(10)

Define ‖x‖ = sup
t∈I
|x(t)| for an arbitrary x ∈ C([0, a],Rn) where

|x(t)| = |x1(t), x2(t), ..., xn(t)| =
√

x2
1(t) + x2

2(t) + ... + x2
n(t)

Then (C([0, a],Rn), ‖·‖) is a Banach space endowed with the φ-generalized quasi metric Dφ defined by

Dφ(x, y) =

{
2 supt∈I

∣∣∣x(t) − y(t)
∣∣∣ , if |x(t)| > |y(t)|,

supt∈I

∣∣∣x(t) − y(t)
∣∣∣ , if |y(t)| ≥ |x(t)|,

(11)

where x, y ∈ C([0, a],Rn). Note that (C([0, a],Rn),Dφ) is a generalized Smyth-complete quasi metric space. Define

S =
{
x ∈ C([0, a],Rn) : x(0) = η(0) = x(a), η ∈ C([−τ, 0],Rn)

}
and

x(t) =

e−λθ
a∫

0

G(t − θ, s)( f (s, xs) + λx(s))ds, (12)

where G(t − θ, s) is defined in (10). For each x ∈ S, set f (x)(t) = f (t, xt), where

xt(θ) =

{
x(t + θ), if 0 ≤ t + θ ≤ a,
η(t + θ), if − τ ≤ t + θ ≤ 0. (13)
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Let us consider the operator for each x ∈ S as follows:

T(x)(t) = e−λθ
a∫

0

G(t − θ, s)( f (x)(s) + λx(s))ds. (14)

Now make the following assumption that are necessary to prove the existence and uniqueness of solution of (8). There
exists λ > 0, µ > 0 and µ < λ such that


∥∥∥( f (t, x) + λx(0)) − ( f (t, y) + λy(0))

∥∥∥ ≤ µ
2

Dφ(x, y), if |x(t)| > |y(t)|,∥∥∥( f (t, x) + λx(0)) − ( f (t, y) + λy(0))
∥∥∥ ≤ µDφ(x, y), if |y(t)| ≥ |x(t)|,

(15)

for all x, y ∈ S.

Theorem 1.28. If assumption (15) is satisfied, then there exists a unique solution to (8).

Proof. For each x, y ∈ S, we get

∥∥∥T(x)(t) − T(y)(t)
∥∥∥ =

∥∥∥∥∥∥∥∥e−λθ
a∫

0

G(t − θ, s)
(

f (x)(s) + λx(s) − ( f (y)(s) + λy(s)
)
)ds

∥∥∥∥∥∥∥∥
≤ e−λθ

a∫
0

‖G(t − θ, s)‖
∥∥∥ f (x)(s) + λx(s) −

(
f (y)(s) + λy(s)

)∥∥∥ ds

≤ e−λθ
a∫

0

G(t − θ, s)
∥∥∥ f (x)(s) + λx(s) −

(
f (y)(s) + λy(s)

)∥∥∥ ds.

where

G(t − θ, s) =
e−λ(t−θ−s)

1 − e−λa , if 0 ≤ s ≤ t, and G(t − θ, s) =
e−λ(t−θ+a−s)

1 − e−λa , if t ≤ s ≤ a.

Case 1. Let |x(t)| > |y(t)| and using assumption 15.

∥∥∥T(x)(t) − T(y)(t)
∥∥∥ = Dφ(T(x),T(y))

≤
µ

2
Dφ(x, y)e−λθ

a∫
0

G(t − θ, s)ds

=
µ

2
Dφ(x, y)

[
e−λθ

∫ t

0

e−λ(t−θ−s)

1 − e−λa ds + e−λθ
∫ a

t

e−λ(t−θ+a−s)

1 − e−λa ds
]

=
µ

2
Dφ(x, y)

[∫ t

0

eλ(s−t)

1 − e−λa ds +

∫ a

t

eλ(s−t−a)

1 − e−λa ds
]

=
µ

2λ
Dφ(x, y) = kDφ(x, y), where k =

µ

2λ
< 1.
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Case 2. Let |y(t)| ≥ |x(t)| and using assumption 15.∥∥∥T(x)(t) − T(y)(t)
∥∥∥ = Dφ(T(x),T(y))

≤ µDφ(x, y)e−λθ
a∫

0

G(t − θ, s)ds

= µDφ(x, y)
[
e−λθ

∫ t

0

e−λ(t−θ−s)

1 − e−λa ds + e−λθ
∫ a

t

e−λ(t−θ+a−s)

1 − e−λa ds
]

= µDφ(x, y)
[∫ t

0

eλ(s−t)

1 − e−λa ds +

∫ a

t

eλ(s−t−a)

1 − e−λa ds
]

=
µ

λ
Dφ(x, y) = kDφ(x, y), where k =

µ

λ
< 1.

In both cases, we have Dφ(T(x),T(y)) ≤ kDφ(x, y). All the conditions of Corollary 1.22 are satisfied.
Consequently problem (8) has a unique solution.

Acknowledgement. Authors appreciate the useful comments of Professor Vladimir Rackceovic which
helped us to improve the original version of this paper.

References

[1] I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped.Inst. 30 (1989) 26–37.
[2] S. Czerwik, Contraction mappings in b-metric space, Acta Math. Inf. Univ. Ostraviensis 1 (1993) 5–11.
[3] M. Kir, H. Kiziltunc, On some well known fixed point theorems in b-metric spaces, Turkish Journal of Analysis and Number

theory, 1 (1) (2013) 13–16.
[4] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed point theory and Applications (2015).
[5] R. Chen, Fixed Point Theory and Applications, National Defense Industry press, 2012.
[6] P. Hitzler, Generalized metrics and topology in logic programming semantics, Dissertation, Faculty of Science, National University

of Ireland, University College, Cork (2001).
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