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Abstract. There are many results in the fixed point theory that were presented as generalizations of
Banach theorem and other well-known fixed point theorems, but later proved equivalent to these results.
In this article we prove that Perov’s existence result follows from Banach theorem by using renormization
of normal cone and obtained metric. The observed estimations of approximate point given by Perov, could
not be obtained from consequences of Banach theorem on metric spaces.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

Well-known Banach fixed point theorem, also known as Banach contraction principle, was a foundation
for a development of metric fixed point theory and found applications in various areas. There were many
generalizations of this result in the last years. We can observe two main directions in this area of research,
including different contraction conditions or introducing analogous concept on different spaces such as
partial, cone-metric, b-metric spaces, etc. Russian mathematician A. I. Perov [22] defined generalized cone
metric space by defining a metric with values in Rn. Then, this concept of metric space allowed him to
define a new class of mappings, known as Perov contractions, which satisfy contractive condition similar
to Banach’s, but with a matrix A ∈ Rn×n with nonnegative entries instead of constant q. This result found
main application in the area of differential equations ([23, 26, 29]).

In [6] was presented extension of Perov theorem on a cone metric space, normal or solid. The concept
of cone metric space (vector value metric space, K-metric space) has a long history (see [15, 27, 33]) and first
fixed point theorems in cone metric spaces were obtained by Schröder [30, 31] in 1956. Cone metric space
may be considered as a generalization of metric space and it is focus of the research in metric fixed point
theory last few decades (see, e.g., [1, 2, 4], [9], [13], [16], [18], [28], [32] for more details). Concept of cone
metric includes generalized metric in the sense of Perov, and contractive condition defined in [6] introduces
a bounded linear operator instead of a matrix. Other requirements for this operator varies based on the ki

This paper is focused on a relation between Banach and Perov theorem along with its generalizations
on a complete normal cone metric space. Some equivalents between metric and normal cone metric spaces
are presented and used to obtain different proof approach for several Perov type results.
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2. Preliminaries

Some basic definitions and facts which are applied in subsequent sections are collected in this section.
Since some correlations will be made, we give basic overview on generalized metric space in the sense of
Perov, cone metric spaces and b-metric spaces.

Let X be a nonempty set and n ∈N.

Definition 2.1. ([22]) A mapping d : X × X 7→ Rn is called a vector-valued metric on X if the following statements
are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0n ⇔ x = y, where 0n = (0, . . . , 0) ∈ Rn;

(d2) d(x, y) = d(y, x);

(d3) d(x, y) ≤ d(x, z) + d(z, y).

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then x ≤ y means that xi ≤ yi, i = 1,n.
Throughout this paper we denote by Mn,n the set of all n × n matrices, by Mn,n(R+) the set of all n × n
matrices with nonnegative entries. We write Θn for the zero n× n matrix and In for the identity n× n matrix
and further on we identify row and column vector in Rn.
A matrix A ∈ Mn,n(R+) is said to be convergent to zero if Am

→ Θn, as m→∞.

Theorem 2.1. (Perov [22, 23]) Let (X, d) be a complete generalized metric space, f : X 7→ X and A ∈ Mn,n(R+) a
matrix convergent to zero, such that

d( f (x), f (y)) ≤ A(d(x, y)), x, y ∈ X.

Then:

(i) f has a unique fixed point x∗ ∈ X;

(ii) the sequence of successive approximations xn = f (xn−1),n ∈N, converges to x∗ for any x0 ∈ X;

(iii) d(xn, x∗) ≤ An(In − A)−1(d(x0, x1)), n ∈N;

(iv) if 1 : X 7→ X satisfies the condition d( f (x), 1(x)) ≤ c for all x ∈ X and some c ∈ Rn, then by considering the
sequence yn = 1n(x0),n ∈N, one has

d(yn, x∗) ≤ (In − A)−1(c) + An(In − A)−1(d(x0, x1)), n ∈N.

This result was extended on a setting of cone metric spaces.

Definition 2.2. Let E be a real Banach space with a zero vector θ. A subset P of E is called a cone if:

(i) P is closed, nonempty and P , {θ};

(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax + by ∈ P;

(iii) P ∩ (−P) = {θ}.

Given a cone P ⊆ E, the partial ordering ≤ with respect to P is defined by x ≤ y if and only if y − x ∈ P.
We write x < y to indicate that x ≤ y but x , y, while x� y denotes y−x ∈ int P where int P is the interior of P.

The cone P in a real Banach space E is called normal if there is a number K > 0 such that for all x, y ∈ P,

θ ≤ x ≤ y implies ‖x‖ ≤ K
∥∥∥y

∥∥∥ . (2.1)

The least positive number satisfying (2.1) is called the normal constant of P. The cone P is called solid if
int P , ∅.
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Definition 2.3. [15] Let X be a nonempty set, and let P be a cone on a real ordered Banach space E. Suppose that the
mapping d : X × X 7→ E satisfies:

(d1) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x), for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is a cone metric space.

It is known that the class of cone metric spaces is bigger than the class of metric spaces. A lot of fixed
point results, such as Banach contraction principle, are proved in the frame of cone metric spaces ([1, 2, 4],
[13],[18–20]).

Suppose that E is a Banach space, P is a solid cone in E, whenever it is not normal, and ≤ is the partial
order on E with respect to P.

Definition 2.4. The sequence {xn} ⊆ X is convergent in X if there exists some x ∈ X such that

(∀ c� θ)(∃n0 ∈N) n ≥ n0 =⇒ d(xn, x)� c.

We say that a sequence {xn} ⊆ X converges to x ∈ X and denote that with lim
n→∞

xn = x or xn → x, n → ∞.
Point x is called a limit of the sequence {xn}.

Definition 2.5. The sequence {xn} ⊆ X is a Cauchy sequence if

(∀ c� θ)(∃n0 ∈N) n,m ≥ n0 =⇒ d(xn, xm)� c.

Every convergent sequence is a Cauchy sequence, but reverse do not hold. If any Cauchy sequence in a
cone metric space (X, d) is convergent, then X is a complete cone metric space.

As proved in [15], if P is a normal cone, even in the case int P = ∅, then {xn} ⊆ X converges to x ∈ X if and
only if d(xn, x)→ θ, n→∞. Similarly, {xn} ⊆ X is a Cauchy sequence if and only if d(xn, xm)→ θ, n,m→∞.
Also, if lim

n→∞
xn = x and lim

n→∞
yn = y, then d(xn, yn)→ d(x, y), n→∞. Let us emphasise that this equivalences

do not hold if P is a non-normal cone.

Perov generalized metric space is obviously a kind of a normal cone metric space. Defined partial
ordering determines a normal cone P = {x = (x1, . . . , xn) ∈ Rn

| xi ≥ 0, i = 1,n} on Rn, with the normal
constant K = 1. Evidently, A(P) ⊆ P if and only if A ∈ Mn,n(R+).

One of the results in [6] is a new generalization of Banach contraction principle in the sense of Perov.

Theorem 2.2. Let (X, d) be a complete cone metric space with a solid cone P, d : X ×X 7→ E, f : X 7→ X, A ∈ B(E),
with r(A) < 1 and A(P) ⊆ P, such that

d( f (x), f (y)) ≤ A
(
d(x, y)

)
, x, y ∈ X. (2.2)

Then:

(i) f has a unique fixed point z ∈ X;

(ii) For any x0 ∈ X the sequence xn = f (xn−1), n ∈N, converges to z and

d(xn, z) ≤ An(I − A)−1(d(x0, x1)), n ∈N;

(iii) Suppose that 1 : X 7→ X satisfies the condition d( f (x), 1(x)) ≤ c for all x ∈ X and some c ∈ P. Then if
yn = 1n(x0),n ∈N, we have

d(yn, z) ≤ (I − A)−1(c) + An(I − A)−1(d(x0, x1)), n ∈N.
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Furthermore, there was presented a similar result for normal cone metric space, but instead of the require-
ment of positiveness and r(A) < 1, only requirement is K‖A‖ < 1 where K is a normal constant. Also, this
normal cone is not necessarily solid.

Theorem 2.3. Let (X, d) be a complete cone metric space, d : X × X 7→ E, P a normal cone with a normal constant
K, A ∈ B(E) and K‖A‖ < 1. If the condition (2.2) holds for a mapping f : X 7→ X, then f has a unique fixed point
z ∈ X and the sequence xn = f (xn−1), n ∈N, converges to z for any x0 ∈ X.

In Sections 11.3-11.5 of the classical monograph of Collatz [5] is given a general fixed point theorem in cone
metric spaces, and in Section 12.1 it is considered a special case of this theorem. We note that that the first
two parts of previous theorem can be obtained as a special case of Theorem 12.1 of [5].

Observe that with B(E) is denoted the set of all bounded linear operators on E and with r(A) a spectral
radius of an operator A ∈ B(E),

r(A) = lim
n→∞
‖An
‖

1/n = inf
n∈N
‖An
‖

1/n.

If r(A) < 1, then the series
∞∑

n=0
An is absolutely convergent, I − A is invertible in B(E) and

∞∑
n=0

An = (I − A)−1.

Also, if ‖A‖ < 1, then I − A is invertible and

‖(I − A)−1
‖ ≤

1
1 − ‖A‖

.

If X is a Banach space with a cone P and operator A : E 7→ E, then:

(i) A is a positive operator if A(P) ⊆ P;

(ii) A is an increasing operator if x ≤ y =⇒ A(x) ≤ A(y), for any x, y ∈ X.

If A ∈ B(E), then (i) and (ii) are equivalent ([6]).
Omitting the boundedness condition, we obtain the following result:

Theorem 2.4. Let (X, d) be complete cone metric space with a solid cone P and f : X 7→ X a continuous mapping. If
there exists an increasing operator A : E 7→ E such that lim

n→∞
An(e) = θ, e ∈ E, and, for any x, y ∈ X,

d( f (x), f (y)) ≤ A(d(x, y)), (2.3)

then a mapping f has a unique fixed point in X.

Conditions of Theorem 2.4 could be less strict asking for A to be increasing and tend to zero only on P.

Recent results in cone metric fixed point theory established some relation between b-metric spaces and
normal cone metric spaces.

Definition 2.6. Let X be a nonempty set and s ≥ 1 be a given real number. A mapping d : X × X→ [0,+∞) is said
to be a b-metric if for all x, y, z ∈ X the following conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Definitions of Cauchy and convergent sequence in a b-metric space, as well as completeness, go analogously
as in a metric space.
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3. Main Results

There were several papers ([3, 12, 16]) studying relations between cone metric spaces in general, and
especially normal cone metric spaces, on one, and metric spaces on the other side. Many efforts are made
in the attempt of reduction any cone metric space to a metric space. In the case that (X, d) is a normal cone
metric space with a normal constant K, we may introduce a b-metric as presented in several recent papers.

Let (X, d) be a cone metric space, P a normal cone with a normal constant K. Define a function
D : X × X 7→ R,

D(x, y) = ‖d(x, y)‖, x, y ∈ X (3.4)

Theorem 3.1. A function D defined in (3.4) is a b-metric on X with a constant K.

Proof. Let x, y, z ∈ X be arbitrary points. From the definition of norm and (d1) it easily follows that (b1)
holds. D is also a symmetric function since it directly follows from the symmetry of the norm. From the
fact that d is a metric on X, (d3) and since (X, d) is a normal cone metric space, we have

D(x, y) = ‖d(x, y)‖ ≤ K
(
‖d(x, z)‖ + ‖d(z, y)‖

)
= K

(
D(x, z) + D(z, y)

)
.

Thus, (X,D) is a b-metric space.

If the normal constant K is equal to 1, then (X,D) is a metric space.
However, if (X, d) is a complete normal cone metric space, {xn} is Cauchy sequence in (X, d) if and only if

lim
n,m→∞

‖d(xn, xm)‖ = 0 and lim
n→∞

xn = x if and only if lim
n→∞
‖d(xn, x)‖ = 0. Therefore, we may state the following

corollary.

Theorem 3.2. (X, d) is a complete cone metric space, P a normal cone with a normal constant K and D an b-metric
defined as in (3.4) if and only if (X,D) is a complete b-metric space.

We will give another proof of the generalization of Perov fixed point theorem in the setting of normal
cone metric space.

Theorem 3.3. Let (X, d) be a complete cone metric space, P a normal cone with a normal constant K and f : X 7→ X
a self-mapping. If there exists an operator A ∈ B(E) such that K‖A‖ < 1, for all x, y ∈ X,

d( f (x), f (y)) ≤ A(d(x, y)), (3.5)

then f has a unique fixed point in X.

Proof. From the condition (3.5) and the fact that P is a normal cone, it follows

D( f x, f y) = ‖d( f (x), f (y))‖ ≤ K‖A(d(x, y))‖ ≤ K‖A‖D(x, y), x, y ∈ X,

and f is a contraction in b-metric space and the existence of an unique fixed point follows by the general-
ization of Banach fixed point theorem in b-metric space presented in [7].

Observe that we can obtain the same result from Banach fixed point theorem (on complete metric spaces)
by renorming, as presented in [14].

Theorem 3.4. Let (X, d) be a cone metric space, P ⊆ E a normal cone with a normal constant K where (E, ‖ · ‖) is a
Banach space. Then:

(i) A function ‖ · ‖1 : E 7→ R defined with

‖x‖1 = inf{‖u‖ | x ≤ u} + inf{‖v‖ | v ≤ x}, x ∈ E,

is a norm on E.
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(ii) Norms ‖ · ‖ and ‖ · ‖1 are equivalent norms on X.

(iii) If we observe P as a cone in Banach space (E, ‖ · ‖1), then (X, d) is a normal cone metric space with a normal
constant equal to 1.

The equivalence of the norms allows us to determine the relation between ‖A‖ and ‖A‖1.

Remark 3.5. Based on the previously made observations regarding renorminization of a normal cone with a normal
constant K and Theorem 3.3, we may conclude that existence of the unique fixed point Perov type contractions
(including extended and more general contractive conditions) on normal cone metric spaces could be derived from
analogous results on metric spaces.

Focusing on just first two statements of Perov theorem, we may state the following result:

Theorem 3.6. Perov theorem is a consequence of a Banach fixed point theorem.

Proof. Notice that generalized metric space introduced by Perov is a type of normal cone metric space.
If P = {x = (x1, x2, . . . , xn) ∈ Rn

| xi ≥ 0, i = 1,n}, then P evidently determines a cone in a Banach spaceRn with
supremum norm, ‖x‖ = max

i=1n
|xi|, and x ≤ y if and only if xi ≤ yi, i = 1,n. Since θ ≤ x ≤ y, for θ = (0, 0, . . . , 0),

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), implies 0 ≤ xi ≤ yi, i = 1,n, then ‖x‖ = max
i=1,n
|xi| ≤ max

i=1,n
|yi| = ‖y‖

and P is a normal cone with a normal constant K = 1.
By taking into the account results of Theorem 3.1, it follows that for any generalized metric space (X, d) in
the sense of Perov, the appropriate b-metric space (X,D) is a metric space.
Assume that the requirements of Perov theorem are fulfilled for some A ∈ Mm,m(R+) such that An

→ Θm,
as n→ ∞. Since a matrix A converges to the zero matrix, then ‖An

‖ → 0, n→ ∞. Choose n0 ∈ N such that
‖An
‖ < 1 for any n ≥ n0. For such n,

d( f nx, f ny) ≤ An(d(x, y)), x, y ∈ Rm,

and

D( f nx, f ny) ≤ ‖An
‖D(x, y), x, y ∈ Rm. (3.6)

If we apply Banach contraction principle for f n and q = ‖An
‖ < 1, f n has a unique fixed point z in X. Since

f n( f z) = f z, it must be f z = z. If f u = u for some u ∈ X, then f nu = u, so u = z.
Hence, Perov theorem is a direct consequence of Banach contraction principle.
It is easy to observe that the iterative sequence {xn} is a Cauchy sequence, thus convergent, and since
{ f nk(x)

}k∈N converges to z by Banach fixed point theorem, (ii) holds.

Remark 3.7. On the other hand, if n = 1, then generalized metric space is a metric space and a positive matrix
A = [q] tends to zero if and only if q < 1. Thus, Banach contraction principle is a Perov fixed point theorem for n = 1.
However, remarks regarding distance presented in (iii) and (iv) (easily observed if we take 1 = f ) could not be derived
directly from Banach contraction principle since the inequality (3.6) do not imply (iii).

Example 3.8. Define a mapping f : R2
7→ R2 with f (x) = ( x1

2 + x2,
x2
2 ), x = (x1, x2) ∈ R2. Let

A =

[
1
2 1
0 1

2

]
,

then lim
n→∞

An = Θ2 and

d( f (x), f (y)) ≤ A(d(x, y)), x, y ∈ R2.

Since ‖A‖ = 1, D( f (x), f (y)) ≤ D(x, y) and if x = (0, 0), y = (0, 1), it follows that f is not a contraction in (R2,D),
but it is a Perov contraction and based on Perov theorem it possesses a unique fixed point (0, 0).
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From the proof of Theorem 3.6 and the previous example, we may notice correlation between Perov theorem
and well-known consequence of Banach theorem.

corollary 3.1. Let (X, d) be a complete metric space, f : X 7→ X a mapping. If

d( f n(x), f n(y)) ≤ qd(x, y), x, y ∈ X,

for some n ∈N and q ∈ [0, 1), then f has a unique fixed point in X.

The following example shows that Perov type theorems including requirement r(A) < 1 could not be
derived directly from Banach theorem.

Example 3.9. Let c0 be the set containing all sequences of real numbers convergent to zero equipped with supremum
norm ‖ · ‖∞ and define A : E 7→ E with

A(x) = A(x1, x2, x3, . . . , xn, . . .) = (0, x3,
x4

2
, . . . ,

xn+1

2
, . . .), x = {xn} ∈ c0.

Operator A is linear on Banach space (c0, ‖ · ‖∞) and also bounded since ‖Ax‖∞ ≤ ‖x‖∞. By choosing e3 =
(0, 0, 1, 0, . . . , 0, . . .) ∈ c0, it follows ‖A‖ = 1 by taking into account previous inequality.
For any m ∈N,

Am(x) = Am(x1, x2, x3, . . .) = (0,
xm+2

2m−1 ,
xm+3

2m , . . .), x = {xn} ∈ c0,

therefore, observing em+2 ∈ c0 with all zeros except one on (m+2)-nd place (i.e., (em+2)n = δn,m+2, n ∈ N), we obtain
‖Am
‖ = 1

2m−1 . Spectral radius of A is 1
2 , A is a positive operator, so all the conditions of Theorem 2.2 are satisfied since

d(A(x),A(y)) ≤ A(d(x, y)), x, t ∈ c0,

where ≤ is usual partial ordering on c0, i.e. xn ≤ yn, n ∈N, determining a normal cone and d : c0 × c0 7→ c0 defined
by d(x, y)(n) = |x(n) − y(n)|, n ∈N is a cone metric.
On the other hand, since normal constant and ‖A‖ are equal to 1, norm inequality implies

D(A(x),A(y)) ≤ D(x, y),

thus Banach theorem is not applicable (let x = θ and y = e3).

We may also assume that K = 1 due to the renormization and the invariance of spectral radius in renormized
space. It is important to notice that r(A) < 1 implies ‖An

‖ < 1 for some n ∈N, so instead of Banach theorem,
we should consider Consequence 3.1.

If the inequality (2.2) holds, then, since A is an increasing operator,

d( f n(x), f n(y)) ≤ An(d(x, y)),

thus,
D( f n(x), f n(y)) ≤ ‖An

‖(d(x, y)),

and existence and uniqueness of a fixed point for a mapping f follows directly from Consequence 3.1.
In Example 3.8 f 3 is a contraction in induced metric space, and in Example 3.9 f 2.
As presented in [6], the requirement that A contains only positive entries, as stated in Perov theorem,

could be removed thanks to the normality of the defined cone in generalized metric space. This could be
explained also by the fact that, from the definition of matrix norm, only absolute value of matrix entries
has impact on the norm value. So Perov type theorems are applicable, regardless of the positivity of matrix
elements, if all entries are less than 1.

Perov theorem has a wide range of application and estimations obtained by Perov theorem and gener-
alized metric are better than by using usual metric spaces and some well-known theorems. In [25] coupled
fixed point problem on Banach space was analyzed and, implementation of various metric and vector-
valued metric in the sense of Perov, lead to the conclusion that results obtained by Perov theorem are better
and unify other results. The comparison is made for Schauder, Krasnoselskii, Leray-Schauder and Perov
theorem. We will discuss results obtained by Banach fixed point theorem and compare them in the case of
metric space.
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Example 3.10. If (X, d) is a complete metric space and Ti : X × X 7→ X, i = 1, 2, solution of a system

T1(x, y) = x
T2(x, y) = y, (3.7)

is a fixed point of a mapping T : X × X 7→ X × X defined with

T(x, y) =
(
T1(x, y),T2(x, y)

)
, x, y ∈ X.

To apply Banach theorem, T should be a contraction on X × X. Let D be a metric on X × X induced by d, then

D(F(x, y),F(u, v)) ≤ qD((x, y), (u, v)), (x, y), (u, v) ∈ X × X,

for some q ∈ (0, 1).
If D((x, y), (u, v)) = d(x, y) + d(u, v), (x, y), (u, v) ∈ X × X, then

d(T1(x, y),T1(u, v)) + d(T2(x, y),T2(u, v)) ≤ q(d(x, y) + d(u, v)), (3.8)

for any (x, y), (u, v) ∈ X × X, because of

d(Ti(x, y),Ti(u, v)) ≤
q
2

(d(x, y) + d(u, v)), i = 1, 2, (3.9)

holds for any (x, y), (u, v) ∈ X × X.
On the other hand, if Perov theorem would be applied, T1 and T2 should be such that

d(Ti(x, y),Ti(u, v)) ≤ aid(x,u) + bid(y, v), (x, y), (u, v) ∈ X × X, i = 1, 2,

for some nonnegative ai, bi ≥ 0, i = 1, 2, and a matrix

A =

[
a1 b1
a2 b2

]
convergent to zero. This means that r(A) < 1 or, equivalently,

a1 + b2 +

√
−2a1b2 + 4a2b1 + a1

2 + b2
2 < 2.

Considering (3.9), max{a1, a2}, max{b1, b2} should be less than 1
2 , or in view of (3.8), max{a1, a2} + max{b1, b2} < 1.

Anyway, this result is more strict than r(A) < 1.

If

A =

[
2
3

1
9

1
9

2
3

]
,

then r(A) = 7
9 , but neither of the inequalities (3.8) and (3.9) is satisfied.

Perov fixed point theorem found application in solving various systems of differential equations. But,
in some cases like [29], it is possible to replace it with the Consequence 3.1.

Example 3.11. Let (Xi, di), i = 1,m be some complete metric spaces and define a generalized metric d on their

Cartesian product X =
m∏

i=1
Xi with

d(x, y) =


d1(x1, y1)
d2(x2, y2)

...
dm(xm, ym)

 ,
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for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ X. As previously discussed, (X, d) is, as generalized metric space, also a
normal cone metric space with a normal constant K = 1.
Let (Y, τ) be a Hausdorff topological space and f = ( f1, f2) : X × Y 7→ X × Y an operator.Theorem 2.1 of [29] states

that if f is continuous, (Y, τ) has a fixed point property (i.e., every continuous mapping 1 : Y 7→ Y has a fixed point)
and there exists a matrix S ∈ Rm×m convergent to zero matrix such that

d( f1(u, y), f1(v, y)) ≤ Sd(u, v), u, v ∈ X, y ∈ Y, (3.10)

then f has a fixed point. Uniqueness is not guaranteed because of contractive condition based on the first coordinate.
Instead of using Perov theorem, as presented in [29], observe that, since Sn

→ Θ, n → ∞, then there exists some
n ∈N such that ‖Sn

‖ = q < 1, where assumed norm is the supremum norm. For such chosen n, (3.10) implies

d( f n
1 (u, y), f n

1 (v, y)) ≤ Sn (d(u, v)) , u, v ∈ X, y ∈ Y,

so
d∞( f n

1 (u, y), f n
1 (v, y)) ≤ qd∞(u, v), u, v ∈ X, y ∈ Y,

where d∞ : X × X 7→ R is a maximum metric defined with

d(u, v) = max
i=1,m

di(ui, vi), u, v ∈ X.

Hence, Consequence 3.1 guarantees unique fixed point x∗ of a mapping f n
1 (·, y) : X 7→ X for any y ∈ Y. As in the

proof of Theorem 3.6, x∗ is also unique fixed point of f1(·, y) : X 7→ X for a fixed y ∈ Y. The rest of the proof would
follow analogously as in [29].
As stated in this paper, Y could be any compact convex subset of a Banach space. This results is applied in solving
systems of functional-differential equations such as:

x(t) =

∫ 1

0
K(t, s, x(s), y(s))ds + 1(t), t ∈ [0, 1],

y(t) =

∫ 1

0
H(t, s, x(s), y(s), y(y(s)))ds, t ∈ [0, 1],

where x ∈ X and y ∈ Y, continuous mappings K ∈ C ([0, 1] × [0, 1] ×Rm
× [0, 1],Rm), 1 ∈ C ([0, 1],Rm) and

H ∈ C ([0, 1] × [0, 1] ×Rm
× [0, 1] × [0, 1],R),

Under assumptions that codomain of H is contained in [0, 1], that H is a first coordinate Lipschitzian mapping
with a constant L and K is a Perov generalized contraction, this system has at least one solution in X × Y for

X = C([0, 1],Rm) =
m∏

i=1
Xi, Xi = C[0, 1], i = 1,m and Y set of all Lipschitzian mappings on C([0, 1], [0, 1]) with

a constant L. Observe that we could not use Banach theorem instead of Perov to obtain this conclusion due to the
contractive condition for K.
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[16] S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces: A survey, Nonlinear Anal. 74 (2011), 2591-2601.
[17] S. Jiang, Z. Li, Extensions of Banach contraction principle to partial cone metric spaces over a non-normal solid cone, Fixed Point

Theory Appl. (2013), 2013:250.
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