Filomat 31:11 (2017), 3091–3093 https://doi.org/10.2298/FIL17110911

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Note on Generalized Quasi-Contraction

Dejan Ilić^a, Darko Kocev^b

^aUniversity of Nis, Department of Mathematics, Faculty of Sciences and Mathematics, Visegradska 33, 18000 Nis, Serbia. ^bUniversity of Belgrade, Technical Faculty in Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia.

Abstract. In this paper we give a short proof of the main results of Kumam, Dung and Sitthithakerngkiet (P. Kumam, N.V. Dung, K. Sitthithakerngkiet, A Generalization of Ćirić Fixed Point Theorems, FILOMAT **29**:7 (2015), 1549–1556).

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

In 1974, Lj. Ćirić [2] introduced the concept of quasi-contraction and proved the following fundamental result:

Theorem 1.1. Let (X, d) be a metric space. Suppose that $T : X \mapsto X$ is a quasi-contraction, i.e. that there exists $r \in [0, 1)$ such that for all $x, y \in X$ there holds

 $d(Tx, Ty) \le r \cdot \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}.$

If X is T–orbitally complete, then

- 1. T has a unique fixed point x^* in X.
- 2. $\lim_{n\to\infty} T^n x = x^*$.
- 3. $d(T^n x, x^*) \leq \frac{r^n}{1-r} d(x, Tx)$ for all $x \in X$ and $n \in \mathbb{N}$.

In the paper of Kumam, Dung and Sitthithakerngkiet [7] the concept of quasi-contraction was generalized to that of a generalized quasi-contraction:

Definition 1.2. Let $T : X \mapsto X$ be a mapping on a metric space X. The mapping T is said to be a generalized quasi-contraction iff there exists $r \in [0, 1)$ such that for all $x, y \in X$

 $d(Tx, Ty) \le r \cdot \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(T^2x, x), d(T^2x, Tx), d(T^2x, y), d(T^2x, Ty)\}.$

This paper is supported by the Ministry of Science of Republic of Serbia, Grant No. 174025.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10, 54H25.

Keywords. Generalized quasi-contraction; *w*-distance.

Received: 10 December 2016; Accepted: 15 March 2017

Communicated by Vladimir Rakočević

Email addresses: ilicde@ptt.rs (Dejan Ilić), dkocev@tfbor.bg.ac.rs (Darko Kocev)

In [7], the following theorem is proved:

Theorem 1.3. Let (X, d) be a metric space. Suppose that $T : X \mapsto X$ is a generalized quasi-contraction and X is *T*-orbitally complete. Then we have

- 1. T has a unique fixed point x^* in X.
- 2. $\lim_{n\to\infty} T^n x = x^*$ for all $x \in X$.
- 3. $d(T^n x, x^*) \leq \frac{r^n}{1-r} d(x, Tx)$ for all $x \in X$ and $n \in \mathbb{N}$.

In this note we give a short proof of the main results of Kumam, Dung and Sitthithakerngkiet [7] using the notion of w-distance.

The notions and facts we give below are well-known.

Let *X* be a set endowed with a metric *d*. Then a function $p : X \times X \rightarrow [0, \infty)$ is called a *w*-distance on *X* if the following are satisfied:

- (1) $p(x, z) \le p(x, y) + p(y, z)$, for any $x, y, z \in X$,
- (2) for any $x \in X$, $p(x, \cdot) : X \to [0, \infty)$ is lower semicontinuous,
- (3) for any $\epsilon > 0$, there exists $\delta > 0$ such that $p(z, x) \le \delta$ and $p(z, y) \le \delta$ imply $d(x, y) \le \epsilon$.

Let us recall that a real-valued function f defined on a metric space X is said to be lower semicontinuous at a point x_0 of X if either $\lim \inf_{x_n \to x_0} f(x_n) = \infty$ or $f(x_0) \le \lim \inf_{x \to x_0} f(x_n)$, whenever $x_n \in X$ and $x_n \to x_0$.

The concept of *w*-distance was introduced by Kada, Suzuki and Takahashi [6]. They gave several examples of *w*-distances and improved Caristi's fixed point theorem [1], Ekland's variational's principle [3] and the nonconvex minimization theorem according to Takahashi [8].

For more about w-distances the reader is referred to [4–6].

The proof of the next lemma and theorem which will be used in the proof of the main result can be found in [6]:

Lemma 1.4. Let X be a metric space with metric d, let p be a w-distance on X and let α be a function from X into $[0, \infty)$. Then the function $q : X \times X \mapsto [0, \infty)$ given by

$$q(x, y) = \max{\alpha(x), p(x, y)}$$
 for every $x, y \in X$

is also a w-distance.

Theorem 1.5. Let X be a complete metric space, let p be a w-distance on X and let T be a mapping from X into itself. Suppose that there exists $r \in [0, 1)$ such that

$$p(Tx, T^2x) \le r \cdot p(x, Tx)$$

for every $x \in X$ *and that*

$$\inf\{p(x,y)+p(x,Tx):x\in X\}>0$$

for every $y \in X$ with $y \neq Ty$. Then there exists $z \in X$ such that z = Tz. Moreover, if v = Tv, then p(v, v) = 0.

2. Main Results

Theorem 2.1. Let X be a complete metric space with metric d, and let T be a mapping from X into itself. Suppose T is a generalized quasi-contraction, i.e., there exists $r \in [0, 1)$ such that

$$d(Tx, Ty) \le r \cdot \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx), d(T^2x, x), d(T^2x, Tx), d(T^2x, y), d(T^2x, Ty)\}$$

for every $x, y \in X$. Then T has a unique fixed point.

Proof. By Lemma 2 in [2], the set { $x, Tx, T^2x, ...$ } is bounded for every $x \in X$. Hence we can define a function $p : X \times X \mapsto [0, \infty)$ by

$$p(x, y) = \max\{\operatorname{diam}\{x, Tx, T^2x, \dots\}, d(x, y)\}$$

for every $x, y \in X$. By Lemma 1.4, p is a w-distance on X. Let $x \in X$. Then we have, using Lemma 1 in [2],

$$p(Tx, T^{2}x) = \operatorname{diam}\{Tx, T^{2}x, T^{3}x, \dots\}$$

=
$$\sup_{n \in \mathbb{N}} \operatorname{diam}\{Tx, T^{2}x, T^{3}x, \dots, T^{n}x\}$$

$$\leq \sup_{n \in \mathbb{N}} r \cdot \operatorname{diam}\{x, Tx, T^{2}x, \dots, T^{n}x\}$$

=
$$r \cdot \operatorname{diam}\{x, Tx, T^{2}x, \dots\}$$

=
$$r \cdot p(x, Tx).$$

Let $y \in X$ with $y \neq TY$ and assume that there exists a sequence $\{x_n\}$ such that

$$\lim_{n\to\infty} \{p(x_n, y) + p(x_n, Tx_n)\} = 0.$$

Then, we have

$$d(x_n, Tx_n) \le \operatorname{diam}\{x_n, Tx_n, T^2x_n, \dots\} \le p(x_n, y) \to 0$$

and

$$d(x_n, y) \le p(x_n, y) \to 0$$

So, both $\{x_n\}$ and $\{Tx_n\}$ converge to *y*. Since *T* is a generalized quasi-contraction,

$$d(Tx_n, Ty) \le q \cdot \max\{d(x_n, y), d(x_n, Tx_n), d(y, Ty), d(x_n, Ty), d(y, Tx_n), d(T^2x_n, x_n), d(T^2x_n, Tx_n), d(T^2x_n, y), d(T^2x_n, Ty)\}$$

for any $n \in \mathbb{N}$ and hence

$$d(y, Ty) \le r \cdot \max\{d(y, y), d(y, y), d(y, Ty), d(y, Ty), d(y, y), d(Ty, y), d(Ty, y), d(Ty, y), d(Ty, Ty)\} \le r \cdot d(y, Ty).$$

This is a contradiction. Hence, if $y \neq Ty$,

$$\inf\{p(x, y) + p(x, Tx) : x \in X\} > 0.$$

By Theorem 1.5, there exists a fixed point *z* of *T*. Clearly, the fixed point is unique. \Box

References

- [1] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251.
- [2] Lj. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273.

[3] I. Ekelend, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474.

[4] D. Ilić, V. Rakočević, *Common fixed points for maps on metric space with w-distance*, Applied Mathematics and Computation **199** (2008), 599–610.

[5] D. Ilić, V. Rakočević, Kontraktivna preslikavanja na metričkim prostorima i uopštenja, Prirodno-matematički fakulet, Niš, (2015).

- [6] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 40(2) (1996), 381–391.
- [7] P. Kumam, N.V. Dung, K. Sitthithakerngkiet, A Generalization of Ciric Fixed Point Theorems, FILOMAT 29:7 (2015), 1549–1556.
- [8] W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Pep. 22 (1970), 142–149.