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Abstract. The main purpose of this paper is to investigate degenerate C-(ultra)distribution cosine functions
in the setting of barreled sequentially complete locally convex spaces. In our approach, the infinitesimal
generator of a degenerate C-(ultra)distribution cosine function is a multivalued linear operator and the
regularizing operator C is not necessarily injective. We provide a few important theoretical novelties,
considering also exponential subclasses of degenerate C-(ultra)distribution cosine functions.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

We have recently analyzed in [12] and [13], the classes of degenerate C-distribution semigroups and
degenerate C-ultradistribution semigroups in the setting of barreled sequentially complete locally convex
spaces. We refer to [5], [6], [10], [19] and [25] for further information about well-posedness of abstract
degenerate differential equations of first order. In this way we continue the researches raised in [15], [16]
and [22] (see also [3], [7], [17], [18] and [19]-[21]). The operator C is not injective, in general. The analysis
of C-ultradistribution cosine functions is new even in non-degenerate case, with C = I and the pivot space
being one of Banach’s, while the analysis of C-distribution cosine functions is new in locally convex spaces.

The organization of paper can be briefly described as follows. Section 2 and Section 3 are devoted to
degenerate C-distribution cosine functions and degenerate C-ultradistribution cosine functions as well as to
connection of the degenerate C-distribution cosine functions and degenerate integrated C-cosine functions.
Our theory is illustrated by the examples given in Section 4. In the Appendix are recollected the basic facts
about fractionally integrated C-semigroups and fractionally integrated C-cosine functions in locally convex
spaces.
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We use the standard notation throughout the paper; E is a Hausdorff sequentially complete locally convex
space over the field of complex numbers, SCLCS for short. For the sake of brevity and better exposition,
our standing assumption henceforth will be that the state space E is barreled. The exponential region E(a, b)
has been defined for the first time by W. Arendt, O. El–Mennaoui and V. Keyantuo in [1]:

E(a, b) :=
{
λ ∈ C :<λ ≥ b, |=λ| ≤ ea<λ

}
(a, b > 0).

The Schwartz spaces of test functions D = C∞0 (R), E = C∞(R) and S(R) carry the usual topologies.
If Ω is a non-empty open set in R, then the symbol DΩ denotes the subspace of D consisting of those
functions ϕ ∈ D for which supp(ϕ) ⊆ Ω; D0 ≡ D[0,∞). The spaces D′(E) := L(D,E), E′(E) := L(E,E) and
S
′(E) := L(S,E) are topologized in the usual way; the symbolsD′

Ω
(E),E′

Ω
(E) andS′

Ω
(E) denote the subspaces

ofD′(E), E′(E) and S′(E), respectively, containing E-valued distributions whose supports are contained in
Ω; D′0(E) ≡ D′[0,∞)(E), E′0(E) ≡ E′[0,∞)(E), S′0(E) ≡ S′[0,∞)(E). If E = C, then the above spaces are the classical
ones. By a regularizing sequence inDwe mean any sequence (ρn)n∈N inD0 for which there exists a function
ρ ∈ D satisfying

∫
∞

−∞
ρ(t) dt = 1, supp(ρ) ⊆ [0, 1] and ρn(t) = nρ(nt), t ∈ R, n ∈ N. Let ϕ,ψ ∈ L1(0,∞). Then

the convolution products ϕ ∗ ψ and ϕ ∗0 ψ are defined by

ϕ ∗ ψ(t) :=

∞∫
−∞

ϕ(t − s)ψ(s) ds and ϕ ∗0 ψ(t) :=

t∫
0

ϕ(t − s)ψ(s) ds, t ∈ R.

Notice that ϕ ∗ ψ = ϕ ∗0 ψ,if they are supported by [0,∞). Given ϕ ∈ D and f ∈ D′, or ϕ ∈ E and f ∈ E′,
we define the convolution f ∗ ϕ by ( f ∗ ϕ)(t) := f (ϕ(t − ·)), t ∈ R. For f ∈ D′, or for f ∈ E′, define f̌ by
f̌ (ϕ) := f (ϕ(−·)), ϕ ∈ D (ϕ ∈ E).

Let G be an E-valued distribution and let f ∈ L1
loc(R,E). Then G(n) (n ∈ N) and hG (h ∈ E); the regular

E-valued distribution f is defined by f(ϕ) :=
∫
∞

−∞
ϕ(t) f (t) dt (ϕ ∈ D). The following lemma can be deduced

as in the scalar-valued case.

Lemma 1.1. Suppose that 0 < τ ≤ ∞, n ∈ N. If f : (0, τ) → E is a continuous function and
∫ τ

0 ϕ
(n)(t) f (t) dt =

0, ϕ ∈ D(0,τ). Then there exist elements x0, · · ·, xn−1 in E such that f (t) =
∑n−1

j=0 t jx j, t ∈ (0, τ).

Let τ > 0, and let X be a general Hausdorff locally convex space (not necessarily sequentially complete).
Following [24], G ∈ D′(X) is of finite order on the interval (−τ, τ) iff there exist an integer n ∈ N0 and an
X-valued continuous function f : [−τ, τ] → X such that G(ϕ) = (−1)n

∫ τ
−τ
ϕ(n)(t) f (t) dt, ϕ ∈ D(−τ,τ); G is

of finite order iff G is of finite order on any finite interval (−τ, τ). In the case that X is a quasi-complete
(DF)-space, then each X-valued distribution is of finite order.

Henceforth we assume that (Mp) is a sequence of positive real numbers such that M0 = 1 and the
following conditions hold:
(M.1): M2

p ≤Mp+1Mp−1, p ∈N;
(M.2): Mp ≤ AHp sup0≤i≤p MiMp−i, p ∈N, for some A, H > 1;

(M.3)’:
∑
∞

p=1
Mp−1

Mp
< ∞.

Every employment of the condition

(M.3): supp∈N
∑
∞

q=p+1
Mq−1Mp+1

pMpMq
< ∞,

which is stronger than (M.3)’, will be explicitly emphasized.
The associated function of sequence (Mp) is defined by M(ρ) := supp∈N ln ρp

Mp
, ρ > 0; M(0) := 0, M(λ) :=

M(|λ|), λ ∈ C \ [0,∞).
The spaces of Beurling, respectively, Roumieu ultradifferentiable functions are defined by D(Mp) :=

D
(Mp)(R) := indlimKbbRD

(Mp)
K , respectively, D{Mp} := D{Mp}(R) := indlimKbbRD

{Mp}

K , (where K goes through
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all compact sets in R whereD(Mp)
K := projlimh→∞D

Mp,h
K , respectively,D{Mp}

K := indlimh→0D
Mp,h
K ,

D
Mp,h
K :=

{
φ ∈ C∞(R) : supp(φ) ⊆ K, ‖φ‖Mp,h,K < ∞

}
,

‖φ‖Mp,h,K := sup
{hp

∣∣∣φ(p)(t)
∣∣∣

Mp
: t ∈ K, p ∈N0

}
.

Henceforth the asterisk ∗ stands for both cases.
The spaces of tempered ultradistributions of the Beurling, resp. the Roumieu type, are defined in [23]

(cf. also [4]) as duals of the corresponding test spaces S(Mp)(R) := projlimh→∞S
Mp,h(R), resp. S{Mp}(R) :=

indlimh→0S
Mp,h(R), where SMp,h(R) :=

{
φ ∈ C∞(R) : ‖φ‖Mp,h < ∞

}
, h > 0,

‖φ‖Mp,h := sup
{

hα+β

MαMβ
(1 + t2)β/2|φ(α)(t)| : t ∈ R, α, β ∈N0

}
.

Let ∅ , Ω ⊆ R. As in the case of distributions, putD′∗(E) := L(D∗,E), S′∗(E) := L(S∗,E),D∗
Ω

,D∗0, E′∗
Ω

, E′∗0 ,
D
′∗

Ω
(E), D′∗0 (E). The multiplication by a function a ∈ E∗(Ω), convolution of scalar valued ultradistributions

(ultradifferentiable functions), and the notion of a regularizing sequence inD∗, are defined as in the case of
distributions.

Let η ∈ D[−2,−1] (η ∈ D∗[−2,−1]) be a fixed test function satisfying
∫
∞

−∞
η(t) dt = 1. Then, for every fixed

ϕ ∈ D (ϕ ∈ D∗), we define the antiderivative I(ϕ):

I(ϕ)(x) :=

x∫
−∞

[
ϕ(t) − η(t)

∞∫
−∞

ϕ(u) du
]

dt, x ∈ R.

For every ϕ ∈ D (ϕ ∈ D∗) and n ∈ N, I(ϕ) ∈ D (I(ϕ) ∈ D∗), In(ϕ(n)) = ϕ, d
dx I(ϕ)(x) = ϕ(x) − η(x)

∫
∞

−∞
ϕ(u) du,

x ∈ R as well as that, for every ϕ ∈ D[a,b] (ϕ ∈ D∗[a,b]), where −∞ < a < b < ∞, we have: supp(I(ϕ)) ⊆
[min(−2, a),max(−1, b)]. This simply implies that, for every τ > 2, −1 < b < τ and for every m, n ∈ N with
m ≤ n, we have: I0(ϕ) := ϕ, ϕ ∈ D and

In
(
D(−τ,b]

)
⊆ D(−τ,b] and

dm

dxm In(ϕ)(x) = Im−nϕ(x), ϕ ∈ D (ϕ ∈ D∗), x ≥ 0. (1)

Define now G−1 by

G−1(ϕ) := −G(I(ϕ)), ϕ ∈ D (ϕ ∈ D∗). (2)

It is well known that G−1
∈ D

′(L(E)) and (G−1)′ = G; more precisely, −G−1(ϕ′) = G(I(ϕ′)) = G(ϕ), ϕ ∈ D.
The convergence ϕn → ϕ, n → ∞ in DMp,h

K implies the convergence I(ϕn) → I(ϕ), n → ∞ in DMp,h
K′ ,

where K′ = [min(−2, inf(K)),max(−1, sup(K))], the same holds in ultradistributional case. In both cases,
supp(G) ⊆ [0,∞)⇒ supp(G−1) ⊆ [0,∞).

2. The Basic Properties of Degenerate C-Distribution Cosine Functions and Degenerate C-Ultradistribution
Cosine Functions in Locally Convex Spaces

Throughout this section, we assume that E is a barreled SCLCS and that C ∈ L(E) is not necessarily
injective operator. We introduce the notions of pre−(C − DCF) and (C − DCF) (pre−(C − UDCF) of ∗-class
and (C −UDCF) of ∗-class) as follows:
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Definition 2.1. An element G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))) is called a pre−(C−DCF) (pre−(C−UDCF) of ∗-class)
iff G(ϕ)C = CG(ϕ), ϕ ∈ D (ϕ ∈ D∗) and

(CCF1) : G−1(ϕ ∗0 ψ)C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ), ϕ, ψ ∈ D (ϕ, ψ ∈ D∗);

if, additionally,

(CCF2) : x = y = 0 iff G(ϕ)x + G−1(ϕ)y = 0, ϕ ∈ D0 (ϕ ∈ D∗0),

then G is called a C-distribution cosine function (C-ultradistribution cosine function of ∗-class), in short (C −DCF)
((C − UDCF) of ∗-class). A pre−(C − DCF) (pre-(C − UDCF) of ∗-class) G is called dense iff the set R(G) :=⋃
ϕ∈D0

R(G(ϕ)) (R(G) :=
⋃
ϕ∈D∗0

R(G(ϕ))) is dense in E.

It is clear that (CCF2) impliesN(G) :=
⋂
ϕ∈D0

N(G(ϕ)) = {0} and⋂
ϕ∈D0

N(G−1(ϕ)) = {0}, and that the assumption G ∈ D′0(L(E)) implies G(ϕ) = 0, ϕ ∈ D(−∞,0]. For ψ ∈ D,
we set ψ+(t) := ψ(t)H(t), t ∈ R, where H(t) denotes the Heaviside function. Then ψ+ ∈ E

′

0, ψ ∈ D and
ϕ ∗ ψ+ ∈ D0 for any ϕ ∈ D0. The above holds in ultradistributional case, as well.

The following proposition is essential.

Proposition 2.2. Let G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))) and G(·)C = CG(·). Then G is a pre-(C-DCF) in E (pre-(C-
UDCF) of ∗-class in E) iff

G ≡

(
G G−1

G′ − δ ⊗ C G

)
is a pre-(C-DS) in E ⊕ E (pre-(C-UDS) of ∗-class in E ⊕ E), where

C ≡

(
C 0
0 C

)
.

Moreover, G is a (C-DS) ((C-UDS) of ∗-class) iff G is a pre-(C-DCF) (pre-(C-UDCF) of ∗-class) which satisfies
(CCF2).

Proof. By a simple calculation we have that G satisfies G(ϕ∗0ψ)C = G(ϕ)G(ψ), for ϕ,ψ ∈ D, iff the following
holds

i) G−1(ϕ∗0ψ)C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ);

ii) G(ϕ∗0ψ)C = G(ϕ)G(ψ) + G−1(ϕ)(G′ − δ ⊗ C)(ψ);

iii) G′(ϕ∗0ψ)C = (G′ − δ ⊗ C)G(ψ) + G(ϕ)(G′ − δ ⊗ C)(ψ), for ϕ,ψ ∈ D.

It will be proven here that i) ⇒ ii) ⇒ iii). Let i) holds. By (ϕ∗0ψ)′ = ϕ′∗0ψ + ϕ(0)ψ = ϕ∗0ψ′ + ψ(0)ϕ, for
ϕ,ψ ∈ D, we have

G(ϕ∗0ψ)C = −G−1((ϕ∗0ψ)′)C = −G−1(ϕ∗0ψ′ + ψ(0)ϕ)C =

= −(G−1(ϕ)G(ψ′) + G(ϕ)G−1(ψ′) + δ(ψ)CG−1(ϕ)) =

= G−1(ϕ)G′(ψ) + G(ϕ)G(ψ) − δ(ψ)CG−1(ϕ), for ϕ,ψ ∈ D.

Now, let ii) holds. Then

G′(ϕ∗0ψ)C = −G((ϕ∗0ψ)′)C = −G(ϕ′∗0ψ + ϕ(0)ψ)C =

= −(G(ϕ′)G(ψ) + G−1(ϕ′)(G′ − δ ⊗ C)(ψ) + δ(ϕ)G(ψ)C) =

= (G′ − δ ⊗ C)(ϕ)G(ψ) + G(ϕ)(G′ − δ ⊗ C)(ψ), ϕ, ψ ∈ D,
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so we obtain iii). If G satisfies (CCF2) then G satisfies the non-degeneracy condition (C.S.2) (see [12]). Let
G satisfies (C.S.2). We will prove that G satisfies (CCF2). We assume that x, y ∈ E and G(ϕ)x + G−1(ϕ)y = 0,
ϕ ∈ D0. One gets that

(G′ − δ)(ϕ)x + G(ϕ)y = −G(ϕ′)x − ϕ(0)x = −G−1(ϕ′)y = 0, ϕ ∈ D0.

Since G satisfies (C.S.2), then x = y = 0, so G satisfies (CCF2). The proof for ultradistribution case can be
given analogously.

We can prove the following generalization of [9, Proposition 3.2.4(ii)].

Proposition 2.3. Let G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))) and G(·)C = CG(·). Then the following holds:

(i) If G is a pre-(C-DCF) (pre-(C-UDCF) of ∗-class), then

G−1
(
ϕ ∗ ψ+

)
C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ), ϕ ∈ D0, ψ ∈ D. (3)

(ii) If (CCF2) and (3) hold, then G is a (C-DCF) ((C-UDCF) of ∗-class).

Proof. (i) Let G be a pre-(C-DCF). Then G is a (C-DS). Then G is a (C-DS) in E ⊕ E and G(ψ+) = G(ψ), for
ψ ∈ D. Hence, (

G(ϕ ∗ ψ+) G−1(ϕ ∗ ψ+)
(G′ − δ ⊗ C)(ϕ ∗ ψ+) G(ϕ ∗ ψ+)

) (
x
y

)
=

=

(
G(ϕ) G−1(ϕ)

(G′ − δ ⊗ C)(ϕ) G(ϕ)

) (
G(ψ) G−1(ψ)

(G′ − δ ⊗ C)(ψ) G(ψ)

) (
x
y

)
for every ϕ ∈ D0, ψ ∈ D, x, y ∈ E. If we choose x = 0, then we obtain G−1(ϕ∗ψ0)C = G−1(ϕ)G(ψ) +
G(ϕ)G−1(ψ), ϕ ∈ D0, ψ ∈ D.
(ii) Let now (3) and (CCF2) are fulfilled. Then G is satisfying non-degeneracy condition (C.S.2) (see [12]).
By (3), we have

G−1(ϕ∗ψ)C = G−1(ϕ)G(ψ) + G(ϕ)G−1(ψ), ϕ, ψ ∈ D0

and consequently
G(ϕ∗ψ)C = G(ϕ)G(ψ) −G−1(ϕ)G−1(ϕ)(G′ − δ ⊗ C)(ψ)

(G′ − δ ⊗ C)(ϕ ∗ ψ) = (G′ − δ ⊗ C)(ϕ)G(ψ) + G(ϕ)(G′ − δ ⊗ C)(ψ), ϕ, ψ ∈ D0.

We get the G is a pre-(C-DS). Now for ϕ ∈ D0 and ψ ∈ Dwe obtain

G(ϕ∗ψ+)C = −G−1((ϕ∗0ψ+)′)C = −G−1(ϕ′∗0ψ+ϕ(0)ψ+)C =

= −(G−1(ϕ′)G(ψ) + G(ϕ′)G−1(ψ)) = G(ϕ)G(ψ) + G′(ϕ)G−1(ψ).

Since (ϕ∗0ψ+)′ = (ϕ∗0ψ′+) + ψ(0)ϕ, ϕ ∈ D0, ψ ∈ D, we get

G(ϕ∗ψ+)C = −G−1((ϕ∗0ψ+)′)C = −G−1(ϕ∗0(ψ)′+ + ψ(0)ϕ)C =

= −(G−1(ϕ)G(ψ′) + G(ϕ)G−1(ψ′)) − ψ(0)G−1(ϕ)C =

= G(ϕ)G(ψ) + G−1(ϕ)(G′ − δ ⊗ C)(ψ)

and
(G′ − δ ⊗ C)(ϕ ∗ ψ+) = G′(ϕ ∗ ψ+)C = −G((ϕ∗0ψ+)′)C =

= −G(ϕ′∗0ψ+)C = −(G(ϕ′)G(ψ) + G−1(ϕ′)(G′ − δ ⊗ C)(ψ)) =

= (G′ − δ ⊗ C)(ϕ)G(ψ) + G(ϕ)(G′ − δ ⊗ C)(ψ).

Hence, we obtained that G is a (C-DS) and by Proposition 2.2 we get that G is a (C-DCF). The proof is
analogous for the ultradistribution case.
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If G is a pre-(C-DCF) (pre-(C-UDCF) of ∗-class), then we can almost directly prove that the dual G(·)∗

is a pre-(C∗-DCF) (pre-(C∗-UDCF) of ∗-class) on E∗ satisfying N(G∗) = R(G)
◦

, and that the reflexivity of E
additionally implies thatN(G) = R(G∗)

◦

.

Proposition 2.4. Suppose that G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))) and G(·)C = CG(·). Then G is a pre-(C-DCF)
(pre-(C-UDCF) of ∗-class) iff for every ϕ, ψ ∈ D (ϕ, ψ ∈ D∗), we have:

G−1(ϕ)G′(ψ) −G′(ϕ)G−1(ψ) = ψ(0)G−1(ϕ)C − ϕ(0)G−1(ψ)C.

(see (2) for G−1(ϕ)).

Proof. Having on mind that (see [12, Proposition 4.5] and [13, Proposition 2.5])

G(ϕ′)G(ψ) − G(ϕ)G(ψ′) = ψ(0)G(ϕ)C − ϕ(0)G(ψ)C, ϕ, ψ ∈ D, (ϕ,ψ ∈ D∗)

and by Proposition 2.2 we obtain the statement of the proposition.

Assume G is a pre-(C −DCF) (pre-(C −UDCF) of ∗-class). Then we define the (integral) generator A of
G by

A :=
{
(x, y) ∈ E ⊕ E : G−1

(
ϕ′′

)
x = G−1(ϕ)y for all ϕ ∈ D0

}
.

Then A is a closed multi-valued linear operator (MLO) and it can be easily seen that A ⊆ C−1AC, with the
equality in the case that the operator C is injective. If (CCF2) holds, then it is clear that A = A is a closed
single-valued linear operator.

Furthermore, we can extend the assertion of [8, Lemma 3.4.7] in our context:

Lemma 2.5. Let A be the generator of a pre-(C-DCF) (pre-(C-UDCF) of ∗-class) G. Then A ⊆ B, where A ≡(
0 I
A 0

)
and B is the generator of G. Furthermore, (x, y) ∈ A ⇔

((x
0
)
,
(0

y
))
∈ B and B is single-valued iff G is a

(C-DCF) ((C-UDCF) of ∗-class).

Proof. Let (x, y) ∈ A. Then
((x

0
)
,
(0

y
))
∈ A, x ∈ E and consequently,

((x
0
)
,
(0

y
))
∈ B. Now, let

((x
0
)
,
(0

y
))
∈ B and

fix ϕ ∈ D0. Then G(−ϕ′)
(x

0
)

= G(ϕ)
(0

y
)

and by the definition of G,(
G(−ϕ′) G−1(−ϕ′)

(G′ − δ ⊗ C)(−ϕ′) G(−ϕ′)

) (
x
0

)
=

=

(
G(ϕ) G−1(ϕ)

(G′ − δ ⊗ C)(ϕ) G(ϕ)

) (
0
y

)
Thereby, G(−ϕ′)x = G−1(ϕ)y, i.e. G−1(ϕ′′)x = G(ϕ)y. This implies that (x, y) ∈ A.
Suppose now that G is a (C-DCF) ((C-UDCF) of ∗-class) generated by A. Then Proposition 2.2 yields that
G is a (C-DS) ((C-UDS) of ∗-class). This implies that the integral generator B of G is single-valued and that
the operator C is injective.

Before proceeding further, it is worth observing that((
0
x

)
,

(
x
0

))
∈ B, x ∈ E. (4)

We can apply Lemma 2.5 in order to see that the integral generator A of G is single-valued and that the
operator C is injective.

Even in the case that C = I, it is not clear whether the assumption that the integral generator A of a
pre-(C-DCF) (pre-(C-UDCF) of ∗-class) G is single-valued implies (CCF2) for G.

Let G be a pre-(C-DCF) (pre-(C-UDCF) of ∗-class) generated by A.
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Lemma 2.6. (a) Let ψ ∈ D (ψ ∈ D∗) and x, y ∈ E. Then (G(ψ)x, y) ∈ A iff

G(ψ′′)x + ψ′(0)Cx − y ∈
⋂
ϕ∈D0

N
(
G−1(ϕ)

) (
∈

⋂
ϕ∈D∗0

N
(
G−1(ϕ)

))
.

(b) (G(ψ)x, G(ψ′′)x + ψ′(0)Cx) ∈ A, ψ ∈ D (ψ ∈ D∗), x ∈ E.

(c) (G−1(ψ)x,−G(ψ′)x − ψ(0)Cx) ∈ A, ψ ∈ D (ψ ∈ D∗), x ∈ E.

(d) G(ϕ ∗0 ψ)Cx −G(ϕ)G(ψ)x ∈ AG−1(ϕ)G−1(ψ)x, ϕ, ψ ∈ D (ϕ, ψ ∈ D∗), x ∈ E.

Proof. (a) Clearly (G(ψ)x, y) ∈ A iff G′(ϕ)G(ψ)x = G−1(ϕ)y, ϕ ∈ D0. This is equivalent to G′(ϕ∗0ψ)x −
G(ϕ)G′(ψ)x+ψ(0)CG(ϕ)x = G−1(ϕ)y. By the same arguments used in the proof of Proposition 2.2 we obtain
that G(ϕ′′)x + ϕ′(0)Cx − y ∈

⋂
ϕ∈D0

N
(
G−1(ϕ)

)
.

(b) This is a consequence of (a).

(c) Let we recall that G−1(ψ) = −G(I(ψ)) and that d
dt I(ψ)(t) = ψ(t) − α(t) ·

+∞∫
−∞

ψ(u) du, t ∈ R. Then d2

dt2 I(ψ)(t) =

ψ′(t) − α′(t) ·
+∞∫
−∞

ψ(u) du, t ∈ R. Since α ∈ D[−2,−1] and G ∈ D′0(L(E)), we obtain (I(ψ))′(0) = ψ(0) and

G((I(ψ))′′) = G(ψ′−α′ ·
+∞∫
−∞

ψ(u) du) = G(ψ′). By (a), AG−1(ψ)x = −AG(I(ψ))x = −[G((I(ψ))′′)x+(I(ψ))′(0)Cx] =

−G(ψ′)x − ψ(0)Cx.
(d) Since A generates G and G(ϕ) = −G−1(ϕ′), ϕ ∈ D, we have that

G(ϕ∗0ψ)Cx = −ϕ(0)CG−1(ψ)x −G−1(ϕ′∗0ψ)x =

= G(ϕ)G(ψ)x + (−ϕ(0)C −G(ϕ′))G−1(ψ)x = G(ϕ)G(ψ)x + AG(ϕ)G−1(ψ)x,

for x ∈ E. The ultradistribution case can be shown by the same arguments.

If G is a (C-DCF) ((C-UDCF) of ∗-class) generated by A, then the operators B and A are single-valued;
then a similar line of reasoning as in the proof of [8, Proposition 3.4.8(iii)-(iv)] shows that, for every ψ ∈ D
(ψ ∈ D∗), we have G(ψ)A ⊆ AG(ψ) and G−1(ψ)A ⊆ AG−1(ψ).

Theorem 2.7. Suppose that G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))), G(·)C = CG(·), and A is a closed MLO on E satisfying
that G(·)A ⊆ AG(·) and

G
(
ϕ′′

)
x + ϕ′(0)Cx ∈ AG(ϕ)x, x ∈ E, ϕ ∈ D (ϕ ∈ D∗). (5)

Then the following holds:

(i) If A = A is single-valued, then G is a pre-(C-DCF) (pre-(C-UDCF) of ∗-class).

(ii) If G satisfies (CCF2), C is injective and A = A is single-valued, then G is a (C-DCF) ((C-UDCF) of ∗-class)
generated by C−1AC.

(iii) Consider the distribution case. The condition (CCF2) automatically holds for G.

Proof. We will only outline the most important details of proof. It can be simply proved thatG ∈ D′0(L(E⊕E))
(G ∈ D′∗0 (L(E ⊕ E))), G(·)C = CG(·), and thatA is a closed MLO in E ⊕ E. Furthermore, G(·)A ⊆ AG(·) and

G

(
−ϕ′

)
(x y)T

− ϕ(0)C(x y)T
∈ AG(ϕ)(x y)T, x, y ∈ E, ϕ ∈ D (ϕ ∈ D∗).



D. Velinov et al. / Filomat 31:11 (2017), 3075–3089 3082

By [12, Remark 4.14] and [13, Remark 2.7] which ones say that for G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E)), G(ϕ)C =
CG(ϕ), ϕ ∈ D (ϕ ∈ D∗) and A is a closed MLO on E satisfying that G(ϕ)A ⊆ AG(ϕ), ϕ ∈ D (ϕ ∈ D∗)
and G

(
−ϕ′

)
x − ϕ(0)Cx ∈ AG(ϕ)x, x ∈ E, ϕ ∈ D ϕ ∈ D∗), we have that G is a pre-(C-DS) in E ⊕ E so

that (i) follows immediately from Proposition 2.2. In order to prove (ii), notice that G satisfies (C.S.2) and
again by [12, Remark 4.14] and [13, Remark 2.7], we obtain that G is a pre-(C-DS) in E ⊕ E generated by
C
−1
AC =

(
0 I

C−1AC 0

)
.Now the part (ii) simply follows from Proposition 2.2 and Lemma 2.5. The proof of (iii)

can be deduced similarly.

Remark 2.8. Concerning the assertion (i), its validity is not true in multivalued case ([12]-[13]): Let C = I, let
A ≡ E× E, and let G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))) be arbitrarily chosen. Then G commutes with A and (5) holds but
G need not satisfy (CCF1).

Remark 2.9. Let G ∈ D′0(L(E)) (G ∈ D′∗0 (L(E))) and G(·)C = CG(·). Suppose that A = A is single-valued and C
is injective. If G is a (C-DCF) in E ((C-UDCF) of ∗-class in E), then B is single-valued and we can proceed as in the
proof of [8, Proposition 3.4.8(iii)] so as to conclude that G(·)A ⊆ AG(·). Combining this fact with Proposition 2.2,
[12, Remark 4.14] and [13, Remark 2.7] and the arguments contained in the proof of Theorem 2.7, we get that G is a
(C-DCF) in E ((C-UDCF) of ∗-class in E) generated by A iff G is a (C-DS) in E ⊕ E ((C-UDS) of ∗-class in E ⊕ E)
generated by A. This is an extension of [8, Theorem 3.2.8(ii)]. In degenerate case, the integral generator of G can
strictly contain A. In order to verify this, let E be an arbitrary Banach space, let P ∈ L(E), and let P2 = P. Define
GP(ϕ)x :=

∫
∞

0 ϕ(t) dt Px, x ∈ E, ϕ ∈ D. Then G−1
P (ϕ)x =

∫
∞

0 tϕ(t) dt Px, x ∈ E, ϕ ∈ D, GP is a pre-(DCF) in E,
and

{x, y} ⊆ N(P)⇔ GP(ϕ)x + G−1
P (ϕ)y = 0 for all ϕ ∈ D0;

see [8, Example 3.4.46]. A straightforward computation shows that the integral generator of GP is the MLO
A = E ×N(P). Furthermore, ([x y]T, [z u]T) ∈ A iff y = z and u ∈ N(P), while ([x y]T, [z u]T) ∈ B iff y − z ∈ N(P)
and u ∈ N(P). Hence, B strictly containsA.

Remark 2.10. Suppose that A = A is single-valued and C is injective. Since any (C-DS) in E ⊕ E ((C-UDS) of
∗-class in E ⊕ E) is uniquely determined by its generator, the conclusion established in Remark 2.9 shows that there
exists at most one (C-DCF) in E ((C-UDCF) of ∗-class in E) generated by A. Even in the case that E is a Banach space
and C = I, this is no longer true in degenerate case. To see this, let E be an arbitrary Banach space, let P1 ∈ L(E),
P2

1 = P1, P2 ∈ L(E), P2
2 = P2, N(P1) = N(P2) and P1 , P2; cf. the previous remark. Then pre-(DCF)’s GP1 and GP2

are different but have the same integral generator. We can choose, for example, the matricial operators

P1 =

[
0 0
0 1

]
and P2 =

[
0 1
0 1

]
.

We continue by stating the following theorem.

Theorem 2.11. Let a > 0, b > 0 and α > 0. Suppose that A is a closed MLO and, for every λ which belongs to the
set E(a, b), there exists an operator H(λ) ∈ L(E) so that H(λ)A ⊆ AH(λ), λ ∈ E(a, b), λH(λ)x − Cx ∈ A[H(λ)x/λ],
λ ∈ E(a, b), x ∈ E, H(λ)C = CH(λ), λ ∈ E(a, b), λH(λ)x − Cx = H(λ)y/λ, whenever λ ∈ E(a, b) and (x, y) ∈ A,
and that the mapping λ 7→ H(λ) is strongly analytic on Ωa,b and strongly continuous on Γa,b, where Γa,b denotes the
upwards oriented boundary of E(a, b) and Ωa,b the open region which lies to the right of Γa,b. Let the operator family
{(1 + |λ|)−αH(λ) : λ ∈ E(a, b)} ⊆ L(E) be equicontinuous. Set

G(ϕ)x := (−i)
∫

Γa,b

ϕ̂(λ)H(λ)x dλ, x ∈ E, ϕ ∈ D.

Then G is a pre-(C-DCF) generated by an extension of A.
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Proof. Set

F(λ) :=
[

H(λ) H(λ)/λ
λH(λ) − C H(λ)

]
, λ ∈ E(a, b)

and

G(ϕ)[x y]T := (−i)
∫

Γa,b

ϕ̂(λ)F(λ)[x y]T dλ, x, y ∈ E, ϕ ∈ D.

The prescribed assumptions imply that the function F(·) has the properties necessary for applying [12,
Theorem 4.15] which one gives that G(ϕ) is pre-(C-DS) generated by an extension of A . Furthermore,
supp(G) ⊆ [0,∞), G commutes with C and by the connection between (C-DS)’s and (C-DCF)’s (see [9,
Theorem 3.2.6]) we have that that

G =

[
G G−1

G′ − δ ⊗ C G

]
.

Due to Proposition 2.2 and Lemma 2.5, we obtain that G is a pre-(C-DCF) generated by an extension of A,
as claimed.

Remark 2.12. (i) Suppose that C is injective, A = A is single-valued, ρC(A) ⊆ E2(a, b) ≡ {λ2 : λ ∈ E(a, b)} and
H(λ) = λ(λ2

− A)−1C, λ ∈ E2(a, b). Then G is a (C-DCF) generated by C−1AC. Even in the case that C = I,
the integral generator A of G, in multivalued case, can strictly contain C−1AC.

(ii) Let A be a closed MLO, let C be injective and commute with A, and let ρC(A) ⊆ E2(a, b). Then the choice
H(λ) = λ(λ2

−A)−1C, λ ∈ E(a, b) is always possible ([10]).

(iii) In ultradistributional case, it is necessary to replace the exponential region E(a, b) from the formulation of
Theorem 2.11 with a corresponding ultra-logarithmic region. Define the operator G(ϕ) similarly as above. In
non-degenerate case (A = A single-valued, C injective), it can be proved that G(ϕ) is a pre-(C-UDCF) generated
by an extension of A; unfortunately, we do not know then whether G has to satisfy (CCF1) in degenerate case.

The analysis of degenerate almost C-(ultra)distribution cosine functions is without the scope of this
paper. For more details, see [22] and [8, Subsection 3.4.5] and [9, pp. 380-384].

3. Relations Between Degenerate C-Distribution Cosine Functions and Degenerate Integrated C-Cosine
Functions

We start this section by stating the following fundamental result.

Theorem 3.1. Let G be a pre-(C-DCF) generated by A, and let G be of finite order. Then, for every τ > 0, there exist
a number nτ ∈N and a local nτ-times integrated C-cosine function (Cnτ (t))t∈[0,τ) such that

G(ϕ) = (−1)nτ

∞∫
0

ϕ(nτ)(t)Cnτ (t) dt, ϕ ∈ D(−τ,τ). (6)

Furthermore, (Cnτ (t))t∈[0,τ) is an nτ-times integrated C-cosine existence family with a subgenerator A.

Proof. Let G and C be as in the formulation of Proposition 2.2, and letA be the MLO defined in Lemma 2.5.
Then G is a pre-(C-DS) in E ⊕ E generated by a closed MLO B which containsA. Since G is of finite order,
we know that, for every τ > 0, there exist a number nτ ∈ N and a continuous mapping Cnτ : [0, τ) → L(E)
such that (6) holds true. Define

Snτ+1(t) :=

 ∫ t

0 Cnτ (s) ds
∫ t

0 (t − s)Cnτ (s) ds
Cnτ (t) − 1nτ+1(t)C

∫ t

0 Cnτ (s) ds

 , 0 ≤ t < τ.
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Then Snτ+1 : [0, τ)→ L(E ⊕ E) is continuous and

G(ϕ) = (−1)nτ+1

∞∫
0

ϕ(nτ+1)(t)Snτ+1(t) dt, ϕ ∈ D(−τ,τ).

This immediately implies that (Snτ+1(t))t∈[0,τ) is an (nτ + 1)-times integrated C-integrated semigroup, and
that (Snτ+1(t))t∈[0,τ) is an (nτ + 1)-times integrated C-integrated existence family with a subgenerator B. Due
to Lemma 5.1, we have that (Cnτ (t))t∈[0,τ) is an nτ-times integrated cosine function so that it remains to be
proved that (Cnτ (t))t∈[0,τ) is an nτ-times integrated C-cosine existence family with subgenerator A, i.e., that
(
∫ t

0 (t − s)Cnτ (s)x ds,Cnτ (t)x − 1nτ+1(t)Cx) ∈ A for all t ∈ [0, τ) and x ∈ E. This is equivalent to say that((∫ t

0 (t − s)Cnτ (s)x ds
0

)
,

(
0∫ t

0 (t − s)Cnτ (s)x ds

))
∈ B, x ∈ E, t ∈ [0, τ),

which simply follows from the inclusion (4) and the fact that (Snτ+1(t))t∈[0,τ) is an (nτ + 1)-times integrated
C-integrated existence family with a subgenerator B. The proof of the theorem is thereby complete.

Remark 3.2. (i) If A = A is single-valued, then A is single-valued, as well. If so, then (Snτ+1(t))t∈[0,τ) is an
(nτ + 1)-times integrated C-integrated semigroup with a subgeneratorA, which implies by Lemma 5.1(ii) that
(Cnτ (t))t∈[0,τ) is an nτ-times integrated C-cosine function with a subgenerator A.

(ii) If the assumptions of Theorem 3.1 hold, then G(ϕ)G(ψ) = G(ψ)G(ϕ), ϕ, ψ ∈ D (in the Banach space setting,
this gives the affirmative answer to the question raised on p. 769 of [15]). As a simple consequence, we have
that, for every ψ ∈ D, we have G(ψ)A ⊆ AG(ψ) and G−1(ψ)A ⊆ AG−1(ψ).

Next theorem is a direct consequence of Lemma 5.1 and Proposition 2.2. This theorem is an extension
of [8, Theorem 3.2.5(iii)] and analogue of [12, Theorem 4.8] for degenerate differential equations of second
order.

Theorem 3.3. Assume that there exists a sequence ((pk, τk))k∈N0 inN0 × (0,∞) such that limk→∞ τk = ∞, (pk)k∈N0

and (τk)k∈N0 are strictly increasing, as well as that for each k ∈ N0 there exists a local pk-times integrated C-cosine
function (Cpk (t))t∈[0,τk) on E satisfying that

Cpm (t)x =
(
1pm−pk ∗0 Cpk (·)x

)
(t), x ∈ E, t ∈ [0, τk), (7)

provided k < m. Define

G(ϕ)x := (−1)pk

∞∫
0

ϕ(pk)(t)Cpk (t)x dt, ϕ ∈ D(−∞,τk), x ∈ E, k ∈N0.

Then G is well-defined and G is a pre-(C-DCF).

As in the case of degenerate C-distribution semigroups, we have the following remarks and comments
on Theorem 3.3.

Remark 3.4. (i) Let Ak be the integral generator of (Cpk (t))t∈[0,τk) (k ∈ N0). Then Ak ⊆ Am for k > m and⋂
k∈N0

Ak ⊆ A, where A is the integral generator of G. Even in the case that C = I,
⋂

k∈N0
Ak can be a proper

subset of A.

(ii) Suppose that A is a subgenerator of (Cpk (t))t∈[0,τk) for all k ∈N0. Then (7) automatically holds.

(iii) If C = I, then it suffices to suppose that there exists an MLO A subgenerating a local p-times integrated cosine
function (Cp(t))t∈[0,τ) for some p ∈N and τ > 0 ([14]).
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Proposition 2.2 enables us to simply introduce the notion of an exponential pre-(C-DCF) in E (exponential
pre-(C-UDCF) of ∗-class in E):

Definition 3.5. Let G be a pre-(C-DCF) (pre-(C-UDCF) of ∗-class). Then G is said to be an exponential pre-(C-DCF)
(pre-(C-UDCF) of ∗-class) iff there exists ω ∈ R such that e−ωt

G ∈ S
′(L(E ⊕ E)) (e−ωt

G ∈ S
′∗(L(E ⊕ E))). We use

the shorthand pre-(C-EDCF) (pre-(C-EUDCF) of ∗-class) to denote an exponential pre-(C-DCF) (pre-(C-UDCF) of
∗-class).

It can be simply verified that a pre-(C-DCF) (pre-(C-UDCF) of ∗-class) G is exponential iff there exists
ω ∈ R such that e−ωtG−1

∈ S
′(L(E)) (e−ωtG−1

∈ S
′∗(L(E))).

Let α ∈ (0,∞) \N, f ∈ S and n = dαe. Let us recall that the Weyl fractional derivative Wα
+ of order α is

defined by

Wα
+ f (t) :=

(−1)n

Γ(n − α)
dn

dtn

∞∫
t

(s − t)n−α−1 f (s) ds, t ∈ R.

If α = n ∈N0, then we set Wn
+ := (−1)n dn

dtn .

Theorem 3.6. Assume that α ≥ 0 and that A is the integral generator of a global α-times integrated C-cosine
function (Cα(t))t≥0 on E. Set

Gα(ϕ)x :=
∫
∞

0
Wα

+ϕ(t)Cα(t)x dt, x ∈ E, ϕ ∈ D.

Then G is a pre-(C-DCF) whose integral generator contains A. Furthermore, if (Cα(t))t≥0 is exponentially equicon-
tinuous, then G is exponential.

Proof. Note that if A is the integral generator of a global α-times integrated C-semigroup (Sα(t))t≥0 on E
and Gα(ϕ)x :=

∫
∞

0 Wα
+ϕ(t)Sα(t)x dt, x ∈ E, ϕ ∈ D then G is a pre-(C-DS) whose integral generator contains

A. Then by Lemma 5.1 and Lemma 2.5 we have B :=
(

0 I
A 0

)
is a subgenerator of an (α + 1)-times integrated

C-semigroup (Sα+1(t))t≥0, henceA is a subgenerator of α-times integrated C-cosine function (Cα(t))t≥0 on E.
Then by Proposition 2.2 we obtain the statement of the theorem.

Remark 3.7. It is clear that G(·) ≡ 0 is a degenerate pre-distribution cosine function with the generatorA ≡ E × E,
as well as that, for every τ > 0 and for every integer nτ ∈ N, there exists only one local nτ-times integrated cosine
function (Cnτ (t) ≡ 0)t∈[0,τ) satisfying (6). Then condition (B)’ holds and condition (A)’ does not hold here. Designate
by Aτ the integral generator of (Cnτ (t) ≡ 0)t∈[0,τ). Then Aτ = {0} × E is strictly contained in the integral generator A
of G. Furthermore, if C , 0, then there do not exist numbers τ > 0 and nτ ∈N such that Aτ generates (subgenerates)
a local nτ-times integrated C-cosine function.

The notion of a q-exponential pre-(C-DCF) (pre-(C-UDCF) of ∗-class) can be also introduced and further
analyzed. For the sake of brevity, we shall skip all related details concerning this topic here.

We close this section with the observation that the assertions of [8, Theorem 3.6.13, Theorem 3.6.14]
can be simply reformulated for non-degenerate ultradistribution sines in locally convex spaces. For more
details concerning the semigroup case, the reader may consult [11].

4. Examples and Applications

First of all, we would like to draw the reader’s attention on some instructive examples of non-degenerate
ultradistribution sines in Fréchet spaces.
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Example 4.1. (i) Set E := { f ∈ C∞([0,∞)) : limx→+∞ f (k)(x) = 0 for all k ∈ N0}. Equipped with the family of
norms || f ||k :=

∑k
j=0 supx≥0 | f

( j)(x)|, f ∈ E (k ∈ N0), E becomes a Fréchet space. Suppose c0 > 0, β > 0, s > 1
and Mp := p!s. Define the operator A by D(A) := {u ∈ E : c0u′(0) = βu(0)} and Au := c0u′′. One can prove
that, for every two sufficiently small number ε > 0, ε′ > 0 and for every integer k ∈ N0, there exist constants
c(ε, ε′) > 0 and c(k, ε, ε′) > 0 such that∥∥∥∥(λ − A)−1 f

∥∥∥∥
k
≤ c(k, ε, ε′)ec(ε,ε′)|λ|ε

′ ∥∥∥ f
∥∥∥

k, f ∈ E, λ ∈ Σπ−ε. (8)

Set for ā > 0,

G(ϕ) f := (−i)

ā+i∞∫
ā−i∞

λϕ̂(λ)
(
λ2
− A

)−1
f dλ, f ∈ E, ϕ ∈ D(Mp).

Then G is an exponential pre-(EUDCF) of (Mp)-class, G(ϕ)A ⊆ AG(ϕ), ϕ ∈ D(Mp) and AG(ϕ) f = G
(
ϕ′′

)
f +

ϕ′(0) f , f ∈ E, ϕ ∈ D∗; cf. Remark 2.12.

It is difficult to say weather the condition (CCF2) holds or not.

If the condition (CCF2) is satisfied, then (see e.g. [8, Theorem 3.6.14]) for the Banach space case) then the
abstract Cauchy problem

(ACP2) :


u ∈ C∞([0,∞) : E) ∩ C([0,∞) : [D(A)]),
utt(t, x) = c0uxx(t, x), t ≥ 0, x ≥ 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ≥ 0

has a unique solution for any u0, u1 ∈ E(Mp)(A), where E(Mp)(A) is the abstract Beurling space consisting of
those functions f ∈ E satisfying that, for every h > 0 and n ∈ N, we have supp∈N0

(hp
‖ f (2p)

‖n/Mp) < ∞;
furthermore, for every compact set K ⊆ [0,∞) and for every n ∈N and h > 0, the solution u of (ACP2) satisfies

sup
t∈K, p∈N0

hp

Mp

(∥∥∥∥ dp

dtp u(t)
∥∥∥∥

n
+

∥∥∥∥ dp

dtp+1 u(t)
∥∥∥∥

n

)
< ∞.

Suppose now that P(z) is a non-constant complex polynomial of degree k ∈ N such that there exist positive
real numbers a, b > 0 such that, for every λ ∈ C with <λ > a, all the zeroes of polynomial z 7→ P(z) − λ,
z ∈ C belong to C \ (−∞, 0]. Let ā > a. Then it can be easily seen that, for every two sufficiently small number
ε > 0, ε′ > 0 and for every integer k ∈N0, there exist constants c(ε, ε′) > 0 and c(k, ε, ε′) > 0 such that∥∥∥∥(λ − P(A)

)−1
f
∥∥∥∥

k
≤ c(k, ε, ε′)ec(ε,ε′)|λ|ε

′ ∥∥∥ f
∥∥∥

k, f ∈ E, <λ > ā. (9)

Set

GP(ϕ) f := (−i)

ā+i∞∫
ā−i∞

λϕ̂(λ)
(
λ2
− P(A)

)−1
f dλ, f ∈ E, ϕ ∈ D(Mp).

Then GP is an exponential pre-(EUDCF) of (Mp)-class, and it is open question whether the condition (CCF2)
holds for GP, in general.

(ii) In this part, we use the notation from [2, Chapter 8]. Let p ∈ [1,∞), m > 0, ρ ∈ [0, 1], r > 0, and let a ∈ Sm
ρ,0

satisfies (Hr). Suppose that E = Lp(Rn) or E = C0(Rn) (in the second case, we assume p = ∞), 0 ≤ l ≤ n,
A := OpE(a) and that the following inequality

n
∣∣∣∣12 − 1

p

∣∣∣∣(m − r − ρ + 1
r

)
< 1 (10)
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holds. Let su recall that if a(·) is an elliptic polynomial of order m, then (10) holds with m = r and ρ = 1.
Suppose that there exists a sequence (Mp) satisfying (M.1), (M.2) and (M.3′), as well as that a(Rn)∩Λ2

l,ζ,η = ∅

for some constants l ≥ 1, ζ > 0 and η ∈ R. Here

Λl,ζ,η =
{
λ ∈ C :<λ ≥ ζM(l|=λ|) + η

}
and Λ2

l,ζ,η =
{
λ2 : λ ∈ Λl,ζ,η

}
.

Put Nl
0 := {η ∈ Nn

0 : ηl+1 = · · · = ηn = 0} and El := { f ∈ E : f (η)
∈ E for all η ∈ Nl

0}. Then the calibration
(qη( f ) := || f (η)

||E, f ∈ El; η ∈ Nl
0) induces a Fréchet topology on El ([26]). Define the operator Al on El by

D(Al) := { f ∈ El : OpE(a) f ∈ El} and Al f := OpE(a) f ( f ∈ D(Al)). Then we know that there exist numbers
η′ ≥ η, N ∈N and M ≥ 1 such that Λ2

l,ζ,η′ ⊆ ρ(Al) and that for each η ∈Nl
0 we have

qη
(
R
(
λ : Al

)
f
)
≤M

(
1 + |λ|

)N
qη( f ), λ ∈ Λ2

l,ζ,η′ , f ∈ El.

Keeping in mind Theorem 2.11 and Remark 2.12, we get that Al generates an ultradistribution sine of (Mp)-class
in El.

Example 4.2. Multiplication operators in Lp-spaces generating degenerate locally integrated cosine functions can be
simply constructed following the method proposed in [10, Example 3.2.11] and [8, Example 3.4.44]. These examples
can serve for construction of non-exponential pre-(DCF)’s in Banach spaces by Theorem 3.6.

Example 4.3. Suppose that (E, ‖ · ‖) is a Banach space. In [6, Chapter III], A. Favini and A. Yagi have considered the
multivalued linear operators satisfying the following condition:

(PW) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ := Ψc :=
{
λ ∈ C :<λ ≥ −c

(
|=λ| + 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

If (PW) holds, then it can be simply proved that there exists a continuous linear operator C such that A2 is a
subgenerator of a global once integrated C-cosine function that is not exponentially bounded, in general ([10]). This
example and Theorem 3.6 can be used for construction of non-exponential pre-(C-DCF)’s in Banach spaces.

5. Appendix: Fractionally Integrated C-Cosine Functions

Here we list some definitions and statements that are used previously in the paper (most of them are
already known). We refer to [14] for the definition of (local, if τ < ∞) α-times integrated C-cosine functions.

Let 1α(t) = tα−1

Γ(α) , for t > 0. Recall that a strongly continuous operator family ((Cα)(t))t∈(0,τ) ⊆ L(E) is called
a (local, if τ < ∞) α-times integrated C-cosine function iff the following holds:
for all x ∈ E and t, s ∈ [0, τ) with t + s ∈ [0, τ),

2Cα(t)Cα(s)x =

( t+s∫
t

−

s∫
0

)
1α(t + s − r)Cα(r)Cx dr

+

t∫
t−s

1α(r − t + s)Cα(r)Cx dr+

s∫
0

1α(r + t − s)Cα(r)Cx dr, t ≥ s;

2Cα(t)Cα(s)x =

( t+s∫
s

−

t∫
0

)
1α(t + s − r)Cα(r)Cx dr

+

s∫
s−t

1α(r + t − s)Cα(r)Cx dr+

t∫
0

1α(r − t + s)Cα(r)Cx dr, t < s.

(11)
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We refer to [14] for a (local) C-regularized semigroup, resp., (local) C-regularized cosine function.
Let 0 < α < ∞. In the case τ = ∞, (Sα(t))t≥0 is said to be exponentially equicontinuous (equicontinuous)

iff there exists ω ∈ R (ω = 0) such that the family {e−ωtSα(t) : t ≥ 0} is equicontinuous. The above notion can
be simply understood for the class of fractionally integrated C-cosine functions. The integral generator Â
of (Sα(t))t∈[0,τ), resp. (Cα(t))t∈[0,τ), is defined by graph

Â :=
{

(x, y) ∈ E × E : Sα(t)x − 1α+1(t)Cx =

t∫
0

Sα(s)y ds, t ∈ [0, τ)
}
, resp.,

Â :=
{

(x, y) ∈ E × E : Cα(t)x − 1α+1(t)Cx =

t∫
0

(t − s)Cα(s)y ds, t ∈ [0, τ)
}
.

The integral generator Â of (Sα(t))t∈[0,τ), resp. (Cα(t))t∈[0,τ), is a closed MLO in E. Furthermore, Â ⊆ C−1
ÂC

in the MLO sense, with the equality in the case that the operator C is injective.
By a subgenerator of (Sα(t))t∈[0,τ), resp. (Cα(t))t∈[0,τ), we mean any MLO A in E satisfying the following

two conditions:

(A) Sα(t)x − 1α+1(t)Cx =
∫ t

0 Sα(s)y ds, whenever t ∈ [0, τ) and y ∈ Ax;

(B) For all x ∈ E and t ∈ [0, τ), we have
∫ t

0 Sα(s)x ds ∈ D(A) and Sα(t)x − 1α+1(t)Cx ∈ A
∫ t

0 Sα(s)x ds,

resp.,

(A)’ Cα(t)x − 1α+1(t)Cx =
∫ t

0 (t − s)Cα(s)y ds, whenever t ∈ [0, τ) and y ∈ Ax;

(B)’ For all x ∈ E and t ∈ [0, τ),we have
∫ t

0 (t−s)Cα(s)x ds ∈ D(A) and Cα(t)x−1α+1(t)Cx ∈ A
∫ t

0 (t−s)Cα(s)x ds.

If (S1
α(t))t∈[0,τ) ⊆ L(E), resp. (S2

α(t))t∈[0,τ) ⊆ L(E) ((C1
α(t))t∈[0,τ) ⊆ L(E), resp. (C2

α(t))t∈[0,τ) ⊆ L(E)), is strongly
continuous and satisfies only (B), resp. (A) ((B)’, resp. (A)’), then we say that (S1

α(t))t∈[0,τ), resp. (S2
α(t))t∈[0,τ)

((C1
α(t))t∈[0,τ), resp. (C2

α(t))t∈[0,τ)), is an α-times integrated C-existence family with a subgeneratorA, resp., α-
times integrated C-uniqueness family with a subgeneratorA (α-times integrated C-cosine existence family
with a subgeneratorA, resp., α-times integrated C-cosine uniqueness family with a subgeneratorA).

By χ(Sα), resp., χ(Cα), we denote the set consisting of all subgenerators of (Sα(t))t∈[0,τ), resp., (Cα(t))t∈[0,τ).
It is well known (see [8], [14]) that any of the sets χ(Sα) and χ(Cα) can have infinitely many elements; if
A ∈ χ(Sα), resp. A ∈ χ(Cα), thenA ⊆ Â. In general, the set χ(Sα) can be empty and the integral generator of
(Sα(t))t∈[0,τ) need not be a subgenerator of (Sα(t))t∈[0,τ) in the case that τ < ∞; the same holds for fractionally
integrated C-cosine functions. In global case, the integral generator Â of (Sα(t))t≥0, resp. (Cα(t))t≥0, is always
its subgenerator. If A is a closed subgenerator of (Sα(t))t∈[0,τ), resp. (Cα(t))t≥0, defined locally or globally,
then we know that CA ⊆ AC, Â ⊆ C−1

AC and that the injectivity of C implies Â = C−1
AC. Suppose that

C is injective andA is an MLO. Then there exists at most one α-times integrated C-semigroup (Sα(t))t∈[0,τ),
resp. α-times integrated C-cosine function (Cα(t))t∈[0,τ), which do haveA as a subgenerator ([14]).

We need the following results from [14].

Lemma 5.1. ([14]) Suppose that A is a closed MLO in E, 0 < τ ≤ ∞, 0 ≤ α < ∞, and (Cα(t))t∈[0,τ) is a strongly
continuous operator family which commutes with C. Set

Sα+1(t) =

 ∫ t

0 Cα(s) ds
∫ t

0 (t − s)Cα(s) ds
Cα(t) − 1α+1(t)C

∫ t

0 Cα(s) ds

 , 0 ≤ t < τ

and C(x y)T := (Cx Cy)T (x, y ∈ E). Then we have:
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(i) The following assertions are equivalent:

(a) (Cα(t))t∈[0,τ) is an α-times integrated C-cosine function on E.

(b) (Sα+1(t))t∈[0,τ) is an (α + 1)-times integrated C-semigroup
(Sα+1(t))t∈[0,τ) on E × E.

Suppose that the equivalence relation (a)⇔ (b) in (i) holds. Then we have:

(ii) A is a subgenerator of (Cα(t))t∈[0,τ) iff B :=
(

0 I
A 0

)
is a subgenerator of (Sα+1(t))t∈[0,τ).

(iii) Let Â and B̂ be the integral generators of (Cα(t))t∈[0,τ) and (Sα+1(t))t∈[0,τ), respectively. Then the inclusion(
0 I
Â 0

)
⊆ B̂ holds true. Furthermore, if (Cα(t))t∈[0,τ) is non-degenerate, then

(
0 I
Â 0

)
= B̂.
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