NOTE ON SEMIDIRECT PRODUCTS AND WREATH PRODUCTS OF P-REGULAR SEMIGROUPS

Zhang Ronghua

Abstract. In this note, we mainly investigate the semidirect products and wreath products of *P*-regular semigroups. The main results are Theorem 2.4 and Theorem 3.2.

1. Introduction

The first use of semidirect product made in semigroup theory was, so far as I know, by B. H. Neumann [1] in 1960. From then on, W. R. Nico, T. Saito, G. B. Preston and H. W. Zheng [2–5] have investigated some properties and structures on the semidirect and wreath product of semigroups, especially, T. Saito [4] obtained same conditions under which $S \times_{\alpha} T$ is orthodox. H. W. Zheng [5] investigated semidirect product of P-regular semigrops and imposed many restrictions on S, T, P, α in order to prove that $S \times_{\alpha} T$ is P-regular. Now, His main result Theorem 1.2 in chap. 3 is corollary of our result (Theorem 2.4). During prof. M. K. Sen Visiting Institute of Mathematics, Yunann University, in sept.-oct., 1995, he suggest me studying the semidirect product of P-regular semigroups. In the present note, we only consider the structures of $S \times_{\alpha} T$, where $\alpha : S \longrightarrow Aut(T)$. But no answer is obtaained in this note, where $\alpha : S \longrightarrow End(T)$.

Let S,T be a semigroups, End(T) the endomorphisam monoid of T, and write endomorphisam as exponent to the right of arguments. Let $\alpha:S\longrightarrow End(T), s\longrightarrow \alpha(s)$, be given homomorphisam. If $s\in S$ and $t\in T$, write t^s for $t^{\alpha}(s)$. Then, since $\alpha(s)\in End(T)$, for $s\in S$, $(tu)^s=t^su^s$ for every $t,u\in T$, and since α is a homomorphisam, $(t^s)^r=t^{sr}$ for every $s,r\in S$.

The semidirect product $S \times_{\alpha} T$ is the semigroup with elements $\{(s,t): s \in S, t \in T\}$ and multiplication $(s,t)(r,u) = (sr,t^ru)$.

Received June 26, 1996

¹⁹⁹¹ Mathematics Subject Classification: 20M17.

Project Supported by the NNSF of China and two Foundation of STC and EC of Yunnan Province.

Let S be a regular semigroup, E_S the set of idempotents of S and $P \subseteq E_S$. Then S(P) is called a P-regular semigroup [6] if it satisfies the following:

- (1) $P^2 \subseteq E_S$;
- (2) for $q \in P$, $qPq \subseteq P$, and
- (3) for any $a \in S$, there exists $a^+ \in V(a)$ such that $aP^1a^+ \subseteq P$ and $a^+P^1a \subseteq P$.

In this case, P is called the *characteric set* of S. For $a \in S$, if there exists $a^+ \in V(a)$ such that $aP^1a^+ \subseteq P$ and $a^+P^1a \subseteq P$, then a^+ is called a P-inverse of a and $V_P(a)$ denote the set of all P-inverse of a. As usual, V(s) denotes the set of inverses of $s \in S$. Further, we say that a semigroup S is P-regular if there exists $P \subseteq E_S$ such that (S, P) is P-regular.

A P-regular semigroup S(P) is left [resp. right] P-inverse if ege = ge [resp. ege = eg] for every $e, g \in P$.

2. Semidirect product

Let $S(P_S), T(P_T)$ be P-regular semigroups, $\alpha: S \longrightarrow End(T)$ a given homomorphisam and $S \times_{\alpha} T$ the semidirect product of S and T. Let $Sur(T) = \{\beta \in End(T): \beta \text{ is surjective}\}$, $Inj(T) = \{\beta \in End(T): \beta \text{ is injective}\}$ and $Aut(T) = Sur(T) \cap Inj(T)$.

Proposition 2.1. Let S be a regular semigroup. Then the following are equivalent:

- (1) $\alpha(S) \subseteq Sur(T)$;
- (2) $\alpha(S) \subseteq Inj(T)$;
- (3) $\alpha(S) \subseteq Aut(T)$.

Proof. (1) \Rightarrow (2) Suppose that $e \in E_S$, then $\alpha(e) \in Sur(T)$. For every $t \in T$, there exists $t_1 \in T$ such that $t = t_1^e$. So $t^e = (t_1^e)^e = t_1^{e^2} = t_1^e = t$ since $e \in E_S$. Consequently, $\alpha(e) = i_T$ (identily mapping). Let $s_1 \in V(s)$. Then $\alpha(ss_1) = \alpha(s_1s) = i_T$ since $ss_1, s_1s \in E_S$. Thus, $\alpha(s) \in Aut(T)$.

 $(3) \Rightarrow (2)$ It is obvious.

 $(2) \Rightarrow (1)$ Let $e \in E_S$. Then $t^e = (t^e)^e$ for any $t \in T$. By $\alpha(s) \in Inj(T)$ for ant $s \in S$, we have $t = t^e$, that is, $\alpha(e) = i_T$. Let $s_1 \in V(s)$. Then $\alpha(ss_1) = \alpha(s_1s) = i_T$. Since ss_1 and $s_1s \in E_S$, $\alpha(s) \in Sur(T)$. \square

In the following discussions, suppose that $\alpha: S \longrightarrow Aut(T)$.

Lemma 2.2. Let $(s,t) \in S \times_{\alpha} T$. Then $(s,t)^2 = (s,t)$ if and only if $s^2 = s$ and $t^2 = t$.

Proof. It is obvious. \square

Lemma 2.3. If $S \times_{\alpha} T$ is a P-regular or left P-inverse or right P-inverse semigroup, then S and T have same property.

Proof. Suppose that P is the characteric set of $S \times_{\alpha} T$. Let $P_S = \{p : \text{there exist } q \in T \text{ such that } (p,q) \in P\}$ and $P_T = \{q : \text{there exist } p \in S \text{ such that } (p,q) \in P\}$. For any $t \in T$, let $p \in P_S$. Then every $(p_1,t_1) \in V_P((p,t))$ satisfies $t_1 \in V(t), t_1t, tt_1 \in P_T$. Thus, by Lemma 2.2 and the definition of P-regular semigroups, $S(P_S)$ and $T(P_T)$ are P-regular semigroup and have the same property as $S \times_{\alpha} T$. \square

Notice $\alpha(s_1) = \alpha(s)^{-1}$ for every $s_1 \in V(s)$. So we write t^{s-1} for t^{s_1} and $1^s = 1$ for $1 \in S^1$.

Theorem 2.4. Let S,T be semigroups and $\alpha: S \longrightarrow Aut(T)$ a given homomorphisam. Suppose that $P \subseteq E(S \times_{\alpha} T)$. Let $P_S = \{p : \text{ there exists } q \in T \text{ such that } (p,q) \in P\}$ and $P_T = \{q : \text{ there exists } p \in S \text{ such that } (p,q) \in P\}$. Then the semidirect $S \times_{\alpha} T(P)$ is a P-regular semigroup if and only if

- (1) $S(P_S)$ and $T(P_T)$ are P-regular and
- (2) $(\forall s' \in V_P(S))(\exists t' \in V(t))$ such that $t(P_T')^{s^{-1}}t' \subseteq P_T$ and $(t'P_T't) \subseteq P_T$.

Proof. " \Rightarrow " Suppose that $S \times_{\alpha} T(P)$ is a P- regular. Let $P_S = \{p : \text{there exists } q \in T \text{ such that } (p,q) \in P\}$ and $P_T = \{q : \text{there exists } p \in S \text{ such that } (p,q) \in P\}$. By Lemma 2.3, $S(P_S)$ and $T(P_T)$ are a P-regular semigroup. Let $(s_1,t_1) \in V_P(s,t^s)$. Then for any $q \in P_T^1$, there exists $p \in P_S^1$ such that $(p,q) \in P^1$ and so that $(s_1,t_1)(p,q)(s,t^s) = (s_1ps,t_1^sq^st^s) \subseteq P$. Therefore $(t_1P_T^{-1}t)^s \subseteq P_T$ and it is clear that $s_1 \in V_P(s)$. Similarly, $t(P_T^{-1})^{s-1}t_1 \subseteq P_T$.

" \Leftarrow " Let $P = P_S \times P_T$. Then it is clear that P, $P^2 \subseteq E(S \times T)$ and $(p,q)P(p,q) \subseteq P$ for every $(p,q) \in P$. Suppose that s_1,t_1 satisfy (2), then $(s_1,t_1)P^1(s,t^s) = (s_1,t_1)(P_S^1 \times P_T^1)(s,t^s) = (s_1P_S^1s,t_1^s(P_T^1)^st^s) \subseteq P_S \times P_T = P$ and $(s,t^s)P^1(s_1,t_1) = (s,t^s)(P_S^1 \times P_T^1)(s_1,t_1) = (sP_S^1s_1,t^{ss_1}P_T^1t_1) = (sP_S^1s_1,tP_T^1t_1) \subseteq P$ since $ss_1 \in E_S$. Consequently, $S \times_{\alpha} T(P)$ is a P- regular semigroup. \square

Corollary 2.5. S, T, P, P_S, P_T and α are as in Theorem 2.4. If, for every $q \in P_T, q^s \in P_T$, then $S \times_{\alpha} T(P)$ is P-regular if and only if $S(P_S)$ and $T(P_T)$ are P-regular semigroups.

Proof. It is obvious since $q^s \in P_T$ if and only if $q \in P_T$. \square

Corollary 2.6. S, T, P, P_S, P_T and α are as in Theorem 2.4 then $S \times_{\alpha} T(P)$ is left P-inverse or right P-inverse if and only if S, T satisfy

(1) $S(P_S)$ and $T(P_T)$ have the same property, and

(2) $(\forall s' \in V_P(s))(\exists t' \in V(t))$ such that $t(P_T')^{s^{-1}}t' \subseteq P_T$ and $(t'P_T't)^s \subseteq P_T$.

Proof. It is clear that we notice Lemma 2.3 and Theorem 2.4. □

3. Wreath products

Let S and T be semigroups. If S acts on a set X from the left, that is $x \in X$, s(rx) = (sr)x for every $s, r \in S$ and every $x \in X$, then the wreath product SW_XT is the semidirect product $S \times_{\alpha} T^X$, where $T^X = \{f : f : X \longrightarrow T \text{ is a function}\}$ is the cartesian power of T, that is (fh)(x) = f(x)h(x) for every $f, h \in T_X$ and every $x \in X$, and where the homomorphisam $\alpha : S \longrightarrow End(T^X)$ is defined by $(f^s)(x) = f(sx)$ for every $s \in S$, $f \in T^X$ and $x \in X$.

The standard wreath product SWT is defined by using left regular rep-

resentation of S on itself for the left S-set S.

If |T| = 1, then $SW_XT \cong S$. Thus assume hereafter that $|T| \geq 2$. In the following discussions, suppose that $\alpha(S) \subseteq Aut(T)$.

The following is a rephrasing of Theorem 2.4 for the wreath product: "The wreath product $SW_XT(P)$ is a P-regular semigroup if and only if

- (1) $S(P_S)$ and $T^X(P_{T^s})$ are P-regular, and
- (2) $(\forall s_1 \in V_T(s))(\exists t_1 \in V(t) \text{ for every } t \in T^X) \ t(P_{T^s}^1)^{s^{-1}}t_1 \subseteq P_{T^s}$ and $(t_1P_{T^s}^1t)^s \subseteq P_{T^s}$."

Lemma 3.1. T^X is regular if and only if T is regular.

Proof. Let $c_t \in T^X$ such that $c_t(x) = t$ for any $t \in T$ and $x \in X$. Then it is easy to see that result holds. \square

Lemma 3.2. T^X is P-regular if and only if also is T.

Proof. " \Rightarrow " Suppose that T^X is P-regular and its characteric set is P_X . Let $P_T = \{f(x_0) : f \in P_X \text{ for a given } x_0 \in X\}$. By $c_t, t \in T$, we denote the mapping in T^X such that $c_t(x) = t$ for all $x \in X$. Then P_T , $P_T^2 \subseteq E_T$ and $f(x_0)P_T^{-1}f(x_0) \subseteq P_T$. For every $t \in T$, let $f \in V_P(c_t)$, then $fP_X^{-1}c_t \subseteq P_X$ and $c_tP_X^{-1}f \subseteq P_X$. So that $f(x_0) = f(x_0)tf(x_0)$, $t = tf(x_0)t$ and $f(x_0)g(x_0)t \in P_T$, $tg(x_0)f(x_0) \in P_T$ for every $g \in P_X^{-1}$. Namely, $f(x_0) \in V(t)$, $f(x_0)P_T^{-1}t \subseteq P_T$ and $tP_T^{-1}f(x_0) \subseteq P_T$. Consequently, $T(P_T)$ is P-regular.

" \Leftarrow " Suppose that $T(P_T)$ is P -regular. Let $P = \{c_p : p \in P_T\}$. Then $P, P^2 \subseteq E(T^X)$ and $c_p P c_p \subseteq P$ for every $c_p \in P$. By Lemma 3.1, T^X is regular. Let $f \in T^X$. Then $f(x) \in T$ for every $x \in X$. For a given $g(x) \in V_P(f(x)), g \in V(f), f(x)P_T^1g(x) \subseteq P_T$ and $g(x)P_T^1f(x) \subseteq P_T$. Consequently, $T^X(P)$ is P-regular. \square

Theorem 3.3. Let S,T be semigroups. Then SW_XT is P-regular if and only if S and T are P-regular.

Proof. Suppose that SW_XT is a P-regular and its characteric set is P. Let $P_S = \{p : \text{ there exists } q \in T^X \text{ such that } (p,q) \in P\}$, $P_{T^X} = \{f : \text{ there exists } p \in S \text{ such that } (p,f) \in P\}$ and $P_T = \{f(x) : \text{ for a given } x \in X\}$. Then, by Theorem 2.4, $S(P_S)$ and $T^X(P_{T^X})$ are P-regular and P_T , $P_T^2 \subseteq E_T$, $f(x)P_Tf(x) \subseteq P_T$ for every $f(x) \in P_T$. By the proof of Lemma 3.2, $T(P_T)$ is P-regular. Consequently, S,T are P-rregular.

Conversly, suppose that S,T are P-regular and its characteic set P_S,P_T respectively. Let P_{T^S} be the same $\{c_p:p\in P_T\}$ as in the proving of lemma 3.2. Then T^X (P_{T^S}) is P-regular. Furthemore, $c_p{}^s=c_p$ for every $s\in S$ and $c_p\in P_T$. Then, by Corollary 2.5, SW_XT is P-regular. \square

Theorem 3.4. Let S, T be semigroups. Then SWT is P-regular if and only if S and T are P-regular semigroups.

Proof. It is a corollary of Theorem 3.3. □

Theorem 3.5. Let $\alpha: S \longrightarrow End(T^X)$. Then $\alpha(s)$ is injective if and only if sX = X.

Proof. " \Rightarrow " Suppose that $sX \neq X$. Let $y \in X/sX$. Then there exists $g \in T^X$ such that g(sx) = f(sx) and $g(y) \neq f(y)$. Thus $g^s = f^s$ and $g \neq f$. " \Leftarrow " It is clear since $f^s(x) = f(sx)$. \square

Corollary 3.6. Let S, T be regular semigroups. Then $\alpha(S) \subseteq Aut(T^X)$ if and only if sX = X for every $s \in S$.

Corollary 3.7. Let S,T be regular semigroups. Then $\alpha(S) \subseteq Aut(T^S)$ if and only if S is a right group.

Proof. By corollary 3.6, $\alpha(S) \subseteq Aut(T^S)$ if and only if sS = S for every $s \in S$ if and only if S is right simple if and only if S is right group (since S is regular, every idempotent of S is primitive). \square

References

- B. H. Neumann, Embedding Theorems for Semigroups, Math. Soc 35 (1960), J. London, 184-192.
- [2] W. R. Nico, On The Regularity of Semidirect Products, J. Algebra 80 (1973), 29-36.
- [3] G. B. Preston, Products of Semigroups (1991), Proc. of the SEAMS conference on ordered structures and Algebra of Computer Languages, 161-169.
- [4] Tatsuhiko Saito, Orthodox Products and Wreath Products of Monoids, Semigroups Forum 38 (1989), 347-354.
- [5] Zheng Hen Wu, Some Studies On P-regular Semigruops, Ph. D. Thesis, University of Lanzhou 1992.

[6] M. Yamada and M. K. Sen, P-regular Semigroups, Semigroup Forum 39, 157-178.
INSTITUTE OF MATHEMATICS, YUNNAN UNIVERSITY, KUNMING 650091, CHINA.