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ABSOLUTELY ELEMENTARY BIORDERED LANGUAGES

Yu Bingjun

Abstract. A language is called (elementary) biordered, shortened as (EBL)
BL, if it is recognized by (a single idempotent) some idempotents of 2 monoid.
In this paper, the sufficient and necessary conditions for a language to be
(EBL) BL are given. Further, the concept of absolutely elementary biordered
language (AEBL) is defined. The precise structure and the syntactic mono-
ids of AEBLs are described. Some important relations among them are
investigated. Finally, a structure of any BL is given via AEBLs.

1. Introduction and Preliminaries

As is well known, an important task of the theory of formal languages
is to characterize the structure of languages by their syntactic monoids, or
more generally, by any monoid recognizing them. On the other hand, it is
well known also that idempotents in a monoid play a central role in deciding
the properties and structure of the monoid. The theory of biordered sets
initiated by Nambooripad is a typical model in this aspect. This paper is a
part of an attempt to combine these two to investigate the properties and
structure of languages via those decided by idempotents.

This section presents the basic terminology and notations concerning lan-
guages and monoids we will need.

Let A be a nonempty set (finite or infinite) called an alphabet whose ele-
ments are called letters. Define a word over A as a nonempty finite sequence,
written @ydy . . . @y, of elements of A. The length of w denoted by {(w) is de-
fined as the number of occurrences of letters of A in w. It is well-known
that the set A1 of all words over A with the concatenation of words forms
a semigroup called the free semigroup over A. The free monoid over A de-
noted by A* is obtained from A* by adjoining an identity, the empty word
1 whose lenght is 0.
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Any subset L C A% is called a language over A. Given a language L over
A, the syntactic congruence Pr of L is defined as follows:

(z,9) € Pp & (uzv € L & uyv € L, Yu,v € A*), Vz,y € A*.

One verifies that L is a union of classes of Py. In fact Pr is the largest
congruence on A* for which L is union of classes. The quotient monoid
AT/ Py is the syntatic monoid of L and is denoted by M(L). The canonical
homomorphism from A* onto M (L) is the syntactic homomorphism of L and
is denoted by ¢;. For any language I C AT, if there exist a monoid M and a
surjective homomorphism @ : A* — M such that L is union of ker #-classes
we say that #, or ker 8, or M recognizes L, where kerd is the congruence on
A* induced by 6. If this is the case, there exists a unique homomorphism
o: M — M(L) such that ¢y = fo. This means, the syntactic monoid
M(L) is the smallest monoid recognizing L.

Given two languages L, K C A*, the product of them is defined by LK =
{uv:u € L,v € K}. The product operation of languages is associative. The
star language generated by a language L is defined as L* = |J) , L™, where
L° = {1},L? = LL and L™ = L""'L,¥n > 2. Moreover, Lt = L* — {1}.

2. Definition and Criterions
The following definition is the main definition of this paper:

Definition 1. A language L C At is called a biordered language over A,
shortened as BL, if there exist a monoid M and a surjective morphism 8 :
At — M such that L = P#~', for some P C E(M), where E(M) is
the set of all idempotents of M. If this is the case we say that M (keré, #)
recognizes L by its idempotents. Further, L is called an elementary biordered
language, shortened as EBL, if P is a singleton. Especially L is called identity
biordered language, shortened as IBL, if L = 1~!, where 1 is the identity of
the monoid M. The set of all BLs (res. EBLs, IBLs) over A is denoted by
L(A) (res. EL(A),IL(A)).

Obviously, any BL L over A can be written as a union of some disjoint
EBLs: L = |J{L; : ¢ € I'} such that the monoid recognizing L by P C E(M)
recognizes each L;,7 € I, by a single idempotent in P. This decomposition
of L is called an effective decomposition of L.

The following criterion is a consequence of Theorem 10.6 in [2].

Theorem 1. A language L C A* is a BL over A if and only if the following
conditions are satisfied:
(i) L:U{Li:iéf}, LinL;=0,Vi,jel, i#j;
(ii) L; is a subsemigroup of A*, for eachic I;
(iii) wLsvn L; # 0 implies ulyv C L;,Vi,j € I and u,v € A*,
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In particular, L € EL(A) if and only if L is a subsemigroup of A* and that
wLvN L # 0 implies ulv C L,VYu,v € A*.

From this theorem, any two-sided ideal of A* is an EBL over A. In
fact, any EBL over A can be viewed as a generalized two-sided ideal of A*.
Moreover, using Theorem 1 one verifies that any left (res. right) principal
ideal of A* is also an EBL over A (but not every left (res. right) ideal of A*
is) and that the following proposition holds.

Proposition 2. The set of all languages in EL(A) which are two-sided (res.
left, right) ideals of A* is an order ideal under the inverse inclusion.

The next proposition is also immediate from Theorem 1:

Proposition 3. For any L C L(A) (EL(A)), if w € L is of the shortest
length in L, then L' = L — {w} € L(A) (EL(A)). ad

The converse of this proposition is not true. For example, taking A =
{a,b} and L = (ab)*, one verifies that L € EL(A) but (ab)* = LU{l} ¢
EL(A).

Now we proceed to establish another criterion theorem via congruences
on A*. For this purpose we need some new notations.

By C we denote the lattice of all congruence on A*, where A is an alphabet.
For convenience we will abuse any p € C and the morphism induced by it.
So given any language L C A*, we have

Lpp—l = {w € A* : 'LUQS € L¢},

where ¢ : A* — A*/p is the canonical morphism induced by p.
Clearly, C% is the set of all congruences on A* recognizing L.
Moreover, denoting 6(L) = {(w,w?) : w € L} and §'(L) = L x L, we
define
Cr={peC:8L)Cp}andl ={peC:8(L)Cp}

We also denote by 6z, and 87 the congruences generated by §(L) and 8(L)
respectively.

Lemma 4. For any p,o € C, we have
(i) pe€Cy (CL) and p C o together imply o € C (Cy);
(ii) p € CL and o C p together imply o € C*;
(iii) Cr (C}) is a complete sublattice of C with the 1-element A* x A* and
the 0-element 6, (6%);
(iv) CT is a complete sublattice of C with the 1-element Py, the syntactic
congruence of L, and the 0-element 1 4+.
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Proof. We prove only (ii) and (iv). The proof for (i) and (iii) is similar but
much more easier.

Let p € C* and o C p. So L,,-1 = L by definition. For any w € L,,-1,
there is u € L such that (w,u) € ¢ C p. Therefore we have w € upp~! C
L,,-1 = L. This proves L,,~1 C L which implies L,,-1 = L, since L C
L ;-1 1s trivial.

For (iv), it suffices to prove that p = \/{p; : i € I} € CL for any family
{pi € CL : i € I}. Indeed, if w € L,,-1, there exists u € I such that

(w,u) € p = (U{pi : © € T})™. This means that there exist an integer
n21l,¢;€land z; € A*,j=1,...,n, satisfying

WP T1Pi, Ty~ Py Ty = Y.
Now we have u € L and Lpi;pi; = L, since pi; €CE foreach j=1,... 3 iTbs

A simple induction deduces w € L which implies L,,~1 = L. This completes
the proof. O

Now we define
C(L)=CrncC¥ and C'(L) =C} ncL.
We have the folloving;:

Theorem 5. For any language I, C A*, we have
(i) LeL(A) & C(L) £ 0;
(ii) L € EL(A) 4 L is a subsemigroup of A* and C'(L) # 0;
(iii) IfC(L) # 0, it is a complete sublattice of C with the 1-element P;, and
the 0-element é1,. More precisely, C(LYy={peC:6,CpC P
(iv) IfC'(L) # 0, it is a complete sublattice of C with the 1-element Pr, and
the 0-element 8},. More precisely, C'(L)y={peC:8, CpcC Pr}.

Proof. The statement (i) and (ii) are immediate by definition. We prove (iii)
for C(L). The proof of (iv) for C’(L) is similar.

IfC(L)# 0, it is clearly a complete sublattice of C , since the intersection
of complete sublattices is also complete. Now let p€C(L),thendy CpC P,
by definition. Because §(1) C p and L,,1 = L, we have 6(L) C Pp, and
L, 5,-1 = L by Lemma 4 which implies that both of Pr and 6z, arein C(L)

The last equality is merely a simple consequence of Lemma 4. O

Now we see that a language I C A* is a BL (an EBL) if and only if
there exists a family of monoids recognizing L by their idempotents (a single
idempotent). In this family there is the smallest one, M(L), the syntactic
monoid of L which is a homomorphic image of any other member. Mean-
while, there is also the largest one, A*/§;, (A*/61), of which every member
in this family is a homomorphic image. In particular, we have the following
two immediate corollaries.
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Corollary 6. For any language L C A*, the following statements are equiv-
alent:
(i) L is BL;
(ii) 6(L) C P, i.e. M(L) recognizes L by its idempotents;
(iti) Ls 5,1 = L.

Corollary 7. For any language L C A*, the following statements are equiv-
alent:
(i) L is an EBL;
(i) L is @ subsemigroup of A* and §'(L) C Pp, i.e. M(L) recognizes L
by its single idempotent.
(i) L s a subsemigroup of A* and Lg g, -1 = L.

The next corollary is also immediate:

Corollary 8. L C A* is an IBL if and only if L = 1PL ™", where 1 is the
identity of M (L), that is, L is the IBL recognized by its syntactic monoid.

3. Boolean Operations

In this section, we investigate the Boolean operations of BLs over A. First,
we have the following:

Proposition 9. For any alphabet A, the intersection of any family of BLs
(res. EBLs, IBLs) over A is also a BL (res. an EBL, an IBL) over A.

Proof. Let {L; C A* : ¢ € I} be a family of BLs and L = ({{L; : ¢ € I}.
Denote p = [\{ Py, : ¢ € I}, where Py, is the syntactic congruence of L;, ¢ €
I. Tt suffices to prove that L = L,,—» and é(L) C p.

For any w € L,,-1, there exists u € L such that (w,u) € p. Since
LClL; pC P, and L;j,,-» = L; by Lemma 4, we have w € upp™! C
L;i,,-1 = L; for each i € I. This shows L =L, ,-1.

Moreover, we have 6(L;) C Pr,, since L; are BLs by Theorem 5, i € [.
Meanwhile we have also

(L) = {(w,w?) :we L= |{Li:iel}}
= ﬂ{{(w,wz):w eL;}:iel}= ﬂ{é(Lg):iE I}.

Since 6(L;) C éz, C Pr,, for each < € I, we have

§(L)C (WP :iel}=p.
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This proves that L is a BL.
When L; are EBLs, ¢ € I, we have L; x L; C Py, for all i € I. Therefore

LxLC(WLixLizie I} C (P, :iel}=p

which proves that L is an EBL, since that L is a subsemigroup of A* is
obvious. The assertion for IBL is merely a consequence of that for EBL. O

From this proposition we can see that, for any L C A*, there exists a
unique BL (res. EBL, IBL), which is the smallest one containing L, i.e. the
intersection of all BLs (res. EBLs, IBLs) containing I, called the generated
BL (res. EBL, IBL) by L. Therefore each of L(A), EL(A) and IL{A) forms
a complete lattice under inclusion of languages and IL(A) is a complete
sublattice of EL(A), where, for a family of BLs (res. EBLs, IBLs) {L;:i €
I}, the join \/{L; : i € I'} is defined to be the BL (res. EBL, IBL) generated
by L = [{L; : i € I}. Note that EL(A) is not a sublattice of L(A) if A
contains at least two letters a, b, since (ab)* = {1}V (ab)* holds thue in L(A)
but not in EL(A). One verifies that, for any w € A+, w* is the BL as well
as EBL generated by w and that w* is the IBL generated by w if and only
if w = a”, for some a € A and n > 1.

As for the union operation, the situation is much more complicated.
- Firstly, for any family {L; : i € I'} of BLs over A, if N{C(L;) : i € I} # 0, the
union (J{L; : i € I} is clearly a BL over A. Howerer, when this intersection
is empty, all possibilities appear. For example, L; = (a*)t and L, = (¢®)*
are both BLs over A = {a}, but L; U L, is not. On the other hand, if I; and
I are different two-sided ideal of A* = @%, then I = I; UL, is an EBL over
A, since [ is also a two-sided ideal of A*. But C(f;) N C(I;) = 0, because if
there were a monoid M recognizing both of them by its idempotents, then
they should be the inverse homomorphic image of the zero of M so that
Iy = I, contradiction. Anyhow we have the following:

Proposition 10. Let L;,L; C A* by BLs with Ly N Ly = 0. Then L; U L,
is a BL if and only if C(L1) NC(Ly) # 0.

Proof. It suffices to prove necessity. Denote &; = éz,, i = 1,2, and § =
6r,uL,-

First we prove § = é; V ;. By definition §(L;) C 6. So é; C §, since §;
is the smallest congruence containing §(L;), i = 1,2. Hence § V 65 C 6.
Conversely, we have §(Ly U Ly) = 8(L1) U é(Ls). Therefore 8(Ly N Ly) C
61 U 6y C &y V & which implies § C §; V §; by the definition of &.

Next we have Ly ULy = (L1 U L;)667! from the assumption of the propo-
sition and § = d7,ur,. Now we proceed to prove § C Pr,y 1 = 1,38, Le,
L; = L;66~! for each i = 1,2, which will imply § € C(L1)NC(Ly)
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Indeed, for any w € L1667, there is u € L; such that (w,u) € § = §; V
8y = (61 0 63)°°. This means that there exist n > 1 and z1,... ,29,_1 € A*
satisfying

whyz16px901 23 - Tan—261 230163 u.
From &9 C 6; V 83 = & we have
Ton-1 € w66~ C (L1 U Ly)é6™! = Ly U L.
If 9,1 € La, we would have
u € -’Ezn_lﬁzﬁg_]‘ - Lg(ﬁzﬁz—l =L,

which contradicts the condition L; N Ly = 0. Hence z9,_; € Ly so that
Ton_g € Tan_10161"1 € Ly. By a simple induction we deduce w € L, that
is, L166~! = Ly. The equality L;66~! = L, can be proved similary. O

We note that the Proposition 10 can not be extended to any family of Bls
as showed later in an example after Proposition 19.

4. AEBLs and the Absolute Decomposition of BLs

For any L € L(A), 61, C &', always holds. The equality holds if and only
if each monoid recognizing L as a BL recognizes it by a single idempotent.
In other words, L is a BL if and only if it is an EBL. We call a BL with such
a property absolutely elementary biordered language, shortened as AEBL. In
this section, we discuss the structure and some properties of AEBLs. We
also discuss a special role they play in constructing any BLs. For this we
need the following two concepts.

A word p € ATt is called primitive, if p = u™ implies n = 1 for any
u € A*. The set of all primitive words in A* is denoted by Q(A). The
following results are well-known (cf. [7]).

(1) For any word w € AT, there exist unique p € Q(A) and n > 1 such
that w = p®. This p is called the primitive root of w.

(2) For any u,v € AT, uv = vu implies that u and v have the same
primitive root.

Moreover, two words w,w' € A* are said to be conjugate, if w = uv and
w' = vu for some u,v € A*. The conjugacy is an equivalence relation on
A*. Further, w and w' are conjugate if and only if their primitive roots are
conjugate and I(w) = [(w'). A word w is primitive if and only if its conjugate
is primitive and a primitive word of length [ has exactly | conjugates.

One checks that {1} and any language of the form wiw*, w e At, ¢ > 1
are AEBLs over A. On the other hand, any IBL I containing a nonempty
word is not that.

The following three results characterize the structure of all AEBLs but

{1}.
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Lemma 11. Let L € L(A) and 1 ¢ L. If all the words in L are powers of
the some word, then L is an EBL of the form p'*(p")*, for some p € Q(A)
and t,n > 1.

Proof. Notice that the condition of the lemma is equivalent to that all the
words in L have the same primitive root p € Q(A). We first prove that L is
actually an EBL. In fact, L can be written as a disjoint union of some EBLs:
L = U{L; : ¢ € I} by definition. For any two words p™ € L, j = 1,2,
there are EBLs L;; such that p™i € L;, which implies that (p™i)t C Ly,
since L;, are subsemigroups of A*, j = 1,2. If 4; # 43, we should have
(p™1)* n(P™2)* = 0 which contradicts the fact p™1™2 € (p™1)* N (P™2)+,

Now let p™° and p™°*” be the shortest words in L and L — {p™°}, respec-
tively. We have immediately » > 0 and p™°(p™)* C L, since L is an EBL. If
there were p™ € L — p™o(p™)*, there would be k,ny with £ >0, 0 < ny < n
such that m = mp+kn+nyq, then we should have p™ LN L # 0 which implies
p™ L C L so that p™o+™ ¢ [ — {p™o} which contradicts the definition of
n. This proves L = p™°(p™)*. Further we have p?™° € L which implies
mo = tn, for some t > 1, O

Proposition 12. Let L be an AEBL over A and p the primitive root of a
word of shortest length in L. Then all the words in L are powers of p.

Proof. Let p™° be a word of shortest length in I and w an arbitrary word
in L. Because L is an AEBL we have p™§rw, that is, there exist n >
1, z0,2i,u;,v; € A*and z; € L, i = 1,...,n such that

p™ = z, w = z,, and
* = 2 —
(*) Zi-1 = WV, 2Z; = u;xTiv;, OT
_ _ 2
Zi—1 = UiTV;, 2 = UTi V4,

v'=1ys vs 00

We prove by induction on i that z; is a power of p. The result is trivially
true for « = 0. Assuming z;_y = p™, we prove that z; is also a power of p by
induction on I(z;) as follows:

Let I(2;) be shortest length of the words in L. Since z; € L, we certainly
have u;v; = 1, z; = x; and 2.7 = p™ = z;* by the equalities of (*). This
implies that z; is a power of p. Assume that any word in L is a power of p
whenever it is of a length strictly less than I(z;). We investigate the equalities
(*) again. If u;v; = 1, using the same argument as above, we can get that z;
is a power of p. So let u;v; # 1. Then [(z;) < I(z;) which implies z; = p® for
some s > 1 by the induction assumption. Hence I(u;v;) is divided by I(p)
from (*). Without less of generality we assume 0 < I(u;), I(v;) < I(p). We
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claim that 0 < I(u;) < I(p) is impossible. In fact, if this were this case, we

should have 0 < I(v;) < I(p) and I(u;v;) = I(p) which would lead to u;v; = p.

But we have already p™ = wu;p®v;. So we should have u;v; = p = w;u;

which contradicts the fact that p is a primitive word. Therefore u; = 1 or p.

Similarly v; = 1 or p. Thus z; has p its primitive root, i.e., z; is a power of p
By induction on ¢ we obtain that w is a power of p. O

_ Theorem 13. For any L C A*, the following are equivalent:
(i) L isan AEBL;
(ii) L € L(A) and all the words in L are powers of the same word;
(iii) L = p*™(p™)*, for some p € Q(A) and t,n > 1;
(iv) L€ L(A) and 6 C ép,.

Proof. (i) = (ii) by Proposition 12. (ii) = (iii) by Lemma 11, (iii) = (iv)
was checked by the reader, and (iv) = (i) by definition. O

Now we discuss some relations among AEBLs. For this purpose we fix
an integer n > 1 and p € Q(A). Let ! > 1 be the length of p. Denote
! conjugates of p by p1 = p,ps,...,p;. Further, for any i > 1, we denote
Lij = p;"(p;™)*, Pi;j = Pi,;, the syntactic congruence of L;;, and 6;; =
L A

Proposition 14. With the notations above, we have:

(i) Prj =Py, forany j,5' =1,...,1;
(i) Foranyi>1andj,j'=1,...,l, P;j C Pi_y ; and the inclusion is
strict;
(ili) Foranyi>1andj,j' =1,...,1 with j # j', §;—1,; C P; ;.

Proof. Without loss of generality, we prove P, ; = P11, ¥j = 1,...,l. By
the symmetry of conjugacy, it suffices to prove P, C P ;, V5 =1,...,1L
Now we have Ly = (p™)* and Ly ; = (p;™)*, p = uv, p; = vu for some
u,v € A*. Let (w,w') € P11, we prove (w,w') € P ; as follows:

First one checks that {1} is a single P; j-class, so we assume w,w' € A¥.
For any z,y € A* with zwy € (p})*, we have

(u'u)"'lu:va'u € (uv)"_lu((vu)”)+v C ((u'u)ln)+ = (p")*.

Thus we have (uv)* lusw'yv = (p")° = (uwv)™ for some s > 1, because
(w,w'") € Py and w' # 1. Hence zw'y = (vu)*~Y" € (p?)*. Similarly,
zw'y € (p?)* implies zwy € (p?)*. Therefore (w,w') € P ;, Vj=1,...,1L

Now let ¢ > 1. For (ii) it suffices to prove P;y C P;_y;, for all j =
1,...,l. Suppose (w,w') € P;; and w,w' € A*. For any z,y € A%, if
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(i—-1)n

Twy € p; (p?)*, we have

(uv)”_lu:cwy'v € (uv)““l (vu)“'””((wu)”)"’v = "”(p”)"'
thus (uv)" luzw'yy = pl+en = (yv)(i+9)" for some s > 0 from (w,w') €
P;1. This implies zw'y € p(z 1)“(pj Similarly, zw'y € pgt 1)”( )
implies zwy € ;0('i 1)n( P7)*. This proves P,y C Pi_y;,forall j =1,... ;L.
For (iii) it suﬁices to prove
0i—1,; C Py, Vi# 1,

that is, (PJ sPJ n) € Py, for any k,k' > i — 1. Indeed, if :.cpk”y = plits)n
for some z,y € A* and s > 0, then I(zy) is divided by nl(p) Without
loss of generality, we assume 0 < I(z) JA(y) < nl(p). Since p # pj, we
have 0 < I(z),!(y) < nl(p) which together with the equation above implies
zy = p™ = (uv)™. Thus we have

v = (), y=y(un)’
for some «, 3 > 0 and z',y' € A* with
0< l(mf)‘.! l(y’) < l(p) and :‘L”y' = uv.
Now it s casily seen that n = a +§ + 1 and &/(vu)*"y’ = (uv)(uo)(+s-1n,

Using the equidivisibility of A* and the primitivity of p we have z' = u and
y' = v so that

E

zpf "y = (wv)*u(vw)* "o (o)
— (uv)k'n+a+ﬁ+l

= (u'f))(k +1)n,

which implies :J:p;?'"y € p"(p™)*, because we have k' + 1 > 1. Similarly,
:L"pf'”y € p"*(p™)* implies ar:pf”y € p™"(p™)* for any z,y € A*. This proves
0i—1,; € Pi;1.

For any j = 1,...,I, P;; # Pi_y ; is clear, because L; ; and L;_y,; are
a single classes of the two congruences respectively, but they are different
from each other and have a nonempty intersection. Let j # j'. For i = 2
we have Py ; = Py ji, so Py ; C Py is strict. Now let i« > 2. We have
Pij C Pioyp C Piaj and §;_5; C Piq by the preceding argument.
If P,J = Pj_1,j, then we should have é;_, ; C P;; C P;_y ;. This is not
possible, O

From this proposition we see that P;; € C(L;—y,j:), i.e. the monoid
M(L; ;) recognizes L;_y j,foralli > 2, j,j' = 1,...,I, j # j'. Further, the
following corollary shows that for any ¢ > 1, the languages Lij,5=1,...,1
are recognized by the same monoid too.
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Corollary 15. With the notions above, we have -\

! ! |
() Pri € [)C(Ley), ‘
i=1 |

d=1

for any 1,1 > 1.

|
Proof. The result is trivially true for / = 1 or t = 1. Now assume [, > 1. |
From Proposition 14 P; ; C P;_y j for any ¢« > 1 and 7,7’ = 1,...,] which ‘
implies |
!
Pis € [ Pap = 2C Birsy
i'=1

for all j =1,...,!. Further, for any 7' =1,...,[, thereis 5 = 1,... ,I with ‘
j # 7', since I > 1. So by Proposition 14 again we have |

0ic1,50 C Pij Cp C Py j. 1‘

Taking i = £ + 1, the result follows. O

The next three results characterize the syntatctic monoids of AEBLs.

Proposition 16. Let K be an EBL recognized by the syntactic monoid
M(L) of the AEBL L = p**(p™)* by its nonidentity and nonzero idempotent,
then there is a conjugate g of p such that

, (™), ift=1
K= (t=1)ng mny* i
¢ =M, > 1

Proof. First any w € K is of a length divided by nl(p), because K is rec-
ognized by M (L) by its nonzero idempotent, there are z,y € A* such that
zwy, zw’y € L. Let q be the primitive root of w, we prove, w is of the form
¢™", m > 1. In fact, there are ,y € A* and s > 0 such that zwy = pt+9)n,
This implies that {(zy) is divided by ni(p). Without loss generality, as-
sume 0 < I(z), {(y) < ni(p). If anyone of the equalities in them holds, we
have ¢ = p and w = p™". Now suppose 0 < I(z), I(y) < nl(p). Then
we have I(zy) = ni(p) and zwy = p(t+*)*  This implies zy = p*. Thus
z = p%u, y = vp® for some a, 8 > 0 and u,v € A* with 0 < I(u),{(v) < I(p).
If any equality in them holds, we have again ¢ = p and w = p™". So let
u,v € AT. Then we have uv = pand a+ 8 =1 = n by zy = p*. Form
zwy = plt+9)" we have immediately w = (vu)(t+s=D7  Since wv = p is
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primitive, vu is also primitive so that ¢ = vu and w = ¢™®. Since M(L)
recognizes K by its nonidentity idempotent, w # 1. So m > 1.

If ¢ = 1, we have Pny+ = Pigny+ by the Proposition 14 which means
(g")* is recognized by M (L) by its single idempotent. But now K [)(g")* #
0, this ensures K = (¢")*. If t > 1, we have Pyy € C(Li—q,;) for all § =
1,...,1, this implies that ¢"*=1"(¢")* is an EBL recognized by M (L) because
¢ = pj, for some j = 1,...,I. But we have also K [}¢{*=V7"(g?)* # 0, thus
K = ¢{*=V7(¢")* holds. O

Corollary 17. For any L = p**(p™)*, p € Q(A), t,n > 1, the idempotents
of M(L) which are neither identity nor zero are exactly the images of the
AEBLs of the form (q™)* (whent = 1) or ¢(*=U%(g")* (whent > 1) under
the syntactic morhism ¢, where ¢ runs over all the conjugates of p.

Proposition 18. Any AEBL L is a rational language and E(M(L)) is a
semilattice.

Proof. Let L = p'™(p™)*, p € Q(A), t,n > 1. L is rational, because L =
(p™)* — {p*™™ : 1 < i < t} and the later two are both rational.

To prove E(M(L)) is a semilattice we discuss two casses: (i) I(p) = 1.
One easily checks that E(M(L)) is a chain of two or three elements, (ii)
I(p) > 1. We first prove that, for any ¢,¢' € At with I(q) = I(¢') = I(p)
and ¢ # ¢', we have A*q¢'A*(\L = 0. In fact, if zq¢'y = p™ for some
z,y € A* and m > 1, I(zy) is divided by I(p). Without loss of generality,
assume 0 < I(z),{(y) < I(p). If any one of the equalities holds, we have
z,y = 1 or p which together with {(¢) = I(¢') = I(p) and zqq'y = p™ implies
g = p = ¢', a contradiction. Thus 0 < I(z),!(y) < I(p), and we have zy = p
by l(zy) = i(p). From this we have g¢' = (yz)™~! which implies ¢ = yz = ¢,
also a contradiction. Now p has at least two different conjugates and the
idempotents of M (L) which are neither identity nor zero are exactly the
images of AEBLs consisting of the powers of these conjugates by Corollary
17. The product of any two such idempotents must be zero of M (L) from
the above, that is, E(M (L)) is a semilattice. O

The following proposition shows that AEBLs play a special role in con-
structing any Bls.

Proposition 19. For any L € L(A), L can be uniquely decomposed as a
disjoint union of AFBLs over A.

Proof. Assume 1 ¢ L. For any p € Q(A), if LNpT # 0, it is a BL by
Proposition 9. Further it is an AEBL of the form p**(p")* by Theorem 13.
Denote Qr, = {p € Q(A) : LNp* # 0} = {p; : i € I}. Obviously we have
L = {pt™(p™)* : pi € Qr}, where, pi™ is the shortest word in L\ p].
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That this decomposition is unique and disjoint is clear. The result for the
case that 1 € L is a natural cosequence of the above argument. O

The decomposition of any BL L € L(A) in the above proposition is called
the absolute decomposition, shortened as the AD, of L. Unfortunately, the
AD of any BL is not necessarily effective, i.e., the AEBL components of this
decomposition are not necessarily recognized by the same monoid. For ex-
ample, taking A = {a,b}, the AD of At € L(A) is A* = J{p* :p € Q(4A)}
which has infinite AEBL components of the form pp*, p € Q(A). However,
one easily verifies that A*/d4+ is a T-element idempotent monoid, which
implies that the AD of A% can not be effective. For any language L, @,
defined in the proof of Proposition 19 is called the primitive spectrum of L.
In what follows we prove that, for any BL with finite primitive spectrum, its
AD is effective.

Lemma 20. Let L be a subsemigroup of A*. If|QL| > 1, then |QL| = co. In
particular, an EBL L which is not AEBL has an infinite primitive spectrum.

Proof. It is well-known that the equation 2™y™ = 2P, m,n,p > 2 in A* has
only trivial solutions, i.e., z,y, 2 must be powers of the same word (cf. [4]).
Soif p,q € Qr with p # ¢ and p™,¢™ € L, then p'™¢*" € LN Q(A) for all
t,k>2. 0

Proposition 21. If L € L(A) has a finite primitive spectrum, the AD of L
is effective and M(L) is a finite monoid with commuting idempotents.

Proof. Since L € L(A), it can be decomposed as a disjoint union of some
EBLs: L = [J{L; : ¢ € I} which is effective by definition. Because Qp,
is finite, every L; in this decomposition is an AEBL by Lemma 20. So
this decomposition is the AD of L, because of the uniqueness of the AD.
Further |I| must be finite, so L is a union of finite rational languages with
commuting idempotents which implies that L itself is a rational language
with commuting idempotents from [1] and [5]. O
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