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COMPLETE SCHEME OF ONE-, TWO- AND
THREE-DIMENSIONAL MIHEEV HOMOLOGY GROUPS

A.F. Palistrant, P.A. Zabolotnyi and A.A. Zadoroz’nyi

Abstract. After introductory definitions and theorethical basis of Miheev
homology, survey of results obtained by generalization of all categories of two-
and threc-dimensional crystallographic groups to corresponding homology
groups, is given, as well as subordination scheme for categories of groups
considered.

1. The classical theory of symmetry, completed at the end of 19th century
by E.S. Fedorov and A. Schoenflies, was the basis for scientific research, not
only for crystallography, but for the most of natural sciences. The need for
a more profound knowledge about real crystal and nature surrounding us,
resulted in various generalizations of classical symmetry, mostly exploring
two possible ways.

The first is represented by Shubnikov antisymmetry and its generalizati-
ons — multiple antisymmetry, colored symmetry, colored simple and multiple
antisymmetry, cryptosymmetry, P-symmetry, W-symmetry, etc., and could
be conditionally called physical. Such generalizations do not change the
geometrical nature of symmetry, which is extended by assigning to figure
points several symbols denoting some general properties, and by combining
geometrical transformations with the property changes. Namely, in the case
of antisymmetry and colored symmetries mentioned, the signs ”+” and ”-”,
and the indexes ¢ = 1,2,...,p have a certain non-geometrical meaning re-
garding the space that figure belongs to [1,2,3,4]. In an additional dimension
that symbols could be interpreted geometrically, making possible to describe
certain categories of multi-dimensional symmetry groups by one-, two- and
three-dimensional symmetry and generalized antisymmetry groups.

The other way of symmetry generalizations is represented by Nalivkin
curvilinear symmetry, Miheev crystal homology [11] (”visible symmetry” ac-
cording to Fedorov, or affine symmetry [12]) and Shubnikov similarity sym-
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metry [13]. They are characterized by the generalized equality and symmetry
criteria for figures, resulting from partial or complete leaving of isometrism.
The survey papers on curvilinear symmetry [11] and similarity symmetry
[14] could give to the reader a complete and concise information about the
subject. A deficiency of such works about affine symmetry is the reason for
writing this paper. Its purpose is to consider from a common point of view,
all diverse results obtained by extending different categories of two- and
three-dimensional symmetry groups to the corresponding homology groups.
The analysis of Miheev homology, the survey of some well known and
recent results obtained by generalization of different categories of classical
symmetry groups, the construction of a complete scheme of one-, two- and
three-dimensional homology groups, and the explanation of new-introduced
symbols (different from [11]) for such groups, are the topics of this paper.

2. Concisely, the theoretical basis of Miheev homology theory [11], derived
from [15], is the following:

A discrete group H of affine transformations of a finite figure F', that
transform F' into itself, is called the homology group of F', and each trans-
formation h from H is a homology transformation of F. The homology
group of any finite figure is a point group, and its elements are equiaffine
transformations.

For a finite figure with the symmetry group 5, the results of the action
of an affine transformation ¢ on 5 are:

1) The elements of symmetry of S (rotation and rotary-reflection axes of
order k, inversion center and mirror planes) are transformed into the homol-
ogy elements of H (perpendicular circular G or perpendicular elliptical py,
oblique circular v or oblique elliptical A; homology axes of order k, per-

pendicular circular G; or perpendicular elliptical uy;, oblique circular vg;

or oblique elliptical Ag; rotary-reflection homology axes of order &, inversion
center ¢, perpendicular m or oblique 7 reflection planes, respectively);

2) Every s from 5 is transformed into a homology transformation h of
the new figure according to the rule A = gso™!, and the set {osc~!} with ¢
given, and when s exausts all the discrete group 5, makes the discrete group
H,i.e. the action of an affine transformation on a discrete symmetry group
of a finite figure results in a homology group.

By using the corollary of Maschke theorem [16], it is possible to prove
the reverse: every homology group H of a finite figure we could obtain
from a certain point symmetry group 9, if we transform it by some affine
transformation o, i.e.

H=0850"" 1)
The group S is called the generating group of H.
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A homology group is called crystallographic if its generating group is
crystallographic. The set of all homology groups with the same generating
symmetry group is called a homology class, generated by it. The generating
symmetry group always belongs to its homology class.

Two homology groups H and H' are equal if there is such isomorphism
between them, that their mutually corresponding transformations are equal,
regarding from homology point of view.

According to this:

1) The set of symmetry elements characterizing group .5 consists from
the same number of elements as the set of homology elements characterizing
group H, derived from 5 according to the rule (1);

2) Equal homology groups may appear only in the same class;

3) Symmetry transformations of finite figures are the particular case of
homology transformations, and symmetry groups of finite figures are the
particular case of homology groups. _

In transition from finite figures to space the situation is more compli-
cated, because it is not possible to derive every discrete space group of affine
transformations from some space symmetry group by a homogenous defor-
mation; this proves the example of groups interpreting in Euclidian space
pseudo-Euclidian Fedorov groups [17]. )

Plane or space affine transformation groups are a large class. This shows
the following example: let us consider any two-dimensional latice with two
arbitrary points, chosen in such way that the vector defined by them is the
basic vector of this lattice in its dirrection. Then the line defined by these
points is for the lattice an oblique reflection axis. Namely, thanks to the
high degree of freedom for the choice of the basic parallelogram, it could be
always taken that way, that the points mentioned are its toward vertices,
and in every parallelogram the homology axis is incident to them. Also, if
the first chosen point is fixed, the other can be chosen in an infinite num-
ber of ways, only respecting the condition that the corresponding segment
cannot contain any other lattice point. This means, through every point of
two-dimensional lattice there is an infinite number of oblique reflection axes,
and such collection of homology elements it is not possible to obtain by a
homogenous deformation of a collection of symmetry elements correspond-
ing to any two-dimensional Fedorov group. Analogously, by using a basic
parallelograme of a three-dimensional lattice, it is possible to prove that
through every point there is an infinite number of rotation homology axes of
order 2,3,4,6, and such collection of homology elements it is not possible to
obtain by a homogenous deformation of symmetry elements corresponding
to any three-dimensional Fedorov group. It is necessary to introduce addi-
tional restrictions for the transformations of regular point systems, in order
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to explore first even a part of discrete plane or space affine transformation
groups.

The set I' of space affine transformations, obtained from some Fedorov
group ¢ by an affine transformation o, according to the rule

I'=0cbc™! (2)

is called a space crystallographic homology group, and each ¥ € T’ (where
¥Y=0fo"!, f € ®)is called a homology transformation of space. From the
discreteness and homogeneity of @ result the same properties of I'. The set of
all space crystallographic homology groups, derivable from a given Fedorov
group @ by all possible affine transformations o according to the rule (2) is
a homology class with the generating group ®. Each space crystallographic
homology group has a unique (to the equality) generating Fedorov group.

Every Fedorov group @ is resembling to one from 32 crystallographic
point symmetry groups Gap, and contains three-dimensional translational
subgroup T, i.e. ® is an extension of its translational subgroup by a crys-
tallographic point group W: &/T ~ W (where W is a group of "rotations”,
belonging to the transformations of group G [2]). By the action of affine
transformation ¢ to the group @ according to the rule (2), its translational
subgroup is transformed into the translational subgroup of the group G,
and the point group W corresponding to & is transformed into one of point
crystallographic homology groups H, occuring as a group of "rotations”, be-
longing to the transformations of the group I'. In such a case we will say that
the group T is resembling to the group H. Therefor, in order to generalize
Fedorov groups G3 to homology groups Hj, we need first to study all point
crystallographic homology groups Hsp resembling to them.

3. The survey of derivation of all categories of finite and infinite two- -

and three-dimensional crystallographic homology groups will begin with the
space groups Hjz. To their large derivation proceeded studies, extending and
making more exact Miheev affine symmetry theory and his results of the
derivation of groups Hsg [11].

The derivation of point crystallographic homology groups Hsg is real-
ized in [14,18] by all possible affine deformations of crystallographic point
groups G3g according to the rule (1), using the distribution of G'3y into three
classes: axial, central and planar [19]. The corresponding homology groups
are named in the same way. By using geometrical arguments, it was proved
the existence of exactly 215 (and not 218, as in [11]) groups Hag, consisting
of 70 axial, 70 central and 75 planar groups [14,18]. The list of 215 Hsg is
given and compared with results [11] in the first chapter of the dissertation
[15]. The analogous list of 1848 space crystallographic homology groups Hs,
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consisting of 570 symmorphic, 408 hemisymmorphic and 870 asymmorphic
groups, derived by using all affine deformations of Fedorov groups Gs, is
given in the second chapter of the same dissertation.

4. The survey of derivation of the finite and infinite plane-linear crystal-
lographic homology groups will begin with band groups. Before solving this
problem, let us remain that symmetry groups of finite bands consist from
the complete symmetry group of rectangular parallelepiped and all its sub-
groups. That groups preserve invariant in 3-space a two-dimensional plane
and a line with the invariant point, laying in this plane, i.e. they are sym-
metry groups of the category G210, so they could be modelled by symmetry
and antisymmetry groups of finite frizes Gl,q, if the signs ”4” and ”-”
signed to the points of finite friezes are interpreted as the position of the
point with regard to the invariant plane (above-below) [20].

Because by homology and antihomology groups of finite frizes Hl, can-
not be modelled all the homology groups of finite bands H3z10, the groups
mentioned are not sufficient to obtain homology groups having oblique axes
or planes, which are in a slanting position with regard to the invariant plane
of a finite band. The reasons for this are following: e.g. to the rotation
around 2-center in a homology group of finite friezes Hj1o corresponds the
rotation around 2-axis perpendicular to the invariant plane in the group of
finite homology bands Hsz10; to a line reflection with invariant homology
axis corresponds the plane reflection with invariant homology plane, which
is perpendicular to the invariant plane, etc.

All homology groups of finite bands are derived in [20] from 45 their axial
homology and antihomology groups given in Table 1. Generating symimetry
groups Gagyp are denoted by International symbols, and the generated ho-
mology groups Hazig are given by the set of homology elements, obtained
from the elements characterizing symmetry group S by the action of the
transformation &, according to the rule (1). In the table, the symmetry
groups are denoted by S, and the corresponding homology groups by H
(H =cSo™1).

as-

Table 1: Point subgroups of infinite band groups

S H=080c"1
1;211;121; 112 1; Go11, Ag11;1Ga1, 1Xe1511Gs, 11
222 G2G2Ga; AaraGa; AaGadg; Gada Ao Aada g
t;2/m11;12/ml,; i3 Gafmll, Ag/m11;1Gy /m];
112/m; mmm 12y /71,11G, /m, 110y / pi; mmm, 7Tm, Tmm, maT, *AT
mll;1ml;1lm mll,w11;1ml,1x1; 11lm, 117

mm2 mmgs, *T Gy, TmAy, MT Ay, TTAg
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m2m mGam, TAym, TG T, mAym, T AyT
2mm Gamm, Gamm, Ay, Agwm, Ay

The orientation of homology elements in the notation of groups Hss1g
corresponds to the same rules for symmetry groups G510 in International
symbols. In symmetry groups, the line / denotes the perpendicularity of
elements adjacent to it, but in homology groups such intersecting elements
are not always perpendicular. The perpendicularity holds only for elements
(3 and m.

In the list of 45 groups of the category Haso are included all the homology
groups of the category Hsjp, because the groups of one-sided finite bands:
1, 11G3, m1l, w11, 1ml, 171, mmG, and T7Gy, are the copy of homology
groups of finite bands, if in the groups mentioned G5 is a 2-rotation center,
and 7 and 7 are corresponding perpendicular and oblique reflection in ho-
mology axis. That way, 5 symmetry groups of finite bands Gai: 1, 2, ml1,
Im and mm (the symmetry group of a rectangle and its subgroups), gener-
ate 8 homology groups (the homology group of a complete parallelogram of
a general form, a rectangle homology group and all their subgroups) [2].

Naturally, the translational subgroup of an infinite band group is one-
dimensional, because it preserves invariant a plane in space and a line be-
longing to the plane, i.e. it is a symmetry group of the category Gas [1,2].
Hence, the existing 1-1 correspondence between symmorphic groups of this
category and their point subgroups Gagqg, holds as well for the correspond-
ing homology groups. Therefore, if we write to the every symmetry group
symbol § from Table 1 the translational subgroup symbol P on the left, we
will obtain 16 symmorphic symmetry groups of bands [1,2]. In transition
from symmetry groups S to homology groups H = ¢ § o~ !, the translational
group P js transformed into the translational homology group, so the same
procedure results in 45 symmorphic band homology groups [20].

Because every affine transformation of a figure is 1-1 and preserves col-
linearity, to generating symmorphic, hemisymmorphic and asyminorphic
symmetry groups correspond generated symmorphic, hemisymmorphic and
asymmorphic homology groups, respectively. This means, that symmmetry
elements of generating groups are transformed into the homology elements
having the same name [20]. From 15 hemisymmorphic and asymmorphic
symmetry groups of bands are derived 57 hemisymmorphic and asymmor-
phic homology groups of bands [1,2,20]. ,

Their complete list is given in Table 2. The symbols m, 7, G and A, are
used in the same sense as before. A glide reflection plane is denoted by a,
and its transform- a plane of oblique glide reflection by a. In the same way,
by G2, and Az, are denoted a perpendicular and oblique axis 21, respectively.




Complete scheme of one-, two- and three-dimensional... 55
This way, from 31 generating symmetry groups of bands (G321 are derived
102 homology groups of bands Hss;, where in this number are included the

generating symmetry groups as well.

Table 2: Band groups

o H =o08c"1
plal;pllal; plal,plal;pllae, plla;
pl2/al;pli2/a plga/al,plia/al; pllGy/a, plliy/a
pma? pmaGy, pmaly, prads, praGse, proads
pmla pmGaa, pimAga, prise, prGaoa, priga
p2ima pGa, am, pGa, Ta, pAa, ma, pho, To
paa pGraa, pGaraa, phraa, phyaa, phyaa

pmma PIMMA, PTTQ, PTME, PIMTQE, PTTR
pmam pIaAa, Prom, prawT, PImoT, ProT
pmaad PMGG, PT A, PTAQ, PINOCQ, PTOQ

p2111; p2yml pGa, 11,pA, 11, pGa, /m1l, pAg, /711
p2122 pGQIGZGg,pGQI )\gAz,p/\gngr\g,pAglz\ng ,px\gl AgAg
p21am pGa, am, pAe,am, phy, am, pGa, am, pAy, on

Let us notice that from 102 band groups Hsgy is possible to separate all
homology groups of infinite friezes Hj, because the symmetry groups pl,
pl12, pml11, plml, plal, pmm2 and pma2 of one-sided bands are the copies
[2] of 7 frieze groups Ga1, so the 12 gomology groups generated by them,
without rotation axes and reflection planes in a slanting position with regard
to the invariant plane of a band, exaust all the diferent homology groups of
infinite friezes Hoy.

5. By using tablet homology groups Hjpg [21], preserving invariant in
3-space a plane, a line and their intersection point, it is possible to solve
two problems: to generalize rod symmetry groups (three-dimensional line
groups) GGa1, the groups without invariant points, having invariant 3-space
and a line [1,2] and to generalize layer symmetry groups (three-dimensional
plane groups) Gsz, the groups without invariant points or lines, having in-
variant 3-space and a plane, in order to derive homology groups of rods Hz;
and layers Hgy, respectively.

For this, according Section 2 of this work, we need to transform by all
possible affine transformations ¢ according to the rule (2) the rod and layer
symmetry groups S. This way, every resembling point symmetry group 5’ is
transformed into the point homology group H = ¢5'¢~!, resembling to the
corresponding infinite homology group H = ¢S¢~!. The point subgroups
(33, which are copies of the crystallographic symmetry groups of tablets
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G320, coincide to the analogous symmetry groups of finite rods G319, occur-
ing as point subgroups of the groups (G3;. Hense, the rod Hs; and layer Ha,
homology groups are resembling to the tablet homology groups Hasp.

According to this, the groups Hiyy are the basis for the solution of the
problems mentioned. All of them are derived in [21] by using 145 tablet
axial crystallographic homology and antihomology groups, distributed in
subclasses, and listed in Table 3. The tablet symmetry groups Ggqo are
denoted by International symbols, and the generated homology groups are
denoted by the corresponding set of homology elements characterizing them.
If a homology group is characterized by homology axis of order k and by the
set of k homology 2-axes of the same kind intersecting it, or by the same
main axis and by the set of £ homology planes of the same kind, the symbol
of such homology group could be reduced to the form, analogous to the
International symbol of the generating group (e.g. G422 instead (42222,
A422 instead 242222, Aywm instead Mywrow, ete.).

In the list of Hjyp (Table 3) are included 21 crystallographic homology
groups of one-sided rosettes Hyg, derived in [22]. They are connected with
the groups H3g in the same way, as they are connected the homology groups
of finite friezes Hjqg to the homology groups of finite bands Hsayg [20,21].

Table 3: Catalogue of tablet symmetry groups and their generalizing homol-
Ogy groups

Tablet groups

Singony s H=g5s"1
T 1;7 1;1
112; 121 11Gg, 112g; 1G=1, 1A21
M mll;11m mll, 711;11m, 117w
112/m; 2/mi11 11Gy /m, 11 /7; G /m11, Ag /711
222 GGGy, AaGaka, Gadada, Aa g
(0] mn2 mmGy, mwAg, trGy, WAy
m2m mGsm, 7Gem, mAgw, wAgm, TheT
mmm mmm, TrMm, TINT, TAT
4,1 G‘l;’\‘ii”‘lr”‘q;
Gai, Aaiy a3, Va;
422 G1GaGa, AaGaAz Az A, Aahadg,
_ N HaGaAaGa Az, adady, vaGadaAs A, vada g
4m2(= 42m) GaimGy, AgimAgmAha, Aa; TAa G,

Agimha, paimAg, pai TGy, g TAg,
V4,-m)\27r/\2, I/4,‘1I')\2 TI’GZ s 94,-7r/\2
Q dmm Gamm, Aymaww, Ay,
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4TV, L4 T, VATMTTT, V4TPE
4/m Gafm, Aq[7, pafm, vy fm
4/mmm Gy/mmm, Mg famanrm, Ay /nmT,
pa/mmamz, pa fmaw, vafTmraw, vg frTT

3:3 G3,As, i3, va;
Gai, Agi, 3i, Vai
R 321(= 312) GsGa, A3GadaAe, Az,
_ N u3Gaiaka, pade, r3Gaiahg, vahs
3ml1(= 31m) Ggiml, Agimwm, Agiwl,

MHgimTT, f3i WL, pgima,
faiwl, vz;mamw, vy wl
3ml(= 31m) Gaml, Agmnw, dawl,
UamTT, vamaTw, vamwl, paml

6 G, As, 6, Vs
H 622 G G2Gq, AgGaAadahada A, AgAhada,
3 peGaAadaGaAzAg, pehadae, Ve Gaizdadadada, g Ay
6 Gei, Agiy iy Vai
62m(= 6m2) Gz /mmmm, Agfrmamiz oAz, As/TrrnGalz e,
AsgfrrmmwAadadg, pa/mmrrGy gy, pa/mrrwAadade,
vz frmmrwAaig Az,
vy [mrawGaAghg, v3/TrTTA2 A2 A2
6/m Gg/m, Aefm, pefm, v [T
6/mmm Gg/mmm, \g/mmrranT, AgTTT,
pi/mrr, pg/mmarman, pg/TmrwTwTT, Ve [TET
6mm Gegmm, Agmarram, A6,

e MTTMAT, fgTT, VgMTTTET, VgTT

Because the translational subgroups of groups Gs; and (31 are one-
dimensional, the derivation of symmorphic rod homology groups is analogous
to the derivation of the band homology groups. If in the symbols of groups
from Table 3 on the left we write the symbol P, denoting a translational
subgroup, from the second coloumn we will obtain 31 symmorphic symmetry
group of rods [1,2], and from the third coloumn 145 symmorphic homology
groups of rods, derived from the generating symmetry groups according to
the rule (2). E.g. the rod symmetry group pmm2 generates 4 homology
groups of rods: pmmGy, pmm Ay, prrGa, prwAs.

Each of 13 hemisimorphic symmetry groups of rods: pe, p2/cll, pee2,
p2em, p3e, pice, pbee, peem, pa2e, pbe2, pd/mec, pb/mec, p3e [1,2], generates
the same nubber of groups as the corresponding generating symimorphic
group. E.g. the group pee2 generates 4 hemisymmorphic homology groups
of rods: peeGy, peys, pyyA2, pyYG2. In their symbols, by ¢ is denoted a
plane of perpendicular glide reflection, and by 7 an oblique glide reflection
plane. ‘

That samples show how to obtain, by using "rotation” groups given in
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\
Table 3, belonging to the transformations of 13 hemisymmorphic groups ‘
mentioned, the complete list of all generated 78 hemisymmorphic homology
groups of rods. ‘

Each of asymmorphic symmetry groups of rods p2; and p112;/m generate |
two homology groups: pGy, and pAy,, pl11Gy, /m and pllA,, /7, respectively. |
Each of 13 groups p3, (k = 1,2), p4, (r = 1,2,3), p6, (¢ = 1,2,3,4,5), ‘
p2221, p4y /m and p63/m generates 4 homology groups, and each of 10 groups ‘
p3i2 (k =1,2), p4:22 (r = 1,2,3) and p6,22 (¢ = 1,2,3,4,5) generates 5
homology groups, each of the groups p6yme and p6s/mem generates 9, and ‘
each of groups pd;me and p4/mem generates 10 homology groups.

Hence, 31 asymmorphic symmetry group of rods generate 174 homology |
grups. As the final result, we may conclude that they are 397 crystallo- ‘
graphic homology groups of rods H3;, where in this number are included 75
generating crystallographic symmetry groups of rods Ga;.

The derivation of layer homology groups Hjs is more complicated then
the derivation of rod groups, because the translational subgroup of layer
groups is not one-dimensional as the translational subgroup of rod groups,
but two-dimensional [1,2]; this results in more diverse posibilities for differ-
ent positions of translational vectors from the translational subgroup, with
regard to the other homology elements.

The property mentioned is essential, because implyes that two layer ho-
mology groups are equal, if there is such isomorphism between them, that
their mutually corresponding transformations are equal from the point of
view of homology, and that the mutually corresponding homology elements
are equally placed with regard to the translation vectors of their translational
subgroups [15,20].

If in Table 3 to the each of 36 groups in the second coloumn and to
generated groups in the third coloumn we write on the left the symbol P,
and to the symbols of 7 groups of monoclinic and orthogonal syngony: 121,
mll, 2/mll, 222, mm2, m2m and mmm in the same coloumns symbol
C', we will obtain 43 symmorphic symmetry groups of layers [1,2] and 223
symmorphic homology groups of layers generated by them.

In transition from the symmorphic to hemisymmorphic groups, it is pos-
sible to conclude that 16 hemisymmorphic symmetry groups of layers [1,2]
generate 80 hemisymmorphic homology groups. Analogously, in transition
from the symmorphic layer groups to asymmorphic, 21 asymmorphic sym-
metry group of layers [1,2] generate 111 homology groups of layers.

The 80 symmetry groups of layers (43 symmorphic + 16 hemisymmorphic
+ 21 asymmorphic) generate 414 homology groups of layers (223 symmorphic
+ 80 hemisymmorphic + 111 asymmorphic).

As a reliabile orientation for tabulating groups in question, we will show
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the number of homology groups generated by each symmetry group of layers.
Trying to be concise, instead of complete symbols of generating layer groups,
we are giving only their ordering numbers, according to the table P3 [2],
where the groups (3, are given together with their corresponding plane
antisymmetry groups G%.

The layer groups P1 and P1 (as well as the analogous rod groups) do
not generate nontrivial homology groups. Each layer groups, denoted in
Table P3 [2] by the ordering number: a) 3,4,...,18 generate two homology
groups each (16 x 2 = 32 homology groups); b) 19, 20, 22, 23, 33, 34, 37,
39, 41, 44, 46, 47,..., 52, 65, 73, T4, 75 generate 4 homology groups each
(22 x 4 = 88 homology groups); c) 21, 24, 25,...,32, 35, 36, 38, 40, 42, 43,
45 generate 5 homology groups each (17 x 5 = 85 homology groups); d)
67, 68,...,72 generate 7 groups each (6 x 7 = 42 homology groups); e) 76,
77,...,80 generate 9 grpups each (5x 9 = 45 homology groups); f) 53, 54,...,64
generate 10 groups each (12 x 10 = 120 homology groups).

Their distribution according to the classes and families it is possible to
follow according to Table 4, where for example, are given certain generat-
ing symmorphic and not-symmorphic groups with the common "rotational”
subgroup belonging to their transformations, and their generated homology
groups with the ”rotational” subgroups belonging to the same class. The
symbols G, Ak, fik, Vi, m and © have the same meaning, as in Tables 1,2,3.
By the symbols a, b, n in Table 4 are denoted (according to International
symbol rules) planes of perpendicular glide reflection, with different transla-
tion vectors, and by symbols «, 3, v, in the third coloumn are denoted the
corresponding planes of oblique glide reflection.

Table 4: Layer groups

S H=050""
Pm2m PmGqym, PmAym, PnGamw, PrAsw, PrAsm
Pm2a PmGqya, PmAsa, PrGoa, Prhoa, PTAsa
Pu2b PbGyb, PbAsf3, PAGo3, PAA 3, PAAsD

Pm2.b PmGay, b, PmAy, 8, PGy, 3, P Ay, B, PrAz b
Pb2ym PbGy,m, PbAy,w, PBAy m, PBGy m, PBAy,m
Pb2ia PbG,a, PAAy,a, PbAy o, PAGHy a, PB A,
Pm2in  PmGy, n, PmAy v, Pry n, PrGy v, Prhy v
Cm2m CmGam, CmAsm, Crdom, CnGam, PrAem
Cm2a CmGya,Cmha, CTra, CrGra, Oy

From the given layer groups Hj, it is possible to separate all 39 crys-
tallographic infinite two-dimensional homology groups Hs, derived in [23],
because they are connected with layer groups Hj; in the same way as the
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{rieze groups H3; with band groups H3y;. By the two-dimensional homology
and antihomology groups H; discussed in [23] are modelled not all, but only
189 layer homology groups, without homology oblique elements in a slanting
position with regard to the invariant plane of layer.

The number of non-isomorphic groups in each of the categories mentioned,
according to Section 2 of this work, will be the same as the number of non-
isomorphic group in the corresponding generating categories.

6. By the derivation of rod H3; and layer homology groups Hss it is
completed the study of all categories of two-dimensional and three-dimensio-
nal crystallographic homology groups. The one-dimensional homology gro-
ups of line segments Hqp and lines H; are identical with one-dimensional
symmetry groups Gqp and Gy, respectively.

As we can conclude from the works [11,15,18,20,21,22,32] and from this
work, the numbers of the homology groups obtained in the corresponding
categories are: 2(2) Hyo (= Guo); 2(2) H; (= G1); 21(9) Hao; 39(17) Hy;
8(3) H210; 12(4) 11721; 215(18) H30; 1848(219) I‘Ig, 145(14) Hau) (=H32{));
397(36) Hai; 414(34) Hag; 45(4) Higio; 102(6) Hsz21, where the numbers of
non-isomorphic groups are given in parentheses.

Figure 1: Subordination scheme for all categories
of one-, two- and three-dimensional homology groups.

Figure 1 (constructed in the same manner as Fig. 15 [3]), represents the
subordination scheme for all categories of one-, two- and three-dimensional
homology groups. The simple arrows denote that groups of other category
are subgroups of groups belonging to first, and double arrows indicate that
the other category is included in first,
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