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PRODUCT OF TURAN QUADRATURES FOR
SPHERE, CONE, CYLINDER AND TORUS

Miodrag M. Spalevié

Abstract., We continue the construction of a cubature formulas for ap-
proximate calculations of multiple integrals, which is starting in [8], for
regions: the Sphere, the Cone, the Cylinder, the Torus, by using combi-
nations, or products, of the generalized Turdn quadratures (see [4],[5],[7]).
Here s € N U {0}. The particular case s = 0 is given in [1],[12]. Some
numerical examples are included.

1. Introduction

The purpose of our consideration is a construction of cubature formulas,
for approximate calculation of multiple integrals, by using the generalized
Turdn quadrature formulas, i.e., their products. A way for determining
the nodes and the coefficients of the generalized Gauss—Turan quadrature
formulas

(L.1) / pi(8)g(t) dt = Z 3 Aig(r,),

i=0 v=1

(1.2) f (e @2 S [ ®(a) + BgPG)] + 303 ALgO(r,),

k=0 i=0 r=1

is given in the papers [4], [5], [7]. The degree of exactness of the formula
(1.1) is 2(s + 1)m — 1. Formula (1.2) is the generalized formula of Lobatto
type. The degree of exactness of such formula is 2(s+1)m+2p+1. ¢ — p1(1)
is a nonnegative weight function for an interval [a,b] C R.
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An iterative process for computing the coefficients of s—orthogonal poly-
nomials (whose zeros are the nodes of the formula (1.1)) in a special case, |
when the interval [a, b] is symmetric with respect to the origin and the weight
function is an even function, was proposed by Vincenti [13]. He applied his ‘
process to the Legendre case. When n and s increase, the process becomes |
numerically unstable.

In [4] (see also [2]) is given a stable method for numerically constructing
s—orthogonal polynomials and their zeros. In [5] was given a numerical
procedure for finding the coefficients in (1.1). Some alternative methods
were proposed in [11] (see also [10]) and in [2]. |

A way for determining the nodes and the coefficients of the formulas (1.2) ‘
was given in [7]. ﬂ

By using the results performed in [4],[5],[7] we can computing a multiple
integrals for some regions of integration by using a products of formulas (1.1)
or (1.2). As basis for our construction we use the results from [1], [12]. We
shall make a generalization of “product” formulas obtained using combina- |
tions of Gauss quadrature formulas, by replacing these to the generalized ‘
Turdn quadrature formulas. “Product” formulas in [1], [12] are the spe- |
cial case (s = 0) of the “product” formulas which shall be construct here
(s € N U{0}). Our formulas contain the values of integrand in nodes and
the values of a partial derivatives of order not exceeding 2sn. ,
50, because of a much number of pieces of information in nodes, we re-

duce the number of nodes of cubature formulas and we hold their degree of
exactness.
Hence, we cosider the cubature formula

(1.3)
N .
f w(ml,. ..,:Bn)f(ﬂ.'l, ,.’L‘n) dﬂ?} = 'dﬂ:n = ZZBijf(J)(V'i.ls 5 ‘71}’5,'”)
R,

=1 jeJ

which can be construct by using the combinations, or products, formulas for
regions of dimensions < n.

w(x1,...,2,) is a nonnegative weight function which is defined on region
R, C E,, where E, is n—dimensional Euclidean space. B;; are coefficients
of cubature formula (1.3) and

N f(win,y.. vin)

. >
Bu . .. 0x3

f(j)(l‘/,"l, ceag Vi','n) =

t=1,...,N. j € J is the multiindex with the nonnegative integer compo-

are a partial derivatives of the integrand f in nodes v; = (v41,...,%; ), for
nents j = (j1,...,Jn)s |#| = j1 + -+ + jn. In the general case: J = J(4);
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jp € Jis 1= Lyr g By B DyuaengBy 200l Ty = 0T, ven B dy By &
{31,32,...,57,1}; s € NU{0}, Il =1,...,m. This case can be consider by
using the results from [3],[6]. We shall assume, not reducing generality, that

JiE2de= so =y = 0,12 o s28) € NY {0}

Hence, for multiindex j holds § = (f1,...,Jn) € J = Jy X -+ x Jp, = JJ.

We cannot construct “product” cubature formulas (1.3) for an arbitrary
region R, C E,, but we can to construct such formulas for the “nice” regions
which are often encountered. These include the n—cube, the n—sphere, the
n—simplex, and various cones, pyramids, prisms, cylinders, and so forth.

In most cases n one—dimensional formulas (1.1) or (1.2), each of degree
of exactness d, are combined to give a formula (1.3) of degree d for R,,. The
regions we consider do not exhaust the regions for which product formulas
(1.3) can be constructed, the number of such regions is large. Here, we shall
consider the formulas (1.3) for regions which are considered in [1] and [12]:
the Sphere, the Cone, the Cylinder, the Torus (see and [8], [9]).

For regions such as the n—cube, n—sphere, n—simplex one can construct
product formulas (1.1) or (1.2) each of which use, say, m—points, (2s + 1)-
values of derivatives of integrand in node and have degree d (see and [8], [9]).

In all the cases in which partial derivatives of integrand are relative sim-
ply computing, “product” cubatures (1.3) are of particular importance for
approximate calculation of such integrals.

2. The n—Sphere

Let R, be a bounded n—dimensional region which contains the origin ¢
and let Y,, be the surface of R,,. We assume that R, is starlike with respect
to #. By this we mean that each ray which begins at # intersects Y, in
exactly one point. We assume we are given a formula of the type (1.3) of
degree d for V,,:

Ny
(2.1) fy w1, ..., 2p)do =2 2 Z Bg-k)u(k)(pj,l,...,,u,j',,,).

(We do not assume that the points in this formula lie on Yy, but it is more
desirable if they do.)
Let r be a real number > 0 and define rY,, = {rz| z € ¥, }. Then

/Y gt as? . . A da = / " Hrzy)* ... (r2,)* do
T n

n

‘= =14l / z$1x3? . . 22" da,
Y,
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where a = (aq,...,@,) is multiindex and |a| = &) + - -+ + a,. Therefore

1
/ mfl...mﬁ"dwl...dacnzj [/ m{“l...wﬁ"da] dr
i 0 Y,

(2.2) ;
:/ Tn_1+|“|dr/ 21 o thrda,
0 Yo
Let
1 m  2s ]
(2.3) j Uy dr 2 303 A b0 ()
0 v=1 i=0

~ be a formula of the type (1.1) of degree of exactness d. As an immediate

consequence of (2.2), by using the formula (2.1), we can construct the formula
(1.3) of degree d for region R,

/ flz1,.. 0 20)dey .. day,
Ry
(2'4) m No

= ZZ Z Ai‘VB_gk)f(l)(TV”j,l"'-a'rmu'j,n)a

v=1j=1I=(i,k)€Ix K

where . '
al+|k|g(""m Hitseeos I-‘j,n)
dridzt .. Jakr

f(”(ruﬂj.la seay Twu'j,n) =

and g(r,21,...,2,) = f(rzq,...,r2,). Multiindex [ is defined as the pair
(3,k) = (4,k1,...,ky), where ¢ € T = {0,...,2s}, the components of k =
(k1,...,kn), k € K, are nonnegative integers from {0,...,2s}, and |k| =
kl +k2++kn

It is easy to modify this result to construct integration formulas (1.3) for
the shell

(2.5) Ry ={rz| z€Y,, 0< g1 <7< g3 < o0}

by replacing the formula (2.3) with

(2.6) j:z L h(r) dr & Z Z Aiph(r,)

v=1 i=0
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in (2.4). Then (2.4) is the formula of degree d for RShe!!, We are especially
interested in constructing formulas for the n—spherical shell S;he“

&5 pi<aitaytota; <o 0< o< <o,
and the n—cubical shell Czhell
(2.8) 01 < |z5| < o2, i=1,...,n, 0< 01 <02 < 00,

from formulas for their surface of the type (1.3).

In [8] we are constructed the cubature formula of the type (1.3) for the
surface of the unit of n-sphere U,, in n—dimensional Euclidean space. By
using the procedure of obtaining of the cubature (2.4), and the corresponding
formula from [8] and (2.3) we can construct the cubature formula (1.3) for
the approximation of integral over solid of n—sphere .5,

(2.9)

flz1,...,2n)dey -+ - day

Sa

2m(s+1) 1 2s

o (3-|-L1)m. Zl Z Z A,;,,,X

/1 yaeey V“__2=1 i,i],....in_2=0

(n—3) (0) (3,81 10errbn—2) (v1) {(vn—2) Tj
X Ah,yl e Aﬁn—z,l’n—zF (TV’ 1 s e 0¥noa s (3 + l)TTL ’

where

Flisityeonin=2) — olPlF
~ Orid(cos )i ... B(cosp,_g)in-2’

n—2
p:(isilu sin—g)a |p|:?’+z?'k
k=1

For the computing an integrals over the n—spherical shell, we use the formula
(2.9) which is obtained by using the corresponding formula from [8] and (2.6).

Now, we shall construct the formula of the type (1.3) for the unit n-
sphere S5, which has some other form of the formula (2.9) (the both formulas
belong to so—called group “spherical product” formulas (see [12])). Hence,
our purposse is the constructing of the formula (1.3) for the unit n—sphere
defined by

Sn:{a::(ml,_._,mnn m%+$%+...+$i <1).
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To do this we need to transform a monomial integral
(2.10) / ryt'ed? .zl day - dey,
Sa

so that it separates into the product of n—single integrals. This happens in
n—dimensional spherical coordinates.

There are many ways to define n-dimensional spherical coordinates, one
of these we have used in the construction of the formula (2.9). Here, we use
the definition (see [12])

z1 =rcosf,_1cos8,_3...cosb, cosb,
zy =rcosf,_1cosb,_5...cosfysin b,

3 = rcosf,_qcosb,_5...sinfy,
(2.11)

Tp—1 =rcosb,_qsiné,_,,

Tp =Tsinl,_q.
Thus we use the n new variables which satisfy 61,...,0,_; € [-7/2,7/2],
and

re[-1,1].
The Jacobian of transformation (2.11) is

J = 7'”_1(cos 0r—1)""%(cos 8,—2)" ... (cos83)%(cos 02),

and therefore (2.10) transforms into the product of the following integrals:

/2
(2.12.1) / (cos 8 )% (sin 6 )** db,,
—m/f2
w2
(2.12.2) / (cos 83 )(cos B )2 (sin 8)*2 db,,
—m/2
w2
(2.12.n-1) / (cos 6'“_1)”_2((:05 H,,,_l)ﬁ"“(sinf)n_l)a” db,._q,
—mwf2
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1
(2.12.n) / 7|~ 1rP dr,
-1

Br=ay+-Fay k=2,...,n

Now we discuss the one-variable formulas needed for these single integrals.
We assume that these are to be the Turdn quadratures (1.1).
Consider the transformation

yr = sin O, 1 —y? = (cosb;)?,

2.13
( ) dy, = (COS ﬂk) déy, do, = (1 - yi)_llz dyy.

For k =1,...,n — 1 we consider the formulas of the type (1.1) of degree of
exactness d,

1 2s m
(2.14.k) /1(1 ) g (g dy 2 > > Aﬁff,,kg‘”"(yk,w)-

=0 =1

The formulas (2.14.k), k = 1,...,n—1, are Gauss—Jacobi-Turdn quadrature
formulas. For k = n we consider the formula of the type (1.1)

1 2s m
(2.14.1) / Py dr 2 SO Y AR (),
= :

i=0 v=1

of degree of exactness d, too.
Now, we can write the formula of the type (1.3) for S, in the form
(2.15)
fler,e. 2y ) dzy <o~ day
Sn
S S (n) 4(1) (n=1)
-
Z Z A%’.”;f A'!'l.lfl e Ain»—h”n—l X

U,Ul,...,V,,_1=1 i,il,...,in_lzo

f(t',t'u--.,in-l] (T‘y\/l _ yfzt-—l,y,,_l e \/1 — y%,ulﬂ . -a"'uyn—l,uﬂ_l) ,

104

X

where

f(’i1i1;...,in—1) (TV {1 — /yi—l,l/n_1 A - y%‘ul, o _,'puyn_l’un_l) i

. 6i+i1+m+i“F (Tv-; Yl,pg90009 yn—l,uﬂ_l)
Aridyir ... .0y

n—1
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and F(r,y1,...,%n-1) = f(rq/1—92_;...A/T—4},...,7¥n_1). The num-
ber of nodes of the formula (2.15) is 2m™~! for m even, and m™ — m™~1 41
for m odd (see [12]).

It is easy to gemeralize formula (2.15) slightly and obtain a formula of
degree 2(s+ 1)m — 1 for 5, with weight function w(zy,...,2,) = (22 +---+
z2)812 3 > —n. Everything we have said about the construction of the
“spherical product” formula remains the same except that in place (2.14.n)
we must use a formula

1 2s m
|Tﬂ'—1+ﬁh T} dr = Ag?h(i) r,).
[y dr 325 AT )

i=0 v=1
3. n—Dimensional Cones

Let Rj_1 be a region in (n — 1)-dimensional Euclidean space in the vari-
ables uy, ... ,un_3. Let R, be defined by

Rn:{(ibl,...,ﬂﬁﬂ)l .T:izuz-(l—,\L i= 100 0m— 1,

3.1
(3.1) z, = A, A€[0,1], (u1,...,%n—1) € Rpyq}.

Ry is called a cone with base R,,_;. The vertex of R,, is the point s sl LY

As examples of cones we have the following (see [12]):

(i) The three-dimensional pyramid (which we denote by Cy : C2) is a
cone with a square base.

(ii) The ordinary cone (which we denote by Cy : §3) is a cone with a
circular base.

(iii) An n—simplex is a cone with an (n — 1)-simplex as base.
( Our definition of a cone cold be generalized so that the the solid n-sphere
is a cone with vertex (0,...,0) and with its surface as base.)

Let R,—1(A), A € [0,1], be the intersection of R, and the plane z, = .
An integral over R, _1(A) can be evaluated by affinely transforming R,,_;(})
onto R, _;. Using this fact we have

Qi —
/ 3?1 ...xnillmg“ dml "‘dx'n,
R

1

1 n—1
= ™ (1—z,)"! [2;(1 —2,)]% d2y -+ -dxpy } day
(3.2) /0 ]R,,_l JI:II d )

1
:/ (1 = zy)* " 1HFgen dmn/ et eztt T day - dag g,
0 R

n—1

ﬂ__'al‘i’“"i"a'n—l-
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In the last expression the integral with respect to z, has the form

1
f (1 - mn)n_lpot(mn) dmna
0

where Py (z,) is a polynomial of degree o = oy + -+ -+ ay,.
Hence, if we are given an integration formula of the type (1.3) of degree
d for Rn—l,

No
L g(l‘la L 11:?1.—1) dwl e -dz’n—l = Z Z B;k)g(k)(”j,li‘ LB nu‘jan—l)a

j=1 keK
where k = (k1,...,kn—1) is the multiindex with the nonnegative integer
components from {0,1,...,2s}, s € N U {0}, and an integration formula of

degree d for [0, 1], of the type (1.1),

25 m

/ 1(1 — )" h(t)de 2 Y S A B9 (),
0 !

i=0 v=1

where I = {0,1,...,2s}, then the formula

/ f(il!l,...,ﬂ)n)dl']...d:?}ﬂ
R,

No

Y Y BP0 - ), e (=), ),

j=1v=1(ki)=qeK xI

14

where

) T ) = alkHig(*u‘jvlv 1”3#”- 177.1!)
) =
dzkt . 8zin T Ol

FDpuia(1=1), s ptjnr(l =7

and g{a@1, .05 s Ta-1,8n) = FlE1(1 — &n)y ooy Bn—i1(l — 25),24), is the “prod-
uct” cubature of Turdn type of degree of exactness d, for R,.

Using the obtained result, since T), is a cone with base T}, _, we can con-
struct, by induction, starting with formulas for the interval 71 = [0, 1], the
“product” formulas of Turdn type for T}, (see [8]). Now, we shall construct
this formula directly.

Hence, we construct the “product” cubature formulas (1.3) for T}, the
n—simplex with vertices

(0,0,0,...,0,0),(1,0,0,...,0,0),...,(0,0,0,...,0,1).
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Ty is a triangle and T3 is a tetrahedron. By an affine transformation we
can transform T, onto any other given n—simplex and therefore integration
formulas of the type (1.3) for a given n-simplex can be obtained by an affine
transformation of formulas for T,,.

The integral of a monomial over T}, is

1 pl—z pl—zi—zo 1=y —o—2y_q
Ga 1,02 O g
(3.3) j / / / 27 ey zor dey - dey,.
0 0 0 0

Let us transform integral (3.3) using the transformation

1 =Y =,

zy = yo(l —31) = y2(1 — 29),

(3.4) z3 = y3(1 = g2 )(L — 1) = y3(1 — 21 — 23),
Zn = Yu(l=Yno1) - (I —tn) =yl =21 — -+ — 2 1).
Since the limits of integration for the z; are 0 < #; < 1—@y —+ - —2;_q, i =

1,...,n, the limits for the y; shall be 0 < y; < 1, ¢ = 1,...,n. Since the
Jacobian of transformation (3.4) is

J=(1—y)" "1 =)" 2 .. (l = yno1)

the monomial integral (3.3) transforms into

3 1
// (T=y1)P oo (1 = gmr )Py oy dyy .. dyy,
0 0

Bu=opt - tantn—1,
(3.5) Br=o3+ - to,+n—2,

ﬁn—l =an+ 1.

The integral (3.5) is a product of n single integrals, where the integral with
respect to iy, has the form

1
/ (1= yk)n_kPa(yk)dyk, F= 154 e,
0
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where Py(yx) = yp*(1 — yp)®+1H 7= is a polynomial of degree a = ay, + \
.4+ @, in y. Therefore if we have n one-variable formulas, each of degree |
d, of the type (1.1), _ |

2s ™m ‘

1
(3.6) /0 (=g hlye) dye = > S AP, B (),

ix=01=1
for k = 1,...,n, these can be combined to give a “product” formula of the

type (1.3) of degree d for T),
(3.7)

/Tf(ml,...,a;n)dacl---da:ﬂé Z Z Agz)ul Ag:?un \

11400 tn =0 01,0t

% _f(il""'i“)(}il,ula“2.02(1 - ullyl), P -,#n.un( - ;u”n.—l,U'n.—l) ‘e -(] - 1“’1.:/1))3 |

where '

f('il’"-’in)(ul,ul5|u’2,i/‘2(1 —_ #l'ul ).’. P 7,“'?1,,Vn(1 - !'L'R—V-l,.yn—]) WE (1 - lu'].,Ul)) = ‘
_ 0 g (s s o) |

Byil .. Oyl

and g(y1,92,.-»%n) = F(H,92(L = v1)s- ., yn(l = gno1)---(1 — 91)). The !
formulas (3.6) are Gauss—Jacobi-Turdn quadrature formulas. -
The above procedure can be generalized to give an integration formulas

for T}, with a weight function
-74'?]3)62 .iﬂ(l_ml)sl...(l_ml_..._$n)s"l
The “product” formula is exactly analogous to (3.7) except in place of the

one—variable formulas (3.6) we must use formulas

2s m

1
(3.8) f (1= ulh)de e S 3 AD, KD (),
0

ip=0 =1
for k= 1,...,n, where the 8, ¥k, 0k, cx are related by
~1 Cip =l B= Ly i
—l<pi=8+--tétet+--tent+tn—1,
~l<fp=8+-+éntea+-+eatn-2

-1< ﬂ'n—l = 67:, +épn—1+en + 1,
-1 < fBp = é€p.

The formulas (3.8) are Gauss—Jacobi-Turan qudrature formulas.
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4. The Torus

Here we discuss “product” formulas of Turdn type for regions which we
call n—dimensional tori, » > 3. For n = 3 the most familiar such region is
the torus defined by

(4.1) 0<(Vz2+12—01)? +2° <ok, 0< gy <01 < o0,

and denoted by T3 : S3. We shall say that T3 : S5 is a 3—torus with cross
section 95, where 55 is the circle

(4.2) 0< (y—e1)* +2* <ol

In general, if Ry is a bounded two-dimensional region in (u,v)-space which
lies in the half-space u > 0, then we show how to obtain an integration
formula (1.3) for the 3-torus with cross section Ry provided we know a
formula for R,. It is easily to carry out the generalisation of that formula
for n > 3.

Let R, denote a bounded two-dimensional region in the (u,v)-plane and
assume (u,v) € Ry implies u > 0. Let T3 : Ry denote the set of points
(2,9, 2) such that

z=wucosh, y=usind, z = v,

where (u,v) € Ry, —m < 8 < 7. We have that

/ 2%y 27 dedydz = / z%yP da/ wterPy? dudo,
T3.'R2 U2 Rg

Uy ={(z,y) € B3| 2® + ¢* = 1}.

For the integral over U; we construct the corresponding formula from [8],
which for n = 2 becomes the formula of rectangles

where

2m(s+1) b
h(z,y)do = ——— (s+1 m Z h(cos ) : 111( -I—l)m)

Uz

of degree d, and for the integral over Ry we construct the formula of the type
(1.3) (if that the region R; allows), forn = 2 and w(z) = 1, z = (21,...,%45),

f o, v)dudeZZB”g M(vits vin),

JEeJ i=1




r -
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of degree at most d + 1. By combination these formulas we obtain the
“product” formula (1.3) for T3 : Ry, of degree d,

2m(s+1)

(+1)m 2, ZZB”X

/ f(z,y,2)dzdydz & —e—
k=1 jedi=1l

T3:R2

X f(j) (V“cos—ﬂ-k— Vilsin—ﬂ—— Via
' (s+1)m’ ™" (s+1)ym’ ™)’

where

Tk V; SiH—T-rL V: = 631+-72F(( +1)m7Vﬁ 17Vz,2)
o (3 + 1)7TI,, e Hudr Quiz

(D p. .
f (V‘t,l cos (S + 1)m’
and

F(8,u,v) = f(ucos®,usinf,v).

5. Numerical results

We shall give numerical results obtained by using the presented methods.
Programs are realized in double precision arithmetics in Fortran 77.

Example 1. As example of the computing the integral over the unit
of 3-sphere, we consider the integral computed in [12, pp.37] by using the
product of Gauss quadratures: '

J= / exp (zyz?) dedydz ~ 4.190604290.
S3

The results of the computing were given in the table 2.4 in [12, pp.37],
where m and N = m" are the number of nodes of the quadrature and the
corresponding “product” cubature, respectively.

If we apply product of Turdn formulas, i. e, the cubature (2.9}, with s = 1,
then we shall obtain the results in the table 1.

TaBLE 1

N | J (approz.)

8 | 4.191133340
64 | 4.190604280
125 | 4.190604290

w3
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Example 2. As example of the computing the integral over 3—simplex,
we give the integral computed in [12. pp.31] by using the product of Gauss
quadratures:

1 11—z 1—z—y
J = f / / (1+2z+y+2)"! dedyde ~ 0.0208333333.
0 0 0

The results of the computing were given in the table 2.3 in [10, pp.31].
If we apply the product of Turan formulas, i.e., the cubature (3.7), with
s =1, then we shall obtain the results in the table 2.

TABLE 2

m| N J (approz.)

2 8 | 0.0208325594
4 64 | 0.0208333333

In this case, the application of the formula (3.7) is not practise, because
it is very complicated to find the large number of partial derivatives of inte-
grand.

Example 3. The “product” cubature of the type (1.3) for cylinders were
given in [8]. As example of the computing the integral over the cylinder

Cy: 85y ={(z,y,2): z€[-1,1], 2> +¢* < 1}, with w(z,y,2) =1,

we give the integral

2 1 . dy1 1 2
I = / eV *dzdydz = ] r drf ——/ er iz gy
Ci:Ss 1 I -1 y/1—9y Ja

where we use the formula (2.15) for the circle 55.
The exact value of the integral, except for rounding errors, is

I = 0.641698898791396(+01).

The results of the computing the integral, for s = 0,1, and some m, are
given in the table 3.
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TABLE 3

s | m I~ re

0| 2 | 6.348748861273719(+00) | 1.1(—02)
4 | 6.416818541835027(+00) | 2.7(—05)
6 | 6.416988784529709(+00) | 3.2(—08)
8 | 6.416988987765320(+00) | 2.3(—11)
10 | 6.416988987913896(+00) | 1.0(—14)

1| 2 | 6.416554928299226(+00) | 6.8(—05)
4 | 6.416988987506392(-00) | 6.4(—11)
6 | 6.416988987913965(+00) | 8.0(—15)

Numbers in parentheses denote decimal exponents. With I* we denoted
the value of integral performed with the “product” cubatures of Turdn type
and re is the relative error.
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