A BERGMAN-CARLESON MEASURE CHARACTERIZATION OF M-HARMONIC BLOCH FUNCTIONS

Miroljub Jevtić

Abstract. We prove two Bergman-Carleson measure characterizations of the \mathcal{M} -harmonic Bloch space

1. Introduction

Let B denote the open unit ball of \mathbb{C}^n , and m the 2n-dimensional Lebesgue measure on B.

As in [5], we say that a $u \in C^2(B)$ is \mathcal{M} -harmonic in B, $u \in \mathcal{M}$, if $\widetilde{\Delta}u(z) = 0$ for every $z \in B$. The operator $\widetilde{\Delta}$ is the invariant Laplacian defined by $\widetilde{\Delta}u(z) = \Delta(u \circ \varphi_z)(0)$, $z \in B$, where Δ is the ordinary Laplacian and φ_z the standard automorphism of B taking 0 to z (see [5]).

For $f \in C^1(B)$, $Df = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right)$ denotes the complex gradient of f, $\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_{2n}}\right)$, $z_k = x_{2k-1} + ix_{2k}$, $k = 1, 2, \dots, n$, denotes the real gradient of f.

For $f \in C^1(B)$ let $\widetilde{D}f(z) = D(f \circ \varphi_z)(0)$, $z \in B$, and $\widetilde{\nabla}f(z) = \nabla(f \circ \varphi_z)(0)$, $z \in B$, be the invariant complex gradient of f and the invariant real gradient of f respectively.

If
$$f \in C^1(B)$$
 let

$$|\nabla_T f(z)|^2 = 2\left(|Df(z)|^2 - |Rf(z)|^2 + |D\overline{f}(z)|^2 - |R\overline{f}(z)|^2\right)$$

be the tangential gradient of f. As usual, R denotes the radial derivative $R = \sum_{j=1}^{n} z_j \frac{\partial}{\partial z_j}$.

Received August 10, 1996

¹⁹⁹¹ Mathematics Subject Classification: 32A35.

Supported by Grant 04M03 of RFNS through Math. Inst. SANU.

140 M. Jevtić

In [1] it is proved that a holomorphic function f on B belongs to the Bloch space \mathcal{B} , i.e.

$$\sup_{z\in B}|\widetilde{D}f(z)|<\infty \quad \text{if and only if} \quad \sup_{a\in B}\int_{B}|\widetilde{D}f(z)|^2\frac{(1-|a|^2)^{n+1}}{|1-z\overline{a}|^{2n+2}}dm(z)<\infty.$$

In this note we extend this recult to the \mathcal{M} -harmonic Bloch space \mathcal{MB} , and we also obtain some other characterizations of the space \mathcal{MB} . More precisely we prove

Theorem 1. Let $0 and let <math>f \in \mathcal{M}$. Then the following statements are equivalent:

(i) f is a \mathcal{M} -harmonic Bloch function, $f \in \mathcal{MB}$, i.e. $\sup_{z \in B} |\widetilde{\nabla} f(z)| < \infty$,

$$(ii) \sup_{a \in B} \int_{B} (1 - |z|^{2})^{p} |\nabla f(z)|^{p} \frac{(1 - |a|^{2})^{n+1}}{|1 - z\overline{a}|^{2n+2}} dm(z) < \infty,$$

(iii)
$$\sup_{a \in B} \int_{B} |\widetilde{\nabla} f(z)|^{p} \frac{(1 - |a|^{2})^{n+1}}{|1 - z\overline{a}|^{2n+2}} dm(z) < \infty,$$

For $\xi \in S$ and $0 < \delta < 2$, put $Q_{\delta}(\xi) = \{z \in B : |1 - z\overline{\xi}| < \delta\}$. In what follows, a positive measure μ on B is called a Bergman-Carleson if $\mu(Q_{\delta}(\xi)) = O(\delta^{n+1})$ uniformly in $\xi \in S$ and $\delta > 0$.

It is easily seen that a positive measure μ on B is a Bergman-Carleson measure if and only if

$$\sup_{a \in B} \int_{B} \frac{(1 - |a|^{2})^{n+1}}{|1 - z\overline{a}|^{2n+2}} d\mu(z) < \infty.$$

Thus the following theorem is a corollary of Theorem 1.

Theorem 2. Let $0 and let <math>f \in \mathcal{M}$ then the following statements are equivalent:

- $(i) f \in \mathcal{MB},$
- (ii) $d\mu(z) = (1-|z|^2)^p |\nabla f(z)|^p dm(z)$ is a Bergman-Carleson measure.
- (iii) $d\nu(z) = |\widetilde{\nabla} f(z)|^p dm(z)$ is a Bergman-Carleson measure.

2. Proof of Theorem 1

(i) \Longrightarrow (iii). By standard estimates $\int_B (1-|a|^2)^{n+1}|1-z\overline{a}|^{-2n-2}dm(z) \leq C$, for every $a \in B$ (see [5], p.17). (Here and elsewhere constants a denoted by C which may indicate a different constant from one occurrence to the next.) Thus, if $\sup_{z\in B} |\widetilde{\nabla} f(z)| < \infty$, then (iii) holds.

(iii) \Longrightarrow (ii). An application of Cauchy-Schwarz inequality shows that

$$|\nabla_T f(z)|^2 \ge 2(1 - |z|^2)(|Df(z)|^2 + |D\overline{f}(z)|^2)$$

= $(1 - |z|^2)|\nabla f(z)|^2$.

Also,

$$|\widetilde{\nabla}f(z)|^2 = 2(|\widetilde{D}f(z)|^2 + |\widetilde{D}\overline{f}(z)|^2)$$

= $(1 - |z|^2)|\nabla_T f(z)|^2$ (see [4]),

and consequently,

$$|\widetilde{\nabla} f(z)| \ge (1 - |z|^2)|\nabla f(z)|$$

Thus, $(iii) \Longrightarrow (ii)$.

 $(ii) \Longrightarrow (i)$. For $a \in B$ and 0 < r < 1 let $E_r(a) = \{z \in B : |\varphi_a(z)| < r\}$. By Lemma 3.1 in [3] we have

$$|\nabla f(a)|^p \le \frac{C}{(1-|a|^2)^{n+1}} \int_{E_r(a)} |\nabla f(z)|^p dm(z), \quad a \in B,$$

(here $r \in (0,1)$ is fixed).

Since $1-|a|^2\cong 1-|z|^2\cong |1-z\overline{a}|$, for $z\in E_r(a)$ we have

$$(1-|a|^{2})^{p}|\nabla f(a)|^{p} \leq C \int_{E_{r}(a)} (1-|z|^{2})^{p}|\nabla f(z)|^{p} \frac{(1-|a|^{2})^{n+1}}{|1-z\overline{a}|^{2n+2}} dm(z)$$

$$\leq C \int_{B} (1-|z|^{2})^{p}|\nabla f(z)|^{p} \frac{(1-|a|^{2})^{n+1}}{|1-z\overline{a}|^{2n+2}} dm(z).$$

From this it follows that if (ii) holds then $\sup_{a \in B} (1 - |a|^2) |\nabla f(a)| < \infty$. By Theorem 1 ([3]), $f \in \mathcal{MB}$.

Carefully examining the proof of Theorem 1 we conclude that the following is true.

Theorem 3. Let $f \in \mathcal{M}$ and p, s > 0. Then the following statements are equivalent:

(i) $f \in \mathcal{MB}$,

$$(ii) \sup_{a \in B} \int_{B} (1 - |z|^{2})^{p} |\nabla f(z)|^{p} \frac{(1 - |a|^{2})^{s}}{|1 - z\overline{a}|^{n+1+s}} dm(z) < \infty,$$

$$(iii) \sup_{a \in B} \int_{B} |\widetilde{\nabla} f(z)|^{p} \frac{(1 - |a|^{2})^{s}}{|1 - z\overline{a}|^{n+1+s}} dm(z) < \infty,$$

3. Remark

The functions annihilated by the operators $\Delta_{\alpha\beta}$, $\alpha, \beta \in \mathcal{C}$, defined by

$$\Delta_{\alpha\beta} = (1 - |z|^2) \left\{ \sum_{i,j=1}^n (\delta_{ij} - z_i \overline{z}_j) \frac{\partial^2}{\partial z_i \partial \overline{z}_j} + \alpha R + \beta \overline{R} - \alpha \beta \right\}$$

are called (α, β) -harmonic.

Using a similar method of the proof of Theorem 1 we can obtain a Carleson-Bergman characterization of the (α, β) -harmonic Bloch space $\mathcal{B}_{\alpha\beta}$.

Theorem 4. Let 0 and let <math>f be a (α, β) -harmonic function. Then the following statements are equivalent:

(i)
$$f \in \mathcal{B}_{\alpha\beta}$$
, i.e. $\sup_{z \in B} |\widetilde{\nabla} f(z)| < \infty$,

- (ii) $(1-|z|^2)^p |\nabla f(z)|^p dm(z)$ is a Bergman-Carleson measure,
- (iii) $|\widetilde{\nabla} f(z)|^p dm(z)$ is a Bergman-Carleson measure.

References

- J. S. Choa, H. O. Kim, Y. Y. Park, A Bergman-Carleson measure characterization of Bloch functions in the unit ball of Cⁿ, Bull. Korean. Math. Soc., 29 (1992), 285-293.
- [2] M. Jevtić, Carleson measures in BMO, Analysis 15 (1995), 173-185.
- [3] M. Jevtić, M. Pavlović, On M-harmonic Bloch space, PAMS 123 (1995), 1385-1393.
- [4] M. Pavlović, Inequalities for the gradient of eigenfunctions onb the invariant Laplacian in the unit ball, Indag. Math. 2 (1991), 89-98.
- [5] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York, 1980.

MATEMATIČKI FAKULTET, STUDENTSKI TRG 16, 11000 BEOGRAD, YUGOSLAVIA E-mail: jevtic@matf.bg.ac.yu