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THE NATURAL PARTIAL ORDER ON
THE ABEL-GRASSMANN’S GROUPOIDS

Milan Bozinovi¢, Petar V. Proti¢ and Nebojsa Stevanovié

Abstract. A left almost semigroup, or LA-semigroup, is a groupoid S sat-
isfying the left invertive law

48] (ab)c = (cb)a,

for every a,b,c € S, [8].

Condition (1) is in fact a left Abel-Grassmann’s law, [4], and notion LA-
semi- group reminds of associativity. Since concerned structure is not as-
sociative in order to avoid confusion we shall use notion Abel-Grassmann’s
groupoids or AG-groupoids.

In this paper we define relation which is a natural partial order relation
on AG-band, AG* and AG**-groupoids. Also we introduce the notion of
r-cancelative w-inverse AG*-groupoid and on this structure we consider the
natural partial order and maximal elements.

1. Introduction

On an AG-groupoid holds medial law
(2) (ab)(ed) = (ac)(bd)

for every a,b,c,d € S. It has been shown in [8] that

(3) (ab)e = b(ca),
(4) (ab)e = b(ac)

are equivalent on an AG-groupoid 5 for every a,b,c € 5. The AG-groupoid
5 on which holds statement (3) or (4) we denote by AG™*-groupoid. The set
E(S) of all idempotents of an AG*-groupoid S is a commutative semigroup,
i.e. E(S5)is a semillatice, [9].
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Let on AG-groupoid S is true
(5) a(be) = b(ac)

for every a,b,c € §. Then this class of AG-groupoids we shall call an AG**-
groupoids. If 5 has left identity then S is an AG**-groupoid, [10].
By N we denote the set of all positive integers.

Definition 1.1. [3] Let § be an AG-groupoid, then a € § is an m-associa-
tive element (m € N) if all words length p < m (p € N) which consists of
element ¢ has the same value and those words we denote with a?. [

Now, if @ € § is an m-associative element, then for every n,p,q € .-
n < m and p+ g = n we have a® = aPal.

An AG-groupoid § is called an inverse AG-groupoid if for each a € §
there exists a’ € § such that (aa’)a = a, (a'a)e’ = o' and o' is an inverse
for a, [9]. As usually we shall denote by V(a) the set of all inverses of a € §.
Ife,be S, o’ € V(a), b' € V(b), then o'’ € V(ab), [9].

Definition 1.2. [3] An AG-groupoid S is 7-inverse AG -groupoid if for every
a € § there exists m € N such that @ is an m-associative element and there
exists p € N (p < m) and o' € § such that (e?a’)a? = a?,(a'aP)a’ = /. O

Then a is a w-regular element of 5, a? is regular element of S and the set
of all regular elements of .5 we denote with RegS§.

Let S be a m-inverse AG-groupoid, then we define a mapping r : .§ —
Reg5 with r(a) = a™ where n is the smallest positive integer such that
a"™ € RegS, [3].

If §is an 7-inverse AG*-groupoid then RegS$ is an inverse AG*-groupoid
and by Theorem 2.1., [3], it follows that § is a commutative inverse semi-
group. For'a € RegS by a~! we denote an inverse element of a (which is
unique).

For some results about 7-inverse and k-inverse semigroups see [1], [2], [5]
and [6].

For undefined notions and notations we refer to [1],[2] and [7].

2. The natural partial order

In this paragraph we shall give the natural partial order on the set of

idempotents of the AG-groupoid. We shall also modify this relation to be a

natural partial order on AG* and AG**-groupoids.

Definition 2.1. Let § be an AG-groupoid and a* = a for every a € 5, then
S is an AG-band.

If §is an AG-groupoid and E(S) # @, then from e, f € E(S) by medial
law we have (ef)? = (ef)(ef) = (ee)(ff) = ef and so E(S) is an AG-band.
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Lemma 2.1. Let § be an AG-groupoid, E(S) # @ and e, f € E(S). Then

e=ef — e= fe.

Proof. According to (1) we have

(i) fe=(ff)e=(ef)f
and dually
(ii) ef =(ff)e.

Now, if ef = e then (i) implies fe = ef i.e. fe = e. If fe = e, then (ii)
implies ef =e. O

A groupoid § is a left (right) distributive if for every a,b,c € § holds
a(be) = (ab)(ad) ( (ab)e = (ac)(bc) ).

Let S be a groupoid in which holds medial law and a® = a for each a € §.
Then for a,b,c € S it follows that

a(bc) = (aa)(be) = (ab)ac), (ab)e = (ab)(cc) = (ac)(be) ,

and so § is a left and right distributive groupoid. Hence, AG-band is a left
and right distributive groupoid.

Theorem 2.1. Let S be a left and right distributive groupoid in whish a* = a
for each a € §. Then the relation < defined on S by

e<f < e=ef=fe
is a (natural) partial order relation and < is compatible.

Proof. Clearly, e < e and relation < is reflexive. Also, frome < fand f <e
it follows that e = f and relation < is antisymmetric. Let e < f <=

e=ef=fe, f<g <= f=fg=gf.Then
eg = (ef)g = (eg)(fg) = (eg)f = (ef)gf)=ef =¢,
ge = g(fe) = (gf)(ge) = flge) = (fg)(fe)= fe=e.

Hence, e < ¢ and relation < is transitive and so < is a partial order on 5.
From e < f and g € 5 we have

eg = (ef)g=(eg)(fg), eg=(fe)g=(fg)(eq)
and so eg < fg. Also,
ge=g(ef)=(ge)(gf) .,  ge=g(fe)=(gf)(ge)

and so ge < gf. Hence, < is compatible with operation on 5. O
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Corollary 2.1. Let § be an AG-band then the relation < defined with
e f+= e=ef
is a (natural) partial order relation and < is compatible.

Proof. By Lemma 2.1. and Theorem 2.1. 0O

Lemma 2.2. AG*-groupoid S satisfies all permutation identities

(6) ($13’2)($3‘54) = (%(1)%(2))(_%(3)%(4))

where {p(1),p(2),p(3),p(4)} means any permutation of set {1, 23,4}

Proof. Let 1,9, 23,24 be an arbitrary elements from §. Then we have

(2132)(z324) = (24(21%2))23 = ((w224)21)23 = (2321 )(2204)

= (2321)(24%2) = (z324)(2122).

mutative semigroup. Now by (3) and (4) we conclude that (6) holds. O

Lemma 2.3. Let § be an AG*-groupoid, E(S) # @, then for every a € §
and every e € E(S) it holds ea = ae.

Proof. Let a € 5, e € E(S), then by (6) we have

ea = (ee)a = (ae)e = (ae)(ee) = (ea)(ee) = (ea)e = a(ee) = ae. O

If §' is an AG-groupoid, then by S' = §U {1} we denote the groupoid in
which 1 is identity ( analogously as in semigroup theory). Clearly, S! is not
an AG-groupoid.

Let 5 be the AG*-groupoid, we can define relation < as follows:

(7) (Va,b€§) a<b <= (Jee E(SY)) a=eb.

Theorem 2.2. Relation lg defined on the AG*-groupoid S with (7) is a
natural partial order relation and it is compatible.

Proof. Reflexivity is obvious since for any element a € S it holds a = la.
For antisymmetry let us suppose that a < b and b < @, then there exist

elements e, f € E(S5!) such that ¢ = eb and b = fa. fe=1or f=1

antisymmetry follows directly. If ¢, f € E(S) then from (3) and (4) it holds:

a=eb = e(fa) = (fe)a = (fe)(eb) = (fe)(be)
= (fb)(ee) = (fb)e = (eb)f = af. |

|
|
|
From this it holds that $? is a commutative AG*-groupoid, so it is a com-

e
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Now by Lemma 2.3. it follows that a = af = fa = b so we have proved
antisymmetry.

Now let us suppose that @ < band b < ¢, then exist elements e, f € E(57)
such that a = eb and b = fe. If e = 1 or f = 1 transitivity follows directly.
Let e, f € E(S) then a = e(fe) = (fe)e. Since fe belongs to E(S5) it follows
o < ¢ and transitivity holds.

Let ¢ < b and ¢ € § then a = eb for some e € E(§"). If e = 1 then
compatibility is true. If e € E(S) then

ac = (eb)c = (cb)e = (cb)(ee) = (ee)(be) = e(be),
ca = c(eb) = (ec)b = (be)e = (be)(ee) = (ee)(ch) = e(cd).
Hence, ac < bcand ca < cb. O

Let S be an AG**-groupoid and a,b,c,d € S, then

6 (ab)(ed) = c((ab)d) = e((db)a) = (db)(ca).

If we consider relation < on an AG**-groupoid then we obtain the next
theorem.

Theorem 2.3. Relation < defined as above is a natural partial order rela-
tion on an AG™*-groupoid S and it is compatible.

Proof. Reflexivity is obvious since for any element a € S it holds ¢ = la.

For antisymmetry let us suppose that ¢ < band b < @, then exist elements
e, f € E(S') such that @ = eb and b = fa. If e =1 or f = 1 antisymmetry
follows directly. Let e, f € E(S) then by (5) it holds:

a=eb=e(fa) 2 flea) = (FF)(ea) 2 () )f
D ((fa)e)f = (be)f

and
b= fa=f((e)f) Z (be)(ff) = (be)f =a.

So we have proved antisymmetry.

Now let us suppose that a < b and b < ¢, then exist elements ¢, f € E(5Y)
such that @ = eb and b = fe. If e = 1 or f = 1 transitivity follows directly.
Ife, f € E(S) then

a = eb =e(fc) = (ee)(fc) ¢ ce)( fe) (é)‘((fe)e)c 4 ((ee)f)e= (ef)e .
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Since ef belongs to E(S') it follows a < ¢ and transitivity holds.
Let @ < b and ¢ € §, then there exists e € E(S!) such that a = eb. If
e = 1 then compatibility is true. If e € E(S) then by (8) we have

ac = (eb)c = (cb)e = (cb)(ee) = (eb)(ec) = (ee)(be) = e(be),
ca = c(eb) = e(ch)
and so ac < bcand ca <eb. O

Since AG-groupoid with left identity is an AG**-groupoid we obtain next
corollary.

Corollary 2.3. Let S be an AG-groupoid with left identity. The relation <
defined on § by

a<b<= (Je€ E(S))a=ceb
18 a natural partial order relation on S and it is compatible. O
3. The natural partial order on the r-inverse AG*-groupoids

Let 5 be an AG*-groupoid, then for each a € S the set L(a) = aU Sa is
a minimal left ideal of S containing a, [12].
Now, on AG*-groupoid S for a,b € S we define the relation £ by

alb<= aUSa=0US5b.

Then L is an equivalence relation and by L, we denote an equivalence class
for a € 5. A relation < defined on L-classes by

Lo Ly<=aUSaCbush
is, clearly, a partial order on §/L.

Lemma 3.1. Lel S be a w-inverse AG*-groupoid, a,b € S and aLlb, then
from a € Reg¥§ it follows that b € RegS.

Proof. Trom alb and a # b it follows that there exist u,v € S such that
b = ua, a = vb. Since a € RegS, then there exists 2 € RegS such that
(ez)a = a and (za)z = z. Since Reg§ is a commutative inverse semigroup
we have az = za. Now

b= ua = u((az)a) @ u(z(aa)) @ (zu)(aa) g (za)(ua)
= (az)(ua) = (az)b 2 2(ab) ¥ 2(b0) ? (b2)a
= (bx)(wh) € (vz)(86) @ (B(vz))B,
(v2)b)(va) € (2(vb))(vz) = (za)(va) 2 (sv)(az) = (cv)(za)

@ v((za)z) = va.
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Hence, b and vz are mutually inverse and so b € RegS. O

Let S be a m-inverse AG-groupoid, then we can define the relation £ with
alb <= Sr(a)= Sr(b)

where a,b € §. Clearly, r(a) € Sr(a) and £ is an equivalence relation. Since
r(a)=r(r(a)) we have that aLr(a). On L-classes we define the relation <
with

Lo g Ly < Sr(a) C Sv(b)

for a,b € §. This relation is obviously pa.rtial order relation on 5/ ;.
If §is a w-inverse AG*-groupoid, then L |geys= L |Regs and it is well
known Green'’s relation for commutative inverse semigroup Reg§.

Definition 3.1. An AG-groupoid 5 is an r-cancelative w-inverse AG™-

groupoid if for every a,b € 5 — Regs it holds

rla)=r(b))=a=5b 0O

Hence, on r-cancelative w-inverse AG*-groupoid § we have |§ — Reg§| <

|RegS|.

Example 3.1. Let S be a AG-groupoid defined by the following Cayley
table: 9 3

[ A e R

1
2
2
2
1

e
i = A S
o Lo N b

Then RegS = E(5)=1{2,3}, (1) =1*=2, r(4) = 4> =3 and 5 is an
r-cancelative AG-groupoid.

Theorem 3.2. Let § be a r-cancelative © -inverse AG™-groupoid. Fora,b €
S we define
(10) a <b <= Ly < Ly Ar(a) = r(a)r(b) " r(a) = r(a)r(b) " r(b).

Then the relation < is a (natural) partial order relation on §.

Proof. Since r(a) = r(a)r(a)~'r(a) we have ¢ < a. Let us suppose that
a < band b < a, then L, = Ly, r(a) = r(a)r(b)~'r(a) = r(a)r(b)~'r(b) and
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r(b) = r(b)r(a)~'r(b) = r(b)r(a)"r(a). Now, using the fact that RegS is a
commutative semigroup, it holds

r(a) = r(a)r(b)~"r(a) = r(a)r(b) " r(b)r(a) " r(a)
= 7'(a)_r(b)”1r(a)r(a)_1T(b) = r(a)r(a)"'r(b) = r(b).

Now, if a,b € RegS§, then r(a) = a, #(b) = b and by (10) holds a = b. If
a,b € §— RegS, then since § is r-cancelative from r(a) = r(b) it follows that
a = b. By Lemma 2.2. the case that a € Reg and b € S — RegS (a € Reg$,
b e 5 — RegS5) is impossible. Hence a relation < is a,ntisymmetrlc

Let a < b, b < ¢, then L, < L, r(a) = r(a)r(b)~r(a) = r(a)r(d)~1r(b)
and r(b) = r(b)r(c) 1r(d) = r(b)r(c)~*r(c). Now we have

(11)

r(a) = r(a)r(b) " r(a) = r(a)r(b) " r(a)r(b)~'r(b)
= r(a)r(0) " r(b)r(a)r(8) ™" = r(a)r(8) " r(b)r(c) T r(b)r(a)r(b)”!
= r(a)r(c)"'r(a)r(b)~'r(b) = r(a)r(c) ' r(a),

r(a) = r(a)r(b)71r(b) = r(a)r(8) " r(b)r(c) " r(c)
= r(a)r(c)'r(c)

and so by (9) we have ¢ < ¢. Hence, < is transitive and so < is a partial
order relation on 5. O

By the following theorem we introduce some equivalent definitions for the
natural partial order on the r-cancelative 7-inverse AG*-groupoid.

Theorem 3.3. The following statements are equivalent on the r-cancelative
m-tnverse AG*-groupoid S';

(i) a<b,

(i) Lo LyALa < Ly A (Fe € Lo n E(S)) r(a) = er(d),
(iit) Lo < Ly Ar(a) = r(a)r(a)™ (D),

(1v) Lo < Ly A(Je € E(S)) r(a) = er(b).

Proof. ( )= (11) Let a,b € S, a < b defined with (10) and e = 7(a)r(b)"1,
then ¢? = r(a)r(b)~ l'r'(a)r( )7t = r(a)r(b)7! = e, le. e € E(S). Also
M) = er(a) Since RegS is a commutative semigroup we have

Sr(a) = Ser(a) C Se = Sr(a)r(b)~! C Sr(a).
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Hence L, = L, and e € E(L,) = f,a“ﬂ E(S). From r(a) = r(a)r(b)r(b)~!
it follows that Sr(a) C S7(b) so L,y 5 L.

(ii)== (iii) Since restriction of £ on Reg$ is a known Green’s
{elation on inverse semigroup RegS, then by Proposition 3.6.[6] from e €
L, N E(S) we have e = r(a)r(a)™1. Hence, r(a) = r(a)r(a)~'r(b)

(iii)== (iv) Is clear since e = r(a)r(a)™! € E(S).
(iv)=> (i) Let (iv) holds, then by commutativity of RegS we have
r(a)r(b) " 1r(a) = er(b)r(b) ter(b) = er(b)r(b)'r(b)e
= er(b)e = er(e) = r(a),
r(a)r(b)~r(b) = er(b)r(b)"'r(b) = er(b) = r(a)
so (i) holds. 0O
We shall now describe the maximal elements on a 7-inverse AG*-groupoid.

Definition 3.2. The element a of a r-cancelative 7-inverse AG™-groupoid
S is mazimal if it is maximal with respect to the natural partial order < on
S. 0

Let S be a w-inverse AG-groupoid and let
A={z eS| (Fy€ S — Regl) z =7(y)}, B = Reg§ — A,

then the following lemma is true.

Lemma 3.2. Let S be the r-cancelative w-inverse AG*-groupoid, then for
all a € S it holds that r(a) < a.

Proof. If r(a) = a™ then
Sr(a) =Sa™ = S(a” 'a) = U z(e" a) = U (a" 'z)a C Sa,

z€S z€S
r(a) =(r(a)r(a)™")r(a) = (r(a)r(a) " )(a""a) =
(a” (r(a)r(a) ™ )a) € Sa
and so r(a) U §r(e) C Sa C a U Sa, whence L.,y < L. Also, r(a) = er(a)
where e = r(a)r(a)™? EE(S) By Theorem 3.1. we have r(a) <a. O

Definition 3.3. The element a of a w-inverse AG-groupoid § is strongly
mT-inverse if

(Vz € S)((r(a) = (r(a)x)r(a) <= = = (zr(e))z). O
In this case z € RegS. '




116 M. Bozinovié, P.V. Protié¢ and N. Stevanovié

Theorem 3.3. Let S be an r-cancelative T-inverse AG™-groupoid, then ev-
ery strongly m-inverse element from S — A is mazimal.

Proof. Suppose that a € § is a strongly w-inverse element and b € § such

that @ < 5. Then by Theorem 3.1. we have r(a) = r(a)r(b)"lr(a) =

7(a)r(b)~'r(b) and since @ is strongly 7-inverse we have

r(b)~! = r(b)"1r(a)r(b)". Now

r(b) = r(b)r(b)~1r(b) = r(b)r(b)~r(a)r(b)~1r(b) = r(b)r(b)~1r(a) = v(a).
Let a € § — RegS. If b € S — RegS then since S is r-cancelative from

r(a) = r(b) it follows that @ = b. If b € RegS then r(b) = b = r(a) and

by Lemma 3.2 we have b < a. Now, a < b and b < a gives a = b what is
impossible.

Suppose that a € RegS. If b € RegS then r(a) =a=b=r(b) and ais
maximal element. If b € §— Reg§ then 7(a) = a = »(b), which is impossible,
since g € B.

It is obvious that @ € A is not maximal element because there exists
z €5 — Reg§ such that e = r(z) < z. O
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