THE NATURAL PARTIAL ORDER ON THE ABEL-GRASSMANN'S GROUPOIDS

Milan Božinović, Petar V. Protić and Nebojša Stevanović

Abstract. A left almost semigroup, or LA-semigroup, is a groupoid S satisfying the left invertive law

$$(ab)c = (cb)a,$$

for every $a, b, c \in S$, [8].

Condition (1) is in fact a left Abel-Grassmann's law, [4], and notion LA-semi-group reminds of associativity. Since concerned structure is not associative in order to avoid confusion we shall use notion Abel-Grassmann's groupoids or AG-groupoids.

In this paper we define relation which is a natural partial order relation on AG-band, AG^* and AG^{**} -groupoids. Also we introduce the notion of r-cancelative π -inverse AG^* -groupoid and on this structure we consider the natural partial order and maximal elements.

1. Introduction

On an AG-groupoid holds medial law

$$(ab)(cd) = (ac)(bd)$$

for every $a, b, c, d \in S$. It has been shown in [8] that

$$(3) (ab)c = b(ca),$$

$$(ab)c = b(ac)$$

are equivalent on an AG-groupoid S for every $a,b,c \in S$. The AG-groupoid S on which holds statement (3) or (4) we denote by AG^* -groupoid. The set E(S) of all idempotents of an AG^* -groupoid S is a commutative semigroup, i.e. E(S) is a semillatice, [9].

Received October 20, 1995; Revised March 20, 1996

1991 Mathematics Subject Classification: 20N02.

Supported by Grant 04M03 of RFNS through Math. Inst. SANU.

Let on AG-groupoid S is true

$$a(bc) = b(ac)$$

for every $a, b, c \in S$. Then this class of AG-groupoids we shall call an AG^{**} -groupoids. If S has left identity then S is an AG^{**} -groupoid, [10].

By N we denote the set of all positive integers.

Definition 1.1. [3] Let S be an AG-groupoid, then $a \in S$ is an m-associative element $(m \in N)$ if all words length $p \leq m$ $(p \in N)$ which consists of element a has the same value and those words we denote with a^p . \square

Now, if $a \in S$ is an *m*-associative element, then for every $n, p, q \in N$, $n \le m$ and p + q = n we have $a^n = a^p a^q$.

An AG-groupoid S is called an *inverse* AG-groupoid if for each $a \in S$ there exists $a' \in S$ such that (aa')a = a, (a'a)a' = a' and a' is an *inverse* for a, [9]. As usually we shall denote by V(a) the set of all inverses of $a \in S$. If $a, b \in S$, $a' \in V(a)$, $b' \in V(b)$, then $a'b' \in V(ab)$, [9].

Definition 1.2. [3] An AG-groupoid S is π -inverse AG-groupoid if for every $a \in S$ there exists $m \in N$ such that a is an m-associative element and there exists $p \in N$ $(p \le m)$ and $a' \in S$ such that $(a^pa')a^p = a^p, (a'a^p)a' = a'$. \square

Then a is a π -regular element of S, a^p is regular element of S and the set of all regular elements of S we denote with RegS.

Let S be a π -inverse AG-groupoid, then we define a mapping $r: S \longrightarrow RegS$ with $r(a) = a^n$ where n is the smallest positive integer such that $a^n \in RegS$, [3].

If S is an π -inverse AG^* -groupoid then RegS is an inverse AG^* -groupoid and by Theorem 2.1., [3], it follows that S is a commutative inverse semigroup. For $a \in RegS$ by a^{-1} we denote an inverse element of a (which is unique).

For some results about π -inverse and k-inverse semigroups see [1], [2], [5] and [6].

For undefined notions and notations we refer to [1],[2] and [7].

2. The natural partial order

In this paragraph we shall give the natural partial order on the set of idempotents of the AG-groupoid. We shall also modify this relation to be a natural partial order on AG^* and AG^{**} -groupoids.

Definition 2.1. Let S be an AG-groupoid and $a^2 = a$ for every $a \in S$, then S is an AG-band.

If S is an AG-groupoid and $E(S) \neq \emptyset$, then from $e, f \in E(S)$ by medial law we have $(ef)^2 = (ef)(ef) = (ee)(ff) = ef$ and so E(S) is an AG-band.

Lemma 2.1. Let S be an AG-groupoid, $E(S) \neq \emptyset$ and $e, f \in E(S)$. Then

$$e = ef \iff e = fe$$
.

Proof. According to (1) we have

(i)
$$fe = (ff)e = (ef)f$$

and dually

(ii)
$$ef = (ff)e.$$

Now, if ef = e then (i) implies fe = ef i.e. fe = e. If fe = e, then (ii) implies ef = e. \square

A groupoid S is a left (right) distributive if for every $a,b,c\in S$ holds a(bc)=(ab)(ad) ((ab)c=(ac)(bc)).

Let S be a groupoid in which holds medial law and $a^2 = a$ for each $a \in S$. Then for $a, b, c \in S$ it follows that

$$a(bc) = (aa)(bc) = (ab)(ac), (ab)c = (ab)(cc) = (ac)(bc),$$

and so S is a left and right distributive groupoid. Hence, AG-band is a left and right distributive groupoid.

Theorem 2.1. Let S be a left and right distributive groupoid in whish $a^2 = a$ for each $a \in S$. Then the relation \leq defined on S by

$$e \le f \iff e = ef = fe$$

is a (natural) partial order relation and \leq is compatible.

Proof. Clearly, $e \le e$ and relation \le is reflexive. Also, from $e \le f$ and $f \le e$ it follows that e = f and relation \le is antisymmetric. Let $e \le f \iff e = ef = fe$, $f \le g \iff f = fg = gf$. Then

$$eg = (ef)g = (eg)(fg) = (eg)f = (ef)(gf) = ef = e$$
,
 $ge = g(fe) = (gf)(ge) = f(ge) = (fg)(fe) = fe = e$.

Hence, $e \leq g$ and relation \leq is transitive and so \leq is a partial order on S. From $e \leq f$ and $g \in S$ we have

$$eg = (ef)g = (eg)(fg)$$
, $eg = (fe)g = (fg)(eg)$

and so $eg \leq fg$. Also,

$$ge = g(ef) = (ge)(gf)$$
, $ge = g(fe) = (gf)(ge)$

and so $ge \leq gf$. Hence, \leq is compatible with operation on S. \square

Corollary 2.1. Let S be an AG-band then the relation \leq defined with

$$e \le f \iff e = ef$$

is a (natural) partial order relation and \leq is compatible.

Proof. By Lemma 2.1. and Theorem 2.1. \square

Lemma 2.2. AG*-groupoid S satisfies all permutation identities

(6)
$$(x_1x_2)(x_3x_4) = (x_{p(1)}x_{p(2)})(x_{p(3)}x_{p(4)})$$

where $\{p(1), p(2), p(3), p(4)\}$ means any permutation of set $\{1, 2, 3, 4\}$.

Proof. Let x_1, x_2, x_3, x_4 be an arbitrary elements from S. Then we have

$$(x_1x_2)(x_3x_4) = (x_4(x_1x_2))x_3 = ((x_2x_4)x_1)x_3 = (x_3x_1)(x_2x_4)$$
$$= (x_3x_1)(x_4x_2) = (x_3x_4)(x_1x_2).$$

From this it holds that S^2 is a commutative AG^* -groupoid, so it is a commutative semigroup. Now by (3) and (4) we conclude that (6) holds. \square

Lemma 2.3. Let S be an AG^* -groupoid, $E(S) \neq \emptyset$, then for every $a \in S$ and every $e \in E(S)$ it holds ea = ae.

Proof. Let $a \in S$, $e \in E(S)$, then by (6) we have

$$ea = (ee)a = (ae)e = (ae)(ee) = (ea)(ee) = (ea)e = a(ee) = ae.$$

If S is an AG-groupoid, then by $S^1 = S \cup \{1\}$ we denote the groupoid in which 1 is identity (analogously as in semigroup theory). Clearly, S^1 is not an AG-groupoid.

Let S be the AG^* -groupoid, we can define relation \leq as follows:

(7)
$$(\forall a, b \in S) \quad a \le b \iff (\exists e \in E(S^1)) \quad a = eb.$$

Theorem 2.2. Relation \leq defined on the AG*-groupoid S with (7) is a natural partial order relation and it is compatible.

Proof. Reflexivity is obvious since for any element $a \in S$ it holds a = 1a.

For antisymmetry let us suppose that $a \leq b$ and $b \leq a$, then there exist elements $e, f \in E(S^1)$ such that a = eb and b = fa. If e = 1 or f = 1 antisymmetry follows directly. If $e, f \in E(S)$ then from (3) and (4) it holds:

$$a = eb = e(fa) = (fe)a = (fe)(eb) = (fe)(be)$$

= $(fb)(ee) = (fb)e = (eb)f = af$.

Now by Lemma 2.3. it follows that a = af = fa = b so we have proved antisymmetry.

Now let us suppose that $a \leq b$ and $b \leq c$, then exist elements $e, f \in E(S^1)$ such that a = eb and b = fc. If e = 1 or f = 1 transitivity follows directly. Let $e, f \in E(S)$ then a = e(fc) = (fe)c. Since fe belongs to E(S) it follows $a \leq c$ and transitivity holds.

Let $a \leq b$ and $c \in S$ then a = eb for some $e \in E(S^1)$. If e = 1 then compatibility is true. If $e \in E(S)$ then

$$ac = (eb)c = (cb)e = (cb)(ee) = (ee)(bc) = e(bc),$$

 $ca = c(eb) = (ec)b = (bc)e = (bc)(ee) = (ee)(cb) = e(cb).$

Hence, $ac \leq bc$ and $ca \leq cb$. \square

Let S be an AG^{**} -groupoid and $a, b, c, d \in S$, then

(8)
$$(ab)(cd) = c((ab)d) = c((db)a) = (db)(ca).$$

If we consider relation \leq on an AG^{**} -groupoid then we obtain the next theorem.

Theorem 2.3. Relation \leq defined as above is a natural partial order relation on an AG^{**} -groupoid S and it is compatible.

Proof. Reflexivity is obvious since for any element $a \in S$ it holds a = 1a.

For antisymmetry let us suppose that $a \leq b$ and $b \leq a$, then exist elements $e, f \in E(S^1)$ such that a = eb and b = fa. If e = 1 or f = 1 antisymmetry follows directly. Let $e, f \in E(S)$ then by (5) it holds:

$$a = eb = e(fa) \stackrel{(5)}{=} f(ea) = (ff)(ea) \stackrel{(1)}{=} ((ea)f)f$$
$$\stackrel{(1)}{=} ((fa)e)f = (be)f$$

and

$$b = fa = f((be)f) \stackrel{(5)}{=} (be)(ff) = (be)f = a$$
.

So we have proved antisymmetry.

Now let us suppose that $a \leq b$ and $b \leq c$, then exist elements $e, f \in E(S^1)$ such that a = eb and b = fc. If e = 1 or f = 1 transitivity follows directly. If $e, f \in E(S)$ then

$$a = eb = e(fc) = (ee)(fc) \stackrel{(8)}{=} (ce)(fe) \stackrel{(1)}{=} ((fe)e)c \stackrel{(1)}{=} ((ee)f)c = (ef)c$$
.

Since ef belongs to $E(S^1)$ it follows $a \leq c$ and transitivity holds.

Let $a \leq b$ and $c \in S$, then there exists $e \in E(S^1)$ such that a = eb. If e = 1 then compatibility is true. If $e \in E(S)$ then by (8) we have

$$ac = (eb)c = (cb)e = (cb)(ee) = (eb)(ec) = (ee)(bc) = e(bc),$$

 $ca = c(eb) = e(cb)$

and so $ac \leq bc$ and $ca \leq cb$. \square

Since AG-groupoid with left identity is an AG^{**} -groupoid we obtain next corollary.

Corollary 2.3. Let S be an AG-groupoid with left identity. The relation \leq defined on S by

$$a \le b \iff (\exists e \in E(S)) \ a = eb$$

is a natural partial order relation on S and it is compatible. \square

3. The natural partial order on the π -inverse AG^* -groupoids

Let S be an AG^* -groupoid, then for each $a \in S$ the set $L(a) = a \cup Sa$ is a minimal left ideal of S containing a, [12].

Now, on AG^* -groupoid S for $a, b \in S$ we define the relation \mathcal{L} by

$$a\mathcal{L}b \iff a \cup Sa = b \cup Sb$$
.

Then \mathcal{L} is an equivalence relation and by L_a we denote an equivalence class for $a \in S$. A relation \leq defined on \mathcal{L} -classes by

$$L_a \preccurlyeq L_b \iff a \cup Sa \subseteq b \cup Sb$$

is, clearly, a partial order on S/\mathcal{L} .

Lemma 3.1. Let S be a π -inverse AG^* -groupoid, $a, b \in S$ and $a\mathcal{L}b$, then from $a \in RegS$ it follows that $b \in RegS$.

Proof. From $a\mathcal{L}b$ and $a \neq b$ it follows that there exist $u, v \in S$ such that b = ua, a = vb. Since $a \in RegS$, then there exists $x \in RegS$ such that (ax)a = a and (xa)x = x. Since RegS is a commutative inverse semigroup we have ax = xa. Now

$$b = ua = u((ax)a) \stackrel{(3)}{=} u(x(aa)) \stackrel{(4)}{=} (xu)(aa) \stackrel{(2)}{=} (xa)(ua)$$

$$= (ax)(ua) = (ax)b \stackrel{(4)}{=} x(ab) \stackrel{(3)}{=} x(ba) \stackrel{(4)}{=} (bx)a$$

$$= (bx)(vb) \stackrel{(6)}{=} (vx)(bb) \stackrel{(4)}{=} (b(vx))b,$$

$$((vx)b)(vx) \stackrel{(4)}{=} (x(vb))(vx) = (xa)(vx) \stackrel{(2)}{=} (xv)(ax) = (xv)(xa)$$

$$\stackrel{(3)}{=} v((xa)x) = vx.$$

Hence, b and vx are mutually inverse and so $b \in RegS$. \square

Let S be a π -inverse AG-groupoid, then we can define the relation $\tilde{\mathcal{L}}$ with

$$a\tilde{\mathcal{L}}b \iff Sr(a) = Sr(b)$$

where $a,b \in S$. Clearly, $r(a) \in Sr(a)$ and $\tilde{\mathcal{L}}$ is an equivalence relation. Since r(a)=r(r(a)) we have that $a\tilde{\mathcal{L}}r(a)$. On $\tilde{\mathcal{L}}$ -classes we define the relation \leq with

$$\tilde{L}_a \preccurlyeq \tilde{L}_b \iff Sr(a) \subseteq Sr(b)$$

for $a, b \in S$. This relation is obviously partial order relation on $S/\tilde{\mathcal{L}}$.

If S is a π -inverse AG^* -groupoid, then $\mathcal{L} \mid_{RegS} \equiv \tilde{\mathcal{L}} \mid_{RegS}$ and it is well known Green's relation for commutative inverse semigroup RegS.

Definition 3.1. An AG-groupoid S is an r-cancelative π -inverse AG^* -groupoid if for every $a,b\in S-RegS$ it holds

$$r(a) = r(b) \Longrightarrow a = b \quad \Box$$

Hence, on r-cancelative π -inverse AG^* -groupoid S we have $|S - RegS| \le |RegS|$.

Example 3.1. Let S be a AG-groupoid defined by the following Cayley table:

Then $RegS = E(S) = \{2,3\}$, $r(1) = 1^2 = 2$, $r(4) = 4^2 = 3$ and S is an r-cancelative AG-groupoid.

Theorem 3.2. Let S be a r-cancelative π -inverse AG^* -groupoid. For $a, b \in S$ we define

(10)
$$a \le b \iff L_a \le L_b \land r(a) = r(a)r(b)^{-1}r(a) = r(a)r(b)^{-1}r(b).$$

Then the relation \leq is a (natural) partial order relation on S.

Proof. Since $r(a) = r(a)r(a)^{-1}r(a)$ we have $a \le a$. Let us suppose that $a \le b$ and $b \le a$, then $L_a = L_b$, $r(a) = r(a)r(b)^{-1}r(a) = r(a)r(b)^{-1}r(b)$ and

 $r(b) = r(b)r(a)^{-1}r(b) = r(b)r(a)^{-1}r(a)$. Now, using the fact that RegS is a commutative semigroup, it holds

(11)
$$r(a) = r(a)r(b)^{-1}r(a) = r(a)r(b)^{-1}r(b)r(a)^{-1}r(a) = r(a)r(b)^{-1}r(a)r(a)^{-1}r(b) = r(a)r(a)^{-1}r(b) = r(b).$$

Now, if $a, b \in RegS$, then r(a) = a, r(b) = b and by (10) holds a = b. If $a, b \in S - RegS$, then since S is r-cancelative from r(a) = r(b) it follows that a = b. By Lemma 2.2. the case that $a \in RegS$ and $b \in S - RegS$ ($a \in RegS$, $b \in S - RegS$) is impossible. Hence, a relation \leq is antisymmetric.

Let $a \le b$, $b \le c$, then $L_a \le L_c$, $r(a) = r(a)r(b)^{-1}r(a) = r(a)r(b)^{-1}r(b)$ and $r(b) = r(b)r(c)^{-1}r(b) = r(b)r(c)^{-1}r(c)$. Now we have

$$r(a) = r(a)r(b)^{-1}r(a) = r(a)r(b)^{-1}r(a)r(b)^{-1}r(b)$$

$$= r(a)r(b)^{-1}r(b)r(a)r(b)^{-1} = r(a)r(b)^{-1}r(b)r(c)^{-1}r(b)r(a)r(b)^{-1}$$

$$= r(a)r(c)^{-1}r(a)r(b)^{-1}r(b) = r(a)r(c)^{-1}r(a),$$

$$r(a) = r(a)r(b)^{-1}r(b) = r(a)r(b)^{-1}r(b)r(c)^{-1}r(c)$$

$$= r(a)r(c)^{-1}r(c)$$

and so by (9) we have $a \leq c$. Hence, \leq is transitive and so \leq is a partial order relation on S. \square

By the following theorem we introduce some equivalent definitions for the natural partial order on the r-cancelative π -inverse AG^* -groupoid.

Theorem 3.3. The following statements are equivalent on the r-cancelative π -inverse AG^* -groupoid S:

- (i) $a \leq b$,
- (ii) $L_a \preccurlyeq L_b \land \tilde{L}_a \preccurlyeq \tilde{L}_b \land (\exists e \in \tilde{L}_a \cap E(S)) \ r(a) = er(b),$
- (iii) $L_a \preccurlyeq L_b \land r(a) = r(a)r(a)^{-1}r(b),$
- (iv) $L_a \preccurlyeq L_b \land (\exists e \in E(S)) \ r(a) = er(b).$

Proof. (i) \Longrightarrow (ii) Let $a, b \in S$, $a \le b$ defined with (10) and $e = r(a)r(b)^{-1}$, then $e^2 = r(a)r(b)^{-1}r(a)r(b)^{-1} = r(a)r(b)^{-1} = e$, i.e. $e \in E(S)$. Also, r(a) = er(a). Since RegS is a commutative semigroup we have

$$Sr(a) = Ser(a) \subseteq Se = Sr(a)r(b)^{-1} \subseteq Sr(a).$$

Hence $\tilde{L}_e = \tilde{L}_a$ and $e \in E(L_a) = \tilde{L}_a \cap E(S)$. From $r(a) = r(a)r(b)r(b)^{-1}$ it follows that $Sr(a) \subseteq Sr(b)$ so $\tilde{L}_a \preccurlyeq \tilde{L}_b$.

(ii) \Longrightarrow (iii) Since restriction of $\tilde{\mathcal{L}}$ on RegS is a known Green's relation on inverse semigroup RegS, then by Proposition 3.6.[6] from $e \in \tilde{L}_a \cap E(S)$ we have $e = r(a)r(a)^{-1}$. Hence, $r(a) = r(a)r(a)^{-1}r(b)$

(iii)
$$\Longrightarrow$$
 (iv) Is clear since $e = r(a)r(a)^{-1} \in E(S)$.

(iv) \Longrightarrow (i) Let (iv) holds, then by commutativity of RegS we have

$$r(a)r(b)^{-1}r(a) = er(b)r(b)^{-1}er(b) = er(b)r(b)^{-1}r(b)e$$

$$= er(b)e = er(a) = r(a),$$

$$r(a)r(b)^{-1}r(b) = er(b)r(b)^{-1}r(b) = er(b) = r(a)$$

so (i) holds.

We shall now describe the maximal elements on a π -inverse AG^* -groupoid.

Definition 3.2. The element a of a r-cancelative π -inverse AG^* -groupoid S is maximal if it is maximal with respect to the natural partial order \leq on S. \square

Let S be a π -inverse AG-groupoid and let

$$A = \{x \in S \mid (\exists y \in S - RegS) \ x = r(y)\}, \ B = RegS - A,$$

then the following lemma is true.

Lemma 3.2. Let S be the r-cancelative π -inverse AG^* -groupoid, then for all $a \in S$ it holds that $r(a) \leq a$.

Proof. If $r(a) = a^n$ then

$$Sr(a) = Sa^{n} = S(a^{n-1}a) = \bigcup_{x \in S} x(a^{n-1}a) = \bigcup_{x \in S} (a^{n-1}x)a \subseteq Sa,$$

$$r(a) = (r(a)r(a)^{-1})r(a) = (r(a)r(a)^{-1})(a^{n-1}a) =$$

$$(a^{n-1}(r(a)r(a)^{-1})a) \in Sa$$

and so $r(a) \cup Sr(a) \subseteq Sa \subseteq a \cup Sa$, whence $L_{r(a)} \leq L_a$. Also, r(a) = er(a) where $e = r(a)r(a)^{-1} \in E(S)$. By Theorem 3.1. we have $r(a) \leq a$. \square

Definition 3.3. The element a of a π -inverse AG-groupoid S is strongly π -inverse if

$$(\forall x \in S)((r(a) = (r(a)x)r(a) \iff x = (xr(a))x). \quad \Box$$

In this case $x \in RegS$.

Theorem 3.3. Let S be an r-cancelative π -inverse AG^* -groupoid, then every strongly π -inverse element from S-A is maximal.

Proof. Suppose that $a \in S$ is a strongly π -inverse element and $b \in S$ such that $a \leq b$. Then by Theorem 3.1. we have $r(a) = r(a)r(b)^{-1}r(a) = r(a)r(b)^{-1}r(b)$ and since a is strongly π -inverse we have $r(b)^{-1} = r(b)^{-1}r(a)r(b)^{-1}$. Now

$$r(b) = r(b)r(b)^{-1}r(b) = r(b)r(b)^{-1}r(a)r(b)^{-1}r(b) = r(b)r(b)^{-1}r(a) = r(a).$$

Let $a \in S - RegS$. If $b \in S - RegS$ then since S is r-cancelative from r(a) = r(b) it follows that a = b. If $b \in RegS$ then r(b) = b = r(a) and by Lemma 3.2 we have $b \le a$. Now, $a \le b$ and $b \le a$ gives a = b what is impossible.

Suppose that $a \in RegS$. If $b \in RegS$ then r(a) = a = b = r(b) and a is maximal element. If $b \in S - RegS$ then r(a) = a = r(b), which is impossible, since $a \in B$.

It is obvious that $a \in A$ is not maximal element because there exists $x \in S - RegS$ such that $a = r(x) \le x$. \square

References

- [1] S.Bogdanović, Semigroups with a system of subsemigroups, Math. Inst. Novi Sad (1995).
- [2] S.Bogdanović and M.Ćirić, Polugrupe, Prosveta, Niš (1993).
- [3] M.Božinović and P.V.Protić, Some congruences on a π -inverse LA^* -semigroups, Facta Universitatis.
- [4] J.Deneš and A.D.Keedwell, Latin squares and their applications, Akadémia Kiadó, Budapest (1974).
- [5] R.S.Harinath, On a generalization of inverse semigroups, Indian J. pure appl. Math. 8 (1977), 166-178.
- [6] R.S.Harinath, Some results on k-regular semigroups, Indian J. pure appl. Math. 10 (11) (1979), 1422-1431.
- [7] J.M.Howie, An introduction to semigroup theory, Academic Press (1976).
- [8] M.A.Kazim and M.Naseeruddin, On almost semigroups, The Aligarh Bull.Math. 2 (1972), 1-7.
- [9] Q.Mushtaq and Q.Iqbal, Partial ordering and congruences on AG-groupoids, Indian J. pure appl. Math. 22(4) (1991), 331-336.
- [10] Q.Mushtaq and Q.Iqbal, Decomposition of a locally associative LA-semigroup, Semigroup Forum 41 (1990), 155-164.
- [11] P.V.Protić and S.Bogdanović, Some congruences on a strongly π-inverse r-semigroup, Zbornik radova PMF, Novi Sad (15)2 (1985), 79-89.
- [12] B.Stamenković and P.Protić, The natural partial order on an r-cancelative semigroup, Math. Vesnik 39 (1987), 455-462.
- [13] P.V.Protić and N.Stevanović, Some general properties of an AG-groupoids, PUMA Budapest-Siena 6 (1995).

University of Niš, Faculty of Civil engineering, Beogradska 14, 18 000 Niš, Yugoslavia