FILOMAT (Nis) 10 (1996), 1-32

CONVERGENCE WITH RESPECT
TO ULTRAFILTERS: A SURVEY

S. Garcia-Ferreira and Lj. Koéinac*

Abstract. The purpose of this paper is to present some of the most im-
portant results concerning some generalizations of the classical notions of se-
quentiality, Fréchet-Urysohn property, radiality, pseudo-radiality, countable
compactness and pseudocompactness.

1. Introduction

All spaces are assumed to be Tychonoff. For z € X, the set of all neigh-
borhoods of z in X will be denoted by A (z). If X is a continuous function,
then f : AX — BY will denote the Stone-Cech extension of f. The Greek
letter k will stand for an arbitrary cardinal and the Greek letters o and « will
stand for infinite cardinal numbers. If & is a cardinal, then the Stone-Cech
extension J(a) of the discrete space a will be identified with the set of all ul-
trafilters on & and its remainder a* = f§(a)\ @ will be identified with the set
of all free ultrafilters on a. If A C a, then A = ClgyA={p€ p(a): A€ p}
and A* = A\ A. For p € B(a), the norm of p is ||p|| = min{|A4| : 4 € p}.
If o is a cardinal and 7 < a, then Uy(a) = {p € B(a) : v < |pl|}. I
a = =, then we simply write U(a). If @ is a cardinal and X a set, then
[X]*={ACX:|A|=c}and [X]S*={AC X :|A| £ a}.

For a space X, the tighiness of x € X, denoted by t(z, X), is the smallest
cardinal A with the property that if z € Clx A, then there exists B € [A]s?
such that z € Clx B, and the tightness of X is t(X) = sup{i(z,X): 2z € X}.
For a space X, the pseudo-character of z € X is denoted by ¥(z,X) and the
pseudo-character of the space X by ¥(X); d(X) will stand for the density of
X and ¢(X) for the cellularity of X. For cardinal invariants see [Ho].

Let X be a space, let (z,,)n<w be a sequence in X and let z € X. If F,
is the Fréchet filter on w, then z, — =z iff for every neighborhood V' of z

Received October 10, 1996

1991 Muathematics Subject Classification: 54A20, 54A25, 54C05, 54D20, 54D55.
* Supported by the Serbian Scientific Foundation, grant N® 04Mo01.

1




2 S. Garcla-Ferreira and Lj. Koginac

we have that {n < w : z, € V} € F,. This shows that the usual concept
of convergence sequence can be expressed in terms of filters. In 1968, M.
Katetov [Ka] introduced the notion of an F-limit point of an a-sequence in
a topological space.

Definition 1.1. Let F be afilter on & and X a space. A point z € X is said
to be an F-limit point of the a-sequence (2¢)¢cq in X, written = F—lim Bigs
if for every neighborhood V of z {{ < a:z; € V} € F.

A. L. Bernstein [Be] also discovered, in connection with problems in the
theory of non-standard analysis, the F-limits for the particular case when
F is an ultrafilter on w. The concept of F-limit was also used by Z. Frolik
in [Fro3] prior to the appearance of Katetov’s paper: when Frolik writes
z = >, {yn} he means precisely that ¢ = y — lim z,,. We should remark
that the F-limit points when they exist they are unique, since our spaces
are Hausdorff. To study F-limits for arbitrary filters F it suffices to consider
only ultrafilters as it shown in the following lemma which is taken from [GM;
Lemma 1.2].

Lemma 1.2. Let F be a filter on a, X a space and (2¢)¢<o an a-sequence
in X. Thenz = F-limz¢ iff v = p—limz; for every p € B(a) with F C p.

In virtue of Lemma 1.2, we will principally be concerned with ultrafilters.
The notion of a cluster point of a subset of a topological space may be
expressed in terms of ultrafilters as well:

Lemma 1.3. Let X be a space with |X| = @ and @ # A C X. Then,
z € Clx A if and only if there are an a-sequence (z¢)eco in A and p € 8(a)
such that z = p — lim z,.

Proof. Necessity: Suppose that @ € ClyA. We may assume that A is
infinite. Let {z¢ : £ < a} be an enumaration of X. Enumerate A4 as
{zg, : v < a}, we repeat elements if it is necessary. Then, (z¢,),<qo is an
a-sequence in A. We have that B = {{v < a:2¢, € V} :V € N(2)}
is a filter base on a. It then follows that if p € B(a) and B C p, then
2 =p—lim,e, 2¢, ..

Sufficiency: Let (2¢)¢<a be an a-sequence in A and p € B(a) such that
z=p-lima;. IfV e N(z), then @ # {£ < a:z¢ € V}. This shows that
z €ClxA. O

V. Saks [Sa2] pointed out that any topological space is characterized by
p-limit points. In fact, he proved that for any A C X one has that

ClxA ={z € X : z is the p-limit point of some

a-sequence (&¢)scq in X for some p € a*};
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this fact follows from Lemma 1.3.

Some of the classical concepts of general topology have their equivalent
forms in tems of p-limit points, for p € w* as follows:

Theorem 1.4. Let X be a space.
(1) X is sequential iff for every non-closed subset A C X there are z €
X\ A and a sequence (T, )n<w in A such that z = p=lim z,, for every p € w*.

(2) X is Fréchet-Urysohn iff for every x € ClxA there is a sequence
(Tn)n<w 1 A such that © = p—lim @, for every p € w*.

(3) X is countably compact iff for every countable subset {z, : n < w} of
X there are p € w* and z € X such that z = p —lim 2,,.

In 1975, J. Ginsburg and V. Saks [GS] generalized the notion of p-limit
point, for ultrafilters on w by replacing sequences of points by sequences of
non-empty subsets. This generalization is included in the next definition.

Definition 1.5. Let p be an ultrafilter on @ and X a space. A point z € X
is said to be an p-limit point of the a-sequence (5¢)¢<q of non-empty subsets
of X if for every neighborhood V of 2, {§ < a: S. NV # @} € p.

In general, a sequence (S, )n<. of non-empty subsets of a space X could
have more than one p-limit point: for instance, if 5, = n—lﬂ-} x R for each
n < w, then we have that every point of {0} xR is a p-limit point of (5, )n<w,
for every p € w*. Hence, if (S¢)¢cq is an a-sequence of non-empty subsets
of a space X and p € o, then L(p, (S5¢)¢<q) Will denote the set of all p-limit
points of (5¢)e<q in X.

For pseudocompactness we have the following equivalent statement by
using p-limit points.

Theorem 1.6. A space X is pseudocompact iff for eve’r;t;r sequence (V. )n<w
of non-empty open subsets of X there is p € w* such that L(p, (Vi )n<w) # @.

By using several ulrafilters at the same time we may define two kinds of
convergence.

Definition 1.7. Let @ # M C a*, X a space and (2¢)¢<n an a-sequence.
For z € X, we have:

(1) = = M-weak-lim z¢ if there is p € M such that z = p — lim z;

(2) @ = M-strong-lim z¢ if z = p — lim z¢ for all p € M.

In [Koc3] and in [Kom2], the authors consider the following convergence
with respect to a set of ultrafilters: For @ # M C o* and (2¢)eca an a-
sequence in X, 2 = M -very-weak-lim z if for every V' € N (z) thereis p € M
such that {{ < a: 2 € V} € p. But this notion coincides with the notion
of Clg() M-weak-limit.
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Theorem 1.8. Let @ # M C a*, X a space and (z¢)¢<a an a-sequence.
For x € X, the following are equivalent. -

(1) z = Clg(a)yM -weak-lim z¢;
(2) z = M-very-weak-lim z¢.

Proof. (1) = (2): Suppose that ¢ = Clg(qyM-weak-lim z¢. Then, there
is p € Clg(a)M such that ¢ = p —limz¢. Let V € N(z). Then, we obtain
that A= {{ <a:z¢ €V} €p. Thus,pe€ A and hence there is ¢ € M such
that g € A. It then follows that {{ < a:z, € V} € q.

(2) = (1): Assume that z = M-very-weak-lim z¢ and that  # p—lim z¢
for every p € Clg(o)M. Then, for each p € Clg) M there is ¥, € N(z) such
that A, = {£ < a:z¢ ¢ Vp} € p. Since ClyayM is compact, then there is
{Po,---,Pn} C ClaayM such that ClyayM C Ui, Ap;- Put V = Nig,, Vi
By assumption, there is ¢ € M for which A = {£ <a:zceV}eq Choose
k < n so that A, € ¢. Then, we have that AN A, # @, but this is a
contradiction. O

The Rudin-Keisler (pre)-order on a* is defined as follows: for p,q € o,
p <grg q if there is f € *« such that f(q) = p. I p <gpk g and ¢ <gk p, for
p,q € a*, then we say that p and ¢ are RK -equivalent and write p =px ¢. It
is known that p =prx g iff there is a permutation f of a such that flp)=q.
For p € a*, the type of p is the set T(p) = {g € a™ : p ®pK q}. For p,q € o,
p < q means that p <gg ¢ and p is not Rudin-Keisler equivalent to ¢. If
p € o, then Pri(p) = {¢ € @* : ¢ <rg p}Ua and if M C o¥, then
Pri(M) = U,ear P(p). Observe that |Pric(p)| < 2% and |Tri(p)| < 29,
for each p € a*. An other important order on w* is the Rudin-Frolik order
which is defined by p <grp ¢ if there is an embedding e : w — w* such that
&(p) = ¢ for p,q € w*. It is known that <pr C <grk and they are completely
different each other (see [CN2]).

The relationship between the Rudin-Keisler order and p-limit points is

established in the next easy lemma.

Lemma 1.9. Let p,q € a*. Then the following are equivalent.

(1) p<rK 4

(2) if (z¢)e s an a-sequence in a space X and z = p —lim ¢, then there
is a function [ € %« such that ¢ = g — limz f(¢).

H. Gonshor [Go] noticed that the p-limit point of a sequence (Ty)n<w
exists iff the function f :w — X defined by f(n) = z,, for each n < w, can
be extended to a continuous function wU{p} — X. In this direction, V. Saks
[Sal] also noticed that z = p —limz,, iff the function f:w — X defined by
f(n) = ,, for each n < w, satisfies that f(p) = . This observation holds
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for any cardinal @z z = p — limz¢ for p € o* iff the function f:a — X
defined by f(£) = x¢, for each £ < a, satisfies that f(p) = 2. This allows to
simplify our notation:

o we shall use in some cases ”f € “X” instead of "(z¢)eca is an a-
sequence” and " f(p) = z” instead of "z = p —limxz,”. o

Thus, we have that # = M-weak-lim ¢ iff the function f € *X defined by
f(€) = z¢, for each £ < a, satisfies that f(p) = @ for some p € M, and
z = M-strong-lim z¢ iff the function, f € *X defined by f(£) = w¢, for each
£ < a, satisfies that f(p) =z for all p e M.

If p, g € B(a), then the tensor product of p and ¢ is
pRg={ACaxa:{{<a:{(<a:(() e A}cq}cp}.

Then, p® g is an ultrafilter on o X @ which can be considered as an ultrafilter
on a via a fixed bijection between v and @ X a. It was pointed out by Katetov

[Ka] that p <pr p® ¢ and ¢ <gi p ® ¢ for every p,q € f(a).
Now, we give the following two concepts of general topology.
Definition 1.10. Let X be a space.
(1) X is < a-bounded if Clx A is compact for every A C X with | A |< o
(2) X is initially a-compact if every open cover U of X with |2/ |< « has

a finite subcover.

Notice that initial w-compactness is countable compactness.

2. Generalizations of Frechét-Urysohn and sequential spaces

The following definition is essential in our generalization of Frechét-Ury-
sohn and sequential spaces.

Definition 2.1. Let @ # M C o* and X a space. For @ # A C X, we
define:

(1) AM ={ezeX:3f:a— A, Ipe M(f(p) =2)};

2)AY ={zeX:3f:a— A, Vpe M(f(p) =)}

(3) ([Koc3]) Aw(M,0) = A, Aw(M, )+ 1) = (Aw(M,)))j, for an
ordinal A, and Aw(M,A) = U, <, Aw(M,n) if Als a limit ordinal;

(4) ([Koc3]) As(M,0) = A, As(M,A\+1) = (As(M,A))¥ and As(M, ) =
Uy <r As(M,n) if Ais a limit ordinal.

We should remark that if A C X, then z € Ag* iff there is an a-sequence
(2¢)e<o in A such that z¢ — =.
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Next, we state the natural generalizations of the concepts of sequential
and Frechét-Urysohn spaces,

Definition 2.2. Let @ # M C a* and X a space. Then:

(1) ([Kom1], [Sav]) X is weakly M -sequential, if for every subset A of X,
ClxA = Uy cor Aw(M, X); ‘

(2) ([Kom1], [Sav]) X is strongly M -sequential, if for every subset A of
X, ClxA = Uyca+ As(M, A);

(3) ([Koc3]) X is a WFU(M )-space, if for every A C X, ClxA = A} =
Aw(M, 1);

(4) ([Koc3]) X is an SFU(M)-space, if for every A C X, ClxA = AY =
AS(M, 1).

We remark that a space X is weakly M-sequential (resp., strongly M-
sequential) if and only if A is a non-closed subset of X, then 3f € ¢ X, dz €
(X\A), 3p € M (F(p) = A flo]  A) (resp., 3f € °X, 3o € (X \ 4),Vp €
M (f(p) = = A fla] C A)), and X is a WFU(M )-space (resp., SFU(M)-
space) if and only if A C X and 2 € ClxA, then 3f € *X, Ipe M (f(p) =
z A fla] C A) (resp., 3f € °X, ¥p e M (f(p) =z A fla] C A)). If p €
a*, then weakly {p}-sequential = strongly {p}-sequential and W FU({p})-
space = SFU({p})-space. In this case, we simply say p-sequential space and
FU(p)-space, respectively, and we write AP for Ag;} = Agp} and A(p,A) for
Aw({p},)) = As({p},"\), for every ordinal A.

Let us also remark that in [Koc3] the author considered different kind of
P-pseudo-radial and P-radial spaces, where P is a class of uniform ultrafilters
on various cardinals (see also [N]); but this generalization is obvious and we
shall not consider here these notions.

The following lema establishes the connection among Rudin-Keisler order,
FU(p)-spaces and p-sequential spaces (a proof is available in [G2]). £(p)
denotes the subspace oo U {p} of (e

Lemma 2.3. For p,q € o*, the following are equivalent.

(1) p <Rk 4;

(2) &(p) is a FU(q)-space;

(3) &(p) is g-sequential;

(4) every p-sequential space is q-sequential;

(8) every FU(p)-space is a FU(q)-space.

Some of the classical notions of general topology are defined in our context
as follows. For a space X, we have that

i 8
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(1) X is sequential iff X is strongly w*-sequential;

(2) {X) < aiff X is weakly a*-sequential;

(3) X is Frechét-Urysohn iff X is a SFU(w*)-space.

(4) We recall that a space X is pseudoradial (or chain-net) if every non-
closed A € X thereis z € Clx A\ A and an a-sequence (Z¢)¢<, such that
z¢ — z, and X is radial (or Frechét chain-net) if for every @ € Clx A there
is an a-sequence (%¢)¢<o in A such that z; — @ (these two classes of spaces
were first introduced by Herrlich [He]). We then have that X is pseudo-

radial (resp., radial) iff there is a cardinal & <| X | such that X is stronly
a*-sequential (resp., a SFU(a)-space).

In [BM], it was proved that there is a filter 7 on w having the property that
every sequential space is an I"U(F)-space, and in [M] Malykhin proved that
if the Novak number of w* (= the smallest cardinality of a cover by nowhere
dense sets) is bigger than the continuum, then sequentiality coincides with
weakly w*-sequentiality (called ultra-sequentiality in [M]).

Ifpe M C o, then
SFU(M) —space = FU(p)—space = WFU(M) - space

I I 4
strong M —sequentiality =+ p—sequentiality = weak M —sequentiality
The following examples show that the arrows cannot be reversed.

Example 2.4. (1) For a free filter F on a, {(F) = aU{F} will be the space
in which « is discrete and the set FU{F}, for F' € F, is a basic neighborhood

of F. If Fis a free filter F on a, then Mz = {p € a* : F C p} is a closed-

subset of a* and £(F) is a SFU(Mg)-space. Indeed, £(F) is a FU(p)-space
forpea*iff FCp. f@# M Ca*,then Fpy ={ACa: M C A*}isa free
filter on a. Thus, we have that M = Mgz,, and F = Fpr,, for @ £ M C o*
and for a free filter F on a.

(2) For p € U(a), £(p) = a U {p} is a subspace of f(a) and is a FU(p)-
space. If p,g € U(a) and p <gi ¢, then £(q) is a FU(q)-space that is
not p-sequential (by Lemma 2.3). Hence, £(p) is a FU(g)-space that is not
sequential and is a W FU({p, ¢})-space that is not a FU(p)-space.

(3) Let M = (Fi)ies, we allow repetition, be an [-sequence of free ul-
trafilters on arbitrary cardinals. Then Z(M) = @;e1&(F;) will denote the
topological sum of the spaces £(F;)'s. It is not hard to prove that Z(M) is
weakly (|J;c; M, )-sequential.




8 S. Garcia-Ferreira and Lj. Koéginac

(4) f @ # M C a*, then the space (M) = ®pemé(p) is weakly M-
sequential and if there are p, g € M which are RI-incomparable, then Z(M)
is neither a F'U(p)-space nor a F'UU(g)-space.

(5) The Arens space Sy = {z}U{z,:n <w}U{zpm:(n,m) €w x w},
where z, — z and =, ,, — , for every m < w, is a sequential space that is
not Frechét-Urysohn.

(6) The sequential spaces S,, for n > w introduced in [AF] have their
p-sequential version for p € U(a). In fact, for p € U(a) and 1 < n < w, we
define

Sn(p) = {;E} U {xfhn--ﬁk 5y wes !Ek = CE}

1<k<n

and the topology on S, (p) satisfies that
(i) 2 = p—limg, o T¢,;

(ii) Leyynbry — P — Hmﬁk—'a T ST JUNP IS % for every (617 L) ’fk—l) =
! and for every 1 < k < a3

(iii) The set {z¢,, . ¢, : (&1,...,€n) € @™} is discrete.

a""

It is shown in [G1] that S,(p) can be embedded in a* and S,(p) is a p-
sequential space that is not a F'U(p)-space for every p € U(a) and for every
n < w.

(7) For p € w* and for each » < w;, we may defined, by transfinite
induction, a p-sequential space §,(p) that generalizes the space 5, defined
in [AF] (for the details see [G2]). For p € w* and for ¥ < wy, it is also
possible to embed 5,(p) in f(w). O

We omit the proof of the next theorem.

Theorem 2.5. Let @ # N C M C a*. Then:
(1) weak N -sequentiality = weak M -sequentiality;
(2) strong M -sequentiality = strong M -sequentiality;
(3) WFU(N)-space = WFU(M)-space;
(4) SFU(M)-space = SFU(N)-space;
(8) strong M -sequentiality = strong (Clpq) (M ))-sequentiality;
(8) SFU(M)-space = SFU(Clga)M )-space.
W. W. Comfort and S. Negrepontis ([CN1], [CN2]) proved that the Rudin-

Keisler order is 2% upward directed. In the next theorem we give two state-
ments which are equivalent to Comfort-Negrepontis’ theorem.
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Theorem 2.6. For a cardinal a, the following are equivalent.

(1) If 5 C B{a) with | S |< 2%, then there is ¢ € U(a) such that p <grg ¢
for allp € 5;

(2) If X is a space with t(X) < a and | X |< 2%, then there is p € U(«)
such that X is a FU(p)-space.

Proof. (1) = (2): This is Theorem 3.12 of [G2].

(2) = (1): Let § C f(a) with |.S| < 2%. Then the space Z(.5) satisfies
that #(2(S5)) = e and |E(S)| < 2*. By hypothesis, there there is p € U(a)
such that =(§) is a FU(p)-space. Hence, £(g¢) is a F'U(p)-space for each
g € 5 and hence, by Lemma 2.3, ¢ <gx pforeachge 5. 0O

3. Generalizations of countable compactness

The characterization of countable compactness given in Theorem 1.4 sug-
gests the study of the following classes of spaces.

Definition 3.1. Let @ # M C o™.

(1) ([Kom2], [Sav]) A space X is quasi M-compact if for every f € X
there is p € M such that f(p) € X;
_ (2) ([Be], [Sa2], [Wo]) A space X is M-compact if for every f € X,
f(p) € X for all pe M;

(3) ([Koc2], [Koc3]) A space X is strongly M -compact if there is a point
z € X such that for every f € X, f(p) = z for all pe M.

For @ # M C a*, we have that M-compactness implies quasi M-compact-
ness. We observe that (a* \ U{a))-compactness coincides with < a-boun-
dedness (see Theorem 1.3 in [G1]) and quasi w*-compactness coincides with
countable compactness,

We also mention two results from [Koc3].

(1) Every initially a-compact W FU (M )-space (resp. SFU(M )-space} is
quasi M-compact (resp. strongly M-compact);

(2) If X is a strongly M-compact space, then X is weakly M-sequential
iff every strongly M-compact subspace A of X is closed in X.

The topological properties which are productive, closed-hereditary and
surjective are characterized by using ultrafilters as follows.

Theorem 3.2. ([KS]) Let P be a topological property which is productive,
closed-hereditary and surjective. A space X of cardinality o has P if and only
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if X is P(a)-compact, where P(a) is the mazimal (M -compact)-reflexion of
the discrete space .

As a consequence of Theorem 3.2, we have that M-compactness for @ #
M C a* is productive, closed-hereditary and surjective. But, quasi M-
compactness is not productive; for instance, there is a countably compact
space X such that X X X is not pseudocompact (see [GJ; 9.15]).

If P = M-compactness for @ # M C a*, then the mazimal P-reflexion
of a space X, denoted by Fp(X), has the following properties:

(1) Bm(X)={Y : X CY CB(X),Y is M — compact };

(2) Am(X) is M-compact;

(8) X is dense in fps(X);

(4) for every continuous function f: X — Z such that Z is M-compact,
we have that f[Au(X)] C Z;

(5) up to a homeomorphism fixing X pointwise, (X ) is the only space
satisfying (2), (3) and (4).

For an arbitrary space X and for @ # M C «*, the M-compact reflexion
Br(X) can be constructed step by step:

Let ®o(M, X) = X, and &) 1(M, X) = {f(p): f:a — ®\(M,X),p €
M} for an ordinal A and @3(M, X) =, .y ®,(M, X) for a limit ordinal A.
Then, we have that Sy (X) = [, .o+ ®a(M, X).

Hence, we have that for every space X and for @ # M C a~, |Bum(X)] <
| M| -] X]e.

The next result is a direct application of Comfort-Negrepontis’ theorem
(see Theorem 2.6).

Theorem 3.3. ([G1]) If @ # M C o and |M| < 2%, then there isp € U(a)
such that p-compacntess implies M -compactness.

The authors of [GS] proved that X @ is countably compact for all cardinal
numbers o iff there is p € w™ such that X is p-compact. Saks [Sa2] extended
this result for initial a-compactness and S. Garcia-Ferreira [G1] improved
Saks’ theorem by using decomposable ultrafilters as it stated in the following
theorem. First, we recall that p € U(a) is decomposable if for every w < v <
a there is p, € U(7y) such that p, < p.

Theorem 3.4. Let X be a space. The following are equivalent.
(1) X7 is initially a-compact for all cardinals v;

(2) X s inttially a-compact;
(3) XX s indtially a-compact;
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(4) there is p € U(a) decomposable such that X is p-compact.

H. Donder [Do] has shown that in the core model every ultrafilter is
decomposable. Thus, in the core model we have that X7 is initially a-
compact for all cardinal v iff there is p € U(a) such that X is p-compact.
On the other hand, it is shown in [G6] that if p € U(«), for a strong limit
cardinal «, satisfies that ¢ < p implies that either ¢ € w* or p € U(«a) (these
ultrafilters are called indecomposable), then f,(«a) is not initially o-compact.
Prikry [P] proved that if p € U(«a) is a-complete, then there is a generic
extension in which any ultrafilter extending p is indecomposable and a is a
strong limit with ¢f(a) = w.

The existence of two initially a-compact spaces whose product is not
initially a-compact for a regular cardinal « is still unknown in ZFC: E. K.
van Douwen [vD] constructed an example assuming GCH and Nyikos and
Vaughan [NV] proved that if o™+ < 2%, then there is a family of at*
initially a-compact spaces whose product is not countably compact. The
following partial answer is taken from [G1].

Theorem 3.5. If initial a-compactness is productive, then there is p € U(a)
decomposable such that initial a-compactness coincides with p-compactness.

A characterization of intial a-compacntess is given in the next theorem
(a proof is available in [St]; see also [N]).

Theorem 3.6. For a space X the following are equivalent.

(1) X is initially a-compact;

(2) for every w < v < a and for every f:v — X there is p € U(7y) such
that f(p) € X.

Theorem 3.6 suggests the next generalization of quasi M-compactess.

Definition 3.7. Let a be a cardinal and let M = {M; : ¢ € I} be an
arbitrary set of non-empty subsets of a*. Then, a space X is said to bhe
guasi M-compact if X is quasi M;-compact for every i € 1.

If @ # M C «, then quasi M-compactness agrees with quasi {M }-
compactness, and if M = {p; : i € [} C a*, then X is quasi M-compact iff
X is p;-compact for all ¢ € I. If p, g € w* satisfy that r < ¢ for all » € F,(w),
then 4,(w) is p-compact, but it is not quasi {{p}, {¢}}-compact.

Forw < v < a, M(y,a) will denote an arbitrary set {M, : v < x < e} of
non-empty subsets of a* such that M, C U(x) for every v < & < a. Using
this terminology, we have that a space X is initailly a-compact if and only
if there is a set M(w, @) such that X is quasi M(w, a)-compact.
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For a cardinal a, let C, will denote the class of all spaces X with the
property that for every initially a-compact space ¥, X X Y is initially «-
compact. The class C,, was introduced by Frolik [Fro2] and he characterized
the spaces which are in C,,. For cardinals higher than w we have the following
theorem.

For w < v < a, we set
A(v,e) ={U(y)N K : K C o*,aU K is initially & — compact },
and M, = UwaSa Ay, a).

Theorem 3.8. ([G7]) For a space X, the following are equivalent:
(1) X €Cq;
(2) X is quasi M ,-compact.

The following theorem is due to Savchenko [Sav] and Kombarov [Kom1]
(for a = w).

Theorem 3.9. Let @ # M C o*. If X is a paracompact weakly M -
sequential space and Y is a collectionwise normal M-compact space, then
X x Y is collectionwise normal.

The next definition characterizes the spaces X for which X7 is initially
a-compact for some cardinal 7.

Definition 3.10. ([GT7]) Let @ # M C o* and let k be a cardinal with
1 < k. Then, we say that X is (x, M )-compact if for every k-sequence
(fe)e<w of functions in *X, there is p € M such that fe¢(p) € X for each
£ < K.

Theorem 3.11. ([G7]) Let X be a space and let o and & be cardinals with
1 < k. The following are equivalent.

(1) X* is initially a-compact ;

(2) for each cardinal y with w < v < a there is @ # M, C U(y) such
that X is (k, M.y)-compact;

N

(3) X is (x,U(7))-compact for every cardinal w <y < a.
Now, we give some results about when By(a) € Co, for @ £ M C a*.

Theorem 3.12. ([G7]) If there is @ # M C w* with By(w) € C,, then
Brr(w) = B(w).

It is shown in [G7] that there is @ # M C w* such that Gpr(w) # (W)
and |Bar(w)| = 227, Unfortunately, the following question remains open.
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Question 3.13. ([G7]) Let a > w be u regular cardinal. Is there @ # M C
a* such that fuy(a) € Co and Bp(a) # pla) ?

The following (pre)-order on a* was introduced by W.W. Comfort in [G4]
and is a very important tool to study the p-compact like properties.

Definition 3.14. For p,q € «*, we say that p <¢ ¢ if every g-compact
space is p-compact.

It is evident that <gx C <¢ (for a proof of the fact that these two orders
are different see [G4; Th. 2.8]). If p <¢ ¢ and ¢ <¢ p, for p,g € a,
then we write p ¢ q. The Comfort type of p € U(a) is the set Te(p) =
{q € @* : p =¢ q}. It is proved in [G6; Lemma 3.4] that if p € U(«), then
Te(p) C U(e) and |[{Tri(q) : p =c ¢}| > w. If p,q € a*, then p <¢ ¢ means
that p <c ¢ and p is not Comfort equivalent to g. A useful characterization
of the Comfort-order is given in the next theorem.

Theorem 3.15. ([G4], [G6]) For p, ¢ € a*, the following are equivalent:

(1) pLew;

(2) Bpla) C Bo(a);

(8) pe 6q(a);

(4) 3f € *By(@) (f(a) = p ¢ flal);

(5) B4() is p-compact;

(6) Bq(a) Na* is p-compact.

It is a direct consequence of Theorem 3.15 that if p € o*, then Pe(p) =
{g€a*:q<cptUa=LGy(a)

Next, we state some of the properties of T (p) for p € o* (for definitions
see [CN2]).
Theorem 3.16. For p € U(a), we have that

(1) if p € w*, then Tc(p) contains a subset § such that (5, <grr) is order
isomorphic to the reals;

(2) ([G4]) if p € w* is RK -minimal, then every two points of Tc(p) are
RF-comparable;

(3) ([G4]) if p,r,s € w* satisfy that s <¢c p, v <c p and s and v are
RF-incomparable, then (Tc(p), <rr) is not a linearly ordered set;

(4) ([GA]) if p € w*, then Tc(p) is countably compact;

(5) ([G4]) if p € w* is a P-point, then Tc(p) is p-compact;

(6) ([GT]) f p,g € w* are RK-minimal and RK -incomparable, then
Te(p) x Te(q) is not countably compact;
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(7) ([G8)]) if p,q,v € w™ satisfy that r <g p and r <¢c ¢ and r is a
P-point of w*, then Te(p) x Te(q) is r-compact;

If ¢, =| {Tri(q) : p =c ¢} |, then

(8) ([G6]) if a < ¢p, then a < ¢, < 2°;

(9) ([GS]) if p is countably complete, then 2% < ¢, = e < 2%

(10) ([G6)]) if p is decomposable, then ¢, = 2%;

(11) ([G6]) if p is regular, then ¢, = 2°;

(12) ([GG]) if p € U(R,), then ¢, = 2% for every n < w;

(13) ([G6]) f w < a and p is RK -minimal, then ¢, = w.

We do not know the response to the next question in ZFC.
Question 3.17. Ifpe U(R,), must ¢, = 2% ?

The property that says ” Rudin-Keisler ordering is downward directed” is
known as the set-theoretic principle Near Coherence of Filters, NCF. Shelah
[BS] has defined a model of ZFC in which NCF holds and MA implies the
negation of NCF. This principle NCF is equivalent to any one of the next
assertions.

Theorem 3.18. ([G4)]) The following are equivalent.
(1) Vp,q € w*Ir € w*(r <rx pA T <RK q);
(2) Vpaq cw*dre w*(r La PAT Lo Q):

(3) if X is p-compact and Y is q-compact, for p,q € w*, then X x Y is
countably compact;

(4) Vp, g € w™(Bp(w) N fy(w) # w).

It is well-known [Bl] that if we assume MA, then there are p, g € B(w) such
that p and ¢ are R -minimal and R K -incomparable; hence, ﬁy(w)(‘lﬁq(w) S
w (see [G4]). Thus, MA implies ths existence of two ultrafilters p,q € w* for
which there are a p-compact space and a g-compact space ¥ whose product
X x Y is not countably compact. All the statements of Theorem 3.18 hold
in a model of NCF.

It is a theorem of W.W. Comfort and Ch. Waiveris ([CW], [Wa]) that if
X is either an F-space or realcompact, then there is a set {X; : £ < 2"}
of countably compact (extra countably compact) subspaces of #(X) such
that X N X, = X for £ < ¢ < 2*". Using p-limit points, V. Saks [Sa3]
showed that these spaces can be chosen pairwise non-homeomorphic. In this
direction, we shall present a similar result for F-spaces that is independent
of the axioms of ZFC. We need two lemmas.
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Lemma 3.19. Let X be a space and let p € w* be RK -minimal. Then
Bo(X) =X U{f(p): f €“Bp(X) is an embedding}.

Proof. Put Y = X U {f(p) : f € “B,(X) is an embedding }. Tt is evident
that ¥ C 6,(X). We shall verify that ¥ is p-compact. Indeeed, let f e “Y
be an arbitrary function. We may assume that f(p) ¢ flw]. By Lemma
2.16 of [G4], there is A € p such that f|, is an embedding. Now, we choose
B C Asothat B € pand |A\ B| = |B| = w. Define a bijection h :w — A
such that %|p is the identity and g = f o h. Then, g : w — fG,(X) is an

embedding and g(p) = f(p) and hence f(p) € Y. This shows that Y is
p-compact and so B,(X)=Y. 0O

Lemma 3.20. ([FKZ]) Let X be an F-space and let f,g : w — X be two
embeddings. If f(p) = glq) for p,q € w*, then p and q are RF-comparable.

Theorem 3.21. Assume MA. Let X be a compact F-space. Then, there is
aset {X¢: €< 22} of subspaces of B(X) such that

(i) X¢ is pe-compact for some pg € w* for each £ < 2%°;

(il) XEOXC:X fOTE(C(QZw.
In addition, if X is not countably compact, then the spaces Xés can be chosen
patrwise non-homeomorphic.

Proof. By Theorem 14.25 of [GJ], we have that 3(X) is an F-space as
well. It was shown by A. Blass [Bl] that if we assume MA, then there is
a set {pe : £ < 22"} of RK-minimal points of w* which are pairwise RK-
incomparable. For £ < 22°, we define X ¢ = Bp(X). We only need to verify
clause (i1). Let £ < ¢ < 2*" and assume that there is z € XN X N(B(X)\X).
By Theorem 3.15, there are two functions f:w — X¢ and f:w — X, such
that f(p¢) = z = §(p¢). According to Lemma 3.19, we may suppose that f
and g are embeddings. So, by Lemma 3.20, ps and p¢ are R/ -comparable,
which is a contradiction. Finally, assume that X is not countably compact.
Then, X # X, for every £ < 22° If X¢ is homeomorphic to X, for £ <
¢ < 2%, then X¢ would be p;-compact, so X C X¢, a contradiction since
XE N X( =X. 0O

We should remark that in a model of NCF, the discrete space w does not
satisfy the conclusion of Theorem 3.21. In fact, assuming NCF, if p, ¢ € w*,
then there is r € w* such that r <ggx p and r <pg ¢ and then w # f,(w) C
Fp(w) O Gy(w).

For p € U(a), the spaces which quasi Pgrg(p)-compact are called almost
p-compact in [G7]. This name is because if X is quasi Prx(p)-compact and
f ra — X is a function, then there ¢ € “a such that (p) € o* and

f(a(p)) € X.
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For every p € w*, it is clear that
p-compactness —> almost p-compactness = countable compactness.

We give two examples to show that these three concepts are different each
other.

Example 3.22. ([G7) Let p € w*.

(1) An almost p-compact space that is not p-compact: Our space ', will
be constructed by transfinite induction. Put Iy = w and assume that I,
has been defined for p < v < wy. Then, define

T, ={flg): frw— ﬂ T, is an embedding f(g) # p,q € Trr(p)}.

<y

We set I'y = [, [v. Since p ¢ Ty, then T';, cannot be p-compact. It is
not hard to see that I', is almost p-compact.

(2) A countably compact space that is not almost p-compact: We define
A, =wU(B(w)\ Pri(p)). It is evident that A, cannot be almost p-compact
and since | Pri(p)| < 2, A, must be countably compact. O

As an other application of Theorem 2.6 is that if a countably compact
space has cardinality not bigger than 2%, then the space is almost p-compact
for some p € w*. A more general statement is the following.

Theorem 3.23. ([G7]) If X; is inttially a-compact and | X¢| < 2% for £ <
2%, then there is p € U(a) such that X is almost p-compact for every £ < 2°.

The almost p-compactness for a R -miniinal ultrafilter p € w* has the
following property.

Theorem 3.24. ([G7]) For p € w*, the following are equivalent.
(1) p-is RK -minimal;

(2) quast Tri(p)-compactness agrees with almost p-compactness.

By using almost p-compactness, the Rudin-Keisler order has the next
equivalent statement:

Theorem 3.25. ([G7]) For p,q € w*, the following are equivalent.

(1) p <Rk ¢;
(2) every almost p-compact space is almost q-compact.

It is pointed out in [GS] that the type Tgrxi(p) for p € U(a) cannot be
countably compact, but for the Comfort-types we have:
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Theorem 3.26. ([GT7]) Forp € w*, we have that Tc(p) is almost p-compact.

The following questions will provide information about the topological
behaviour of the Comfort-types.

Question 3.27. If p € U(a) is not RK -minimal, must To(p) be countably
compact ¢ s

Question 3.28. Ifp € w* is not RK -minimal, must Te(p) p-compact ?

The answer is in the positive fashion for a RK-minimal ultrafilter on w.

4. Cardinal invariants

Theorem 2.6 leads us to consider the following cardinal invariant.

Definition 4.1. For a space X, we define
Tpy(X) = min{e : Ip € U(a) (X is a FU(p)-space)}.

For any space X, we have that ¢(X) < 7py(X) and if 7py(X) < @, then
there is ¢ € U(a) such that X is a FU(q)-space. According to Theorem 2.6,
if {X) = a and |X| < 29, then 7py(X) < a and hence 7ry(X) = t(X).
Note that if X is a FU(p)-space for p € U(a), then tpy(X) < ||p||. The fact
that | X| < 227 (see 1.5.3 in [En]) implies that ey (X) < 22" Bu, if
X is a WFU(M)-space, M C a”, then | X| < 24X) ([Koc3]) so that for such
spaces X we have tpy(X) < 294X),

The following example shows that the functions ¢ and 7pg are different.
Example 4.2. Let X = E(w*). Then, {(X) = w. Suppose that 7py(X) =
w. Then, there is ¢ € w* such that X is a FU(g)-space. Hence, £(p) is a

FU(q)-space for every p € w*. In virtue of Lemma 1.9, we have that p <px ¢
for every p € w*; that is, |P(g)| = 2¢, which is a contradiction. O

The proof of the following lemma is a direct application of Theorem 2.6.

Lemma 4.3. For every p € U(a) there is a set {p, : v < at} C U(«a) such
that

(1) po = p;
(2) pu+1.~rK p® py for every v < a't;
(3) pv < pu whenever v < p < at.
Lemma 4.4. ([GMT; Lemma 1.4]) Let p,q € o* and X a space.
(1) If p <Rk q, then AP C AY for every A C X. -
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(2) If {p, : v < at} C U(w) satisfies the conclusion of Lemma 4.3 for p,
then A(p,v) C A(py,1) for every v < a¥ and for every A C X.

The next theorem generalizes Theorem 3.5 of [G2] for arbitrarily higher
cardinals.

Theorem 4.5. If X is p-sequential for p € U(a), then there is ¢ € U(a)
such that X is a FU(p)-space.

Proof. Let {p, : v < at} C U(a) satisfy the conditions of Lemma 4.3.
According to Theorem 2.6, there is ¢ € U(a) such that p, < ¢ for every
v < at. We claim that X is a FU(qg)-space. In fact, for A C X we
have that ClxA = |y .o+ A(p,A). In virtue of Lemma 4.4, we have that
A(p,A) C A(py,1) for every A < a*. Applying again Lemma 4.4, we have
that A(px,1) C A(g,1). Therefore, Clx A = A(q,1). This shows that X is a
FU(q)-space. O

It then follows from Theorem 4.5 that, for every space X,
rry(X) =min{a : Ip € U(a) (X is p-sequential)}.
The next result is a corollary of Theorem 2.6.

Corollary 4.6. For a cardinal «, the following are equivalent.
(1) rru(U(a)) = v;
(2) 2" < 27,
The degree of sequentiality of a weakly (strongly) M-sequential space is
given in the next definition.
Definition 4.7. Let X be a space. Then:
(1) if X is weakly M-sequential for some @ # M C a*, we define
oM(X)=min{A < ot : VA C X(ClxA = Aw(M,)))};
(2) if X is strongly M-sequential for some @ # M C o™, we define
eM(X)=min{A < at: VAC X(ClxA = As(M,N))}.
Notice that X is weakly (resp., strongly) M-sequential, for some @ # M C
a*, if and only if of(X) (resp., oY (X)) exists [Koc3]. For a space X, we
have that 7p(X) < « if and only if o} (X)) exists. A space X is SFU(M)-

space (resp., WFU (M )-space) if and only if e} (X)) = 1 (resp., ofy (X ) = 1).
If M = {p} for some p € U(a), then we write a,(X) = ol4(X) = e¥(X).

The cardinal invariants stated in the following definition, for (pseudo)
radial spaces, were introduced by Lj. Koéinac in [Kocl].
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Definition 4.8. Let X be a space and let @ # M C ao*.

(1) if z € X, then

rtd(z,X) =min{A : z € Aw(M,1) = 3B € [A]=* (z € Bw(M,1))};

(2) if z € X, then

rtd (z,X)=min{A:z € As(M,1) = 3B € [A]** (z € Bs(M,1)));

(3) rtd(X) = sup{rt]f(z,X): 2 € X};

(4) rtM(X) = sup{rt¥(z,X) : 2 € X}.

If M = {p} for some p € U(a), then we write ri?(z, X) = rit}l(z, X) =
rtM(z,X) and rtP(X) = rt}f(X) = rtM(X), for any space X. If X
is strongly M-sequential (resp., a SFU(M)-space), then #{(X) < riff(X)

(resp., #(X) < rt¥(X)). For an arbitrary space X, rt?(X) < 7ry(X),
where p € U(a) is the ultrafilter which witnesses that X is a FU(p)-space.

The proof of the next theorem is left to the reader.

Theorem 4.9. Let X be a space and let @ # M C o*.
(1) if X is weakly M-sequential, then t(z,X) < rt}(z, X) for every
z € X and
1(X) < rtgp(X) < minf]lpl) : p € M} < o
(2) if X is strongly M -sequential, then t(z, X) < rt¥(X) for everyz € X
and
tHX) < rtg! (X) < min{|lp|| : p € M} < o
(3) if X is a WFU(M)-space, then t(X) = rtdd (X);
(4) if X is a SFU(M)-space, then t(X) = rt¥(X).

Now, we give an alternative definition of the tightness of a space.

Theorem 4.10. Let X be a space. Ift(X) =y, theni(z,X) = T'tLMT,H)(a:,X)
for everyz € X and t(X) = Tt%‘T)(X).

Proof. First, notice that X is weakly U(+y)-sequential. Let 2 € X. If
z € ClxA, then there is B € [A]SY such that # € ClxB. Hence, by

Lemmas 1.3 and 1.9, there is p € U(y) and an y-sequence (2¢)¢< in B such
that z = p — limz,. Thus, 2 € Bw(U(y,1) and |B| < 4. This, shows that

t(z,X) > rtgv(ﬂ(:r:, X). The equality follows from Theorem 4.9. Therefore,
H(X)=rt(X). O

An application of Theorem 4.10 is that if Z(w*) is a FU(p)-space for
p € U(tru(E(w*))), then 7t?(E(w*) = w < Try(E(w*)).
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Lemma 4.11. Let X be a space and (2¢)¢<q an a-sequence in X converging
toz € X. If Y(z,X) < o, then we have that

(1) if (2, X) < ef(a), then (2¢)¢<q is eventually constant;

(2) if cf(@) < ¥(z,X), then there is a sub y-sequence of (z¢)e<a that
converges to .

Proof. Put v = ¢(z,X). Let {V, : v < v} C NM(z) be a pseudo-base at
z. For each v < v, we pick £, < a such that £, € U, and il §, < ( < a,
then @, € U,. Suppose that (z¢)¢<q is not eventually constant. Then, we
may assume that z # @, for every £ < a. Since {z} = [, ., V., we must
have that the set {£, : ¥ < 7} is cofinal in @ and hence ¢f(a) < y. Without
loss of generality, we suppose that £, < £, whenever v < p < 7. Now, we
shall show that £, — . Fix V € AM(a). Then, there is # < « such that if
f <( < a, then z; € V. Choose v < 7 so that § < £,. Hence, if v < p < 7,
then z,, € V. Thus, z¢, — = as required. 0O

Lemma 4.11 implies the next result.

Lemma 4.12. Let X be a space and (2¢)scq an a-sequence in X converging
toz e X. If p(z,X) < cf(a), then As(a*,A) C As(y*,A) for every A C X
and for every cardinal A.

Now, we have two consequences of Lemmas 4.11 and 4.12.

Theorem 4.13. Let X be a space such that v = ¥(X) < «. Then, we have
that

(1) if X is strongly a™-sequential, then X is strongly v*-sequential;
(2) if X is a FU(a*)-space, then X is a §F(y*)-space.
Corollary 4.14. Let X be a space.

(1) ([Kocl]) A pseudo-radial space of countable pseudo-charecter is se-
quential;

(2) ([A1]) A radial space of countable pseudo-charecter is Frechét-Urysohn.

Definition 4.15. ([Koc3]) Let X be a space and let @ # M C a*. We
define

(1) d(X) = min{|A| : X = Aw (M, 1)};

(2) d¥(X) = min{|A| : X = As(M,1)};

In the context of pseudo-radial spaces, d& (X ) was introduced in [Kocl].
For a space X, we have that d(X) < min{d}(X),d¥(X)}.

The density cardinal function can be defined as follows.
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Theorem 4.16. For any space X, we have that
U(d(X
d(X) = dyt* XD (x).
Proof. We know that d(X) < dgf(d(x))(X). If D is a dense subset of X with
|D| = d(X), then by Lemma 1.3, we obtain that X = Ay (d(X)*,1). Hence,
dX) = da¥@N(x). o

Question 4.17. Is there an example of a space X such that it is FU(p)-
space for some p € U(tpy(X)) and d(X) < dP(X) ?

From Theorem 2.6 it follows that if | X \ D| < 24%) for a dense subset D
of X with |D| = d(X), then d(X) = d?(X) for some p € U(d(X)).
The next theorem is taken from [Koc3] (see also [G2]).

Theorem 4.18. Let @ # M C o* and let X be a weakly M -sequential
space. Then:

(1) For every A C X, |AM| < 2141 and, in particular, |X| < 24w (X) .
(2) [X] < dlf(X)°.

If X is a WFU(M)-space, we have
(8) |X] < 245,

In a similar way one can prove the following result.

Theorem 4.19. Let @ # M C a*. If X is a strongly M -sequential space,
then |X| < 245 (X),

We end this section by the following result shown independently by Koéinac
and Savchenko.

Theorem 4.20. ([Koc2], [Sav]) If X is a compact strongly M -sequential
space, @ # M C w*, then |X| < 2°(%),

5. Mappings and sequential properties

Recall that a continuous mapping f : X — Y is pseudo-open if for every
y € Y and for every open subset U of X with f~!(y) C U, y € int(f[U]).
Call a mapping f : X — Y M-continuous, M C «o*, if for every a-sequence
(z¢ : € € ) that weakly M-converges to z € X, the a-sequence (f(z¢): € €
a) weakly M-converges to f(xz). We shall say that a mapping f: X — Y
is M-sequence covering if whenever (y;) : £ € «) weakly M-converges to a
point y € Y, then there are points z¢ € f~(y,) and z € f~(y) such that
(z¢) : € € a) weakly M-converges to z.
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The characterization of sequential and Frechét-Urysohn spaces due to
S.P. Franklin [Fr] and F. Siwiec [Si] can be generalized as follows. (Some
incorrectnes in papers cited below are corrected here.)

Theorem 5.1. ([Koc2], [Koc3], [Kocd]) Let @ # M C o* and let X be a
space. Then,

(1) X is weakly M -sequential iff there are a set I and an I-sequence
M = (pi)ier of free ultrafilters on a such that p; € M for each i € I and X
is a quotient image of the space Z(M);

(1a) X is weakly M -sequential iff every M -continuous mapping defined
on X is continuous;
(1b) X is weakly M -sequential iff every M -sequence covering mapping
f:Y — X onto X is quotient;
2) X is strongly M -sequential iff there are a set I and an I-sequence
(2) gly q q
M = (F;)ier of free filters on a such that Fpy C F; for each i € I and X s
a quotient image of the space =(M);
(8) X is a WFU(M)-space iff there are @ set I and an I-sequence M =
i )ier of free ultrafilters on « such that p; € M for each i € I and X is a
€
pseudo-open image of the space Z(M);
3a) X is a WFU(M)-space iff every M -sequence covering mappin
14 Y q g pping
(from a space Y') onto X is pseudo-open;
(4) X a SFU(M)-space iff there are a set I and an I-sequence M =
Fi)ier of free filters on a such that Fpy C F; for each i € T and X is a
=
pseudo-open image of the space Z(M).

The cardinal functlon T#y; introduced in Section 4 can also be character-
ized in terms of mappings.

If F is a filter on @ and A is a cardinal number, then Z(F, Ay will denote
the space that is the topological sum of A-many copies of the space £{(F).
Notice that | E(p,A) |= @ A and 7(E(p,A)) = a, for every p € U(a) and for
every cardinal A. The next result is a consequence of Theorems 4.5 and 5.1.

Corollary 5.2. For a space X the following are equivalent.

(1) a = tru(X);

(2) there are a cardinal A < | X|* and p € U(a) such that X is a quotient
image of the space Z(p, A);

(3) there are a cardinal X < | X|* and p € U(a) such that X is a pseudo-
open image of the space Z(p, A).

We should remark that closedness of projections in a topological product
may be described by using properties considered in the previous sections.




T em————— —

Convergence with respect to ultrafilters: A survey 23

Theorem 5.3. ([Koc2], [Koml]) Let @ # M C o*. If X is a strongly M-
sequential space and Y a quasi-Clg,M-compact space, then the projection
x : X XY — X is closed.

We are going now to consider some relations between p-sequential-like
properties and cleavability of topological spaces. We shall restrict our aten-
tion only to the case o = w.

Definition 5.4. ([A2], [Koc5]) If P is a class of topological spaces and M
is a class of continuous mappings, then a space X is said to be M -cleqvable
(resp. M-pointwise cleavable) over P if for every A C X (resp. every
x € X)thereexist Y € Pand f € M, f: X — Y, such that f(X)=Y and
f7Hf(A) = A (resp. f7'f(z) = {«}).

We also need the following notion.

Definition 5.5. ([GMT]) Let p € w*. A space X is called p-closed if every
p-compact subspace of X is closed.

The following simple results is useful in what follows.

Lemma 5.6. If a space X is cleavable over the class K of all p-closed spaces,
then X is a p-closed space.

Using the fact that p-compact p-closed spaces are precisely p-sequential
spaces [GMT], from Lemma 5.6 we obtain

Theorem 5.7. ([Koc6]) If a p-compact space X is cleavable over the class
of p-closed spaces, then X is p-sequential.

Every p-sequential space is p-closed. Therefore, we have this corollary.

Corollary 5.7°. ([Koc6]) If @ p-compact space X 1s cleavable over the class
of p-sequential spaces, then X is p-sequential.

The following theorem is also from [Koc6].

Theorem 5.8. Let p € w*.

(1) If a compact space X is cleavable over the class K of cce p-sequential
spaces, then X is a W FU(w*)-space.

(2) If a separable p-compact space X is cleavable over the class K of
p-closed spaces, then X is a W FU(w*)-space (and p-sequential).

(3) If a space X is closed pointwise cleavable over the class of FU(p)-
spaces, then X is also a F'U(p)-space.

From Theorems 3.4 and 3.5 in [Be], Theorem 5.8 and the fact (2) preceding
Theorem 3.2, one derives the following result.
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Theorem 5.9. ([Koc6]) If a countably compact space X is closed pointwise
cleavable over the class C of Fréchet-Urysohn spaces, then X is w-bounded.

The following theorem is a special case of Theorem 23 in [A2] (which states
that if a countably compact space is cleavable over the class of sequential
spaces, then it is also sequential), but under a special assumption the proof
is very easy and follows from our considerations.

Theorem 5.10. Suppose that the Novak number of w* exceeds c. If an w*-
compact space (in paricular, compact space) X is cleavable over the cluss K
of sequential spaces, then X is also sequential.

Every w-bounded space is p-compact for every p € w*. A.V. Arhangel'skii
has remarked that if an w-bounded space is cleavable over the class of spaces
of countable tightness, then it itself has countabie tightness [A2]. So, the
following question is quite natural.

Question 5.11. Let a p-compact space X be cleavable over the class of
spaces of countable tightness. Is the lighitness of X countable?

At the end of this section we give one result concerning function spaces.

For a space X, let C'(X) denote the space of all continuous real-valued
functions on X with the pointwise topology. Sequential-like properties of
C'7(X) have been studied in [GT3], [GT4] and [T] (see also [GMT]), where
some important results of Gerlitz and Nagy [GN] were generalized. Recall
that a family G of subsets of a space X is called an w-cover for X if for every
finite subset A of X there is a member ¢ € G such that 4 C G.

Definition 5.12. ([GT3]) Let p € w*. A space X is said to have property
7vp if for every open w-cover G of X there is a sequence (G, :n € w) C G

such that X = UAGp nneA'

Theorem 5.13. ([GT3]) Let p € w*. A space X has v, iff the space C(X)
is an F'U(p)-space.

The following question remains unsolved.

Question 5.14. ([GMT]) Is C(X) an FU(p)-space if it is a p-sequential
space?
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6. Generalizations of pseudocompactness

The characterization of pseudocompactness given in Theorem 1.6 leads
to the study of the following class of spaces.

Definition 6.1. Let @ # M C a*. Then, a space X is called M -psedocom-
pact if for every a-sequence (V¢)¢<, of non-empty open subsets of X, there
is p € M such that L(p, (Vi)eca) # @.

If p € U(a), we simply say p-pseudocompact instead of {p}-psedocompact.
The concept of p-pseudocompactness for p € w* was introduced by J. Gins-
burg and V. Saks in [GS], and for arbitrary cardinals was considered in [G8].
Ginsburg and Saks [GS] showed that if p € w* is not a P-point, then Trx(p)
is a pseudocompact space that is not countably compact (in fact, Tri(p) is
never countably compact for every p € w*). This result can be improved as
follows.

Theorem 6.2. ([G4]) If p € w* is not a P-point, then there is ¢ € w* such
that Tric(p) is q-pseudocompact.

It is not difficult to see that p-pseudocompactness, for p € U(a), is pro-
ductive and preserved under surjections. But, it is not closed-hereditary:

Example 6.3. Let p € w™ be a non-P-point. By Theorem 6.2, we may
choose ¢ € w* for which Tri(p) is ¢-pseudocompact. Since Ty (p) is not
countably compact, there is a discrete closed subset D of Trxi(p). Then, we
have that Tri(p) is ¢g-pseudocompact and D is a closed subset of Tri(p)
that is not r-pseudocompact for any »r e w*. 0O

If pe M C a*, then p-compactness implies M-pseudocompactness. But,
M-compactness is not in general preserved under arbitrary products (see
[GJ; 9.15]). For p € U(a), we also have that every p-compact space is
p-pseudocompact. The next example shows that the converse does not hold.

Example 6.4. ([G6]) Let p € U(a) and consider f,(a). First, we state
some properties of Try (p) that we shall need:
(i) | Bp(a) |< 2%
(ii) ([G6; Th. 2.3], [CN2; 12.21]) | Tri(p) |=| *a/p |> @
(iii) (see [GS; Lemma 5.1]) if D C Tri(p) is strongly discrete, then D
does not have any accumulation point in Tri(p); '

Now, we put Ty = Pri(p). By Lemma 3.5 of [G6], there is ¢ € (U(a) N
Bp(a)) — Tp. Notice that Trx(g) € Fy(a) — I'y. Assume that T', has been
defined, for v < 8 < a™, so that

(1) I, C Bp(a) — Tri(g) for v < 0; and
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(2) if D € [T, Na*]* is strongly discrete in A(a) and v + 1 < @, then
(C!ﬁ(a)D) n FU+1 ?5 @ for v < 6.

If @ is a limit ordinal, then we set T'y = U, <o Lv. Suppose that 6 = v+ 1.
For each strongly discrete subset D € [I', N a*]* we choose rp € ClgiayD —

Tri(q) (this is possible by clause (¢ii)). Then, we define ['y = I',U{rp : D €

[T, N a*]® is strongly discrete }. We define I'(p) = Ugca+ Ts. Notice that
a C T(p) C By(a). Since Tri(q) € By(a) — I'(p), we have that T', cannot be
p-compact, but it is countably compact. Let (Ve)e<, be a sequence of non-
empty clopen subsets of I',. By the Disjoint Refinement Lemma (see [CN2;
Lemma 7.5]), there is a set {A; : £ < a} of pairwise disjoint infinite subsets
of a such that @ # fi,’: NT(p) C V¢. For each £ < o we pick f(£) € A:NT(p)
and consider the function f € *a. Then, we have that f(p) € Ty C I', and
f(p) € L(p, (Ve)e<a). This shows that I, is p-pseudocompact. - O

Question 6.5. Does there ezist a countably compact space X such that X
is p-pseudocompact for all p € w* and X is not p-pseudocompact for any
peEw*?

The proof of the next result resembles the proof of Theorem 1.5 of [G5].

Theorem 6.6. For p,q € a*, the following are equivalent.

(1) p<rr ¢;

(2) every g-pseudocompact space is p-pseudocompact;

(3) Pric(q) is p-pseudocompact;

(4) there is a partition {A¢ : € < a} of a such that ¢ € L(p,(Ag)e<a)-

It is evident that w*-psendocompactness = pseudocompactness. But, if
p € U(a) is wy-complete, then p-compactness does not imply pseudocom-
pactness as it is stated in the next theorem; a proof of Theorem 6.7 is

available in [G8] and uses Theorem 6.6. Recall that p € U(«) is y-complete
if ﬂ£<n A¢ € p whenever A, € p for every £ < & and for every x < 7.

Theorem 6.7. ([G8]) Let v < a. For p € U(a), the following are equiva-
lent,

(1) every p-compact space is countably compact;

(2) every p-compact space is pseudocompact;

(3) B,(X) is pseudocompact for every space X ;

(4) p is not wy-complete;

(5) every p-pseudocompact space is pseudocompact.

Thus if p € U(«a) is wy-complete, then w is p-compact and is not pseudo-
compact.
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We saw in Theorem 3.4 that all the powers of a space X are countably
compact iff there is p € w™ such that X is p-compact. The following example
is due to Ginsburg and Saks gave and it is an example of a space all whose
powers are pseudocompact and it is not p-pseudocompact for any p € w*
(an example that is also countably compact can be found in [G6; Ex. 3.6]).

Example 6.8. For each p € U(w), let X, = B(a) — {p}. Then, we have
that all the powers of X = H;DEU((Y) X, are pseudocompact, since X, is
locally compact and pseudocompact for every p € U(e). But, X, is not
g-psendocompact for any ¢ e w*. O

We now turn to characterize the spaces in which all powers are pseudo-
compact.

Definition 6.9. ([G5]) Let @ # M C o* and let k be a cardinal with
1 < k. A space X is said to be (x, M )-pseudocompact if for every k-sequence

((VCE)C@')E of a-sequences of non-empty open subsets of X, there is p €
<K
M such that L(p?(Vf)C(a) # @ for all £ < k.

@ # M C a*, then (1, M)-pseudocompact coincides with M-pseudo-

compactness. The spaces such that either some finite power of it is pseudo-
compact or all its powers are pseudocompact are characterized in the next
theorem.

Theorem 6.10. ([G5]) Let 1 < v < w and let X be a space. Then, X7
is pseudocompact if and only if there is @ # M C w* such that (v, M)-
pseudocompact.

If p € w*, then we the space X(p) = aUTgx(p) satisfies that all its powers
are pseudocompact: this fact was shown by W.W. Comfort [C] and Z. Frolik
[Fro3]. We should mention that Theorem 2.6 of [G5] which was stated as an
improvement of this fact is wrong, but some of its implications are correct:

Lemma 6.11. Let @ # M C w* and X a space with w C X C B(w). Then,
X is (w, M)-pseudocompact if and only if for every sequence (fu)n<cw in “w
there is p € M such that f,(p) € X for every n < w.

Proof. Necessity: Let (fn)n<w be a sequence in “w. Then, we have that
(({fa(m)Pm<w)ncw is a sequence of sequences of non-empty open subsets
of X. By assumption, there is p € M such that for each n < w thereis ¢, €
L(p,({fu(m)Dm<w N X. Hence, we must have that ¢, = p—limp o fu(m)
for each n < w and then f,(p) = ¢, € X for each n < w.

Sufficiency: Let (({fhl?n})m<w)n<w be a sequence of sequences of non-
empty basic open subsets of w*. For each n <.w, we choose f, € “w
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so that f,(m) € Af, for every m < w. Then, there is p € M such that
Ju(p) € X for every n < w. If ¢, = fu(p) for n < w, then we have that
¢n € L(p, ({4} )m<w)- Therefore, X is (w, M)-pseudocompact. O

Theorem 6.12. For @ # M C w* and p € w*. If Trr(p) N M is dense in
w*, then X(p) is (w, M)-pseudocompact.

Proof. We apply Lemma 6.11. Let (f,,)n<w be a sequence in “w. By induc-
tion we may choose A, € [w]* so that

(1) Apy1 C A, for every n < w;

(2) if n < w, then either f,(A,) is singleton or f,|4, is one-to-one.
Since w* is an almost P-space, the set [, A, has non-empty interior.

Hence, @ # A, N Tri(p) NTrr(M). Pick q € N A, N Trr(p)N

nw 7 n<w
Tric(M) and put f,(p) = p, for each n < w. Thus, if n < w, then we have
that either p,, € w C X(p) or p, € Tri(p) C X(p), as required. O
For @ # M C w*, we let Tpr (M) = UpemTRI\’(P)-

Theorem 6.13. For @ # M C w* and p € w*. If B(p) is (w, M)-
pseudocompact, then Tri(p) N Tri (M) is dense in w*.

Proof. Suppose that X(p) is (w, M )-pseudocompact. Let A € [w]*“ which is
enumerated as {a, : n < w}. Then there are ¢ € M and r € Tgry(p) such
that r = ¢ — lima,,. Hence, r ®gx q and r € A*. So, r € A* N Trr(p)N
Tr(M). O

Corollary 6.14. Let @ # M C w* be such that Tri (M) = M and p € w*.
Then, the following are equivalent.

(1) Tri(p)N M is dense in w*;

(2) Z(p) s (w, M )-pseudocompact.

It is a consequence of Corollary 6.14 that X(p) is T'(p)gx-pseudocompact
for every p € w*. The only possibility for ¥(p) to be p-pseudocompact is

stated in the next theorem. We need a lemma which is a direct application
of Lemma 6.11.

Lemma 6.15. ([G5]) Let w # X C p(w). Then, X is p-pseudocompact if
and only if Prr(p) C X.
Theorem 6.16. ([G5]) For p € w*, the following are equivalent.

(1) Z(p) is p-pseudocompact;

(2) Z(p) is g-pseudocompact for some q € w*;
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(3) p is RK-minimal.

Thus, if p € w* is not RK-minimal, then Z(p) is Trx (p)-pseudocompact
and is not p-pseudocompact. Next, we give an example of a space that is
Tri (p)-pseudocompact and is not p-pseudocompact without requiring the
RK -minimal property. ‘

Theorem 6.17. Forp € w*, the space £(p)\ {p} is Tri (p)-pseudocompact
and it is not p-compact.

Proof. Put S, = Z(p) \ {p}. By Lemma 6.15, we have that S, cannot be
p-pseudocompact. Let (A,)n<, be a sequence of non-empty subsets of w.
Let f € “ such that f(n) € A, for every n < w. If there is A € [w]* such
that f|a is constant and A ¢ p, then we choose ¢ € A* N Tri(p) and then
we have that ¢ € 5, and ¢ € L(p,(fln N Spln<w). If this is not the case,
then we may find B € [w]* so that B ¢ p and f|g is one-to-one. Hence, if
r € B* N Tri(p), then r € S, and 7 € L(p, (An N Sp)necy). O

We notice that if p,q € w* are REK-minimal, then Pri(p) N Pri(g) =
w and hence Prr(p) X Pri(gq) is not pseudocompact, but Prg(p) is p-
pseudocompact and Pgrg(q) is g-pseudocompact (by Lemma 6.15). In a
model M of NCF, we have that M |= w* has not P — points and so REK-
minimal points do not exist in M (see [BS]). Hence, in this model M, if X
is p-pseudocompact and Y is g-pseudocompact for p,q € w*, then there is
r € Prr(p) N Pri(¢) Nw* such that X x Y is pseudocompact.

Some generalizations of bisequential, biradial and absolutely countably
compact spaces the authors will publish somewhere else.
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