CONVERGENCE WITH RESPECT TO ULTRAFILTERS: A SURVEY

S. García-Ferreira and Lj. Kočinac*

Abstract. The purpose of this paper is to present some of the most important results concerning some generalizations of the classical notions of sequentiality, Fréchet-Urysohn property, radiality, pseudo-radiality, countable compactness and pseudocompactness.

1. Introduction

All spaces are assumed to be Tychonoff. For $x \in X$, the set of all neighborhoods of x in X will be denoted by $\mathcal{N}(x)$. If X is a continuous function, then $\bar{f}:\beta X\to\beta Y$ will denote the Stone-Čech extension of f. The Greek letter κ will stand for an arbitrary cardinal and the Greek letters α and γ will stand for infinite cardinal numbers. If α is a cardinal, then the Stone-Čech extension $\beta(\alpha)$ of the discrete space α will be identified with the set of all ultrafilters on α and its remainder $\alpha^*=\beta(\alpha)\setminus\alpha$ will be identified with the set of all free ultrafilters on α . If $A\subseteq\alpha$, then $\hat{A}=Cl_{\beta(\alpha)}A=\{p\in\beta(\alpha):A\in p\}$ and $A^*=\hat{A}\setminus A$. For $p\in\beta(\alpha)$, the norm of p is $\|p\|=\min\{|A|:A\in p\}$. If α is a cardinal and $\gamma\leq\alpha$, then $U_{\gamma}(\alpha)=\{p\in\beta(\alpha):\gamma\leq\|p\|\}$. If $\alpha=\gamma$, then we simply write $U(\alpha)$. If α is a cardinal and X a set, then $[X]^{\alpha}=\{A\subseteq X:|A|=\alpha\}$ and $[X]^{\leq\alpha}=\{A\subseteq X:|A|\leq\alpha\}$.

For a space X, the tightness of $x \in X$, denoted by t(x,X), is the smallest cardinal λ with the property that if $x \in Cl_XA$, then there exists $B \in [A]^{\leq \lambda}$ such that $x \in Cl_XB$, and the tightness of X is $t(X) = \sup\{t(x,X) : x \in X\}$. For a space X, the pseudo-character of $x \in X$ is denoted by $\psi(x,X)$ and the pseudo-character of the space X by $\psi(X)$; d(X) will stand for the density of X and c(X) for the cellularity of X. For cardinal invariants see [Ho].

Let X be a space, let $(x_n)_{n<\omega}$ be a sequence in X and let $x\in X$. If \mathcal{F}_r is the Fréchet filter on ω , then $x_n\to x$ iff for every neighborhood V of x

Received October 10, 1996

¹⁹⁹¹ Mathematics Subject Classification: 54A20, 54A25, 54C05, 54D20, 54D55.

^{*} Supported by the Serbian Scientific Foundation, grant N⁰ 04M01.

we have that $\{n < \omega : x_n \in V\} \in \mathcal{F}_r$. This shows that the usual concept of convergence sequence can be expressed in terms of filters. In 1968, M. Katetov [Ka] introduced the notion of an \mathcal{F} -limit point of an α -sequence in a topological space.

Definition 1.1. Let \mathcal{F} be a filter on α and X a space. A point $x \in X$ is said to be an \mathcal{F} -limit point of the α -sequence $(x_{\xi})_{\xi < \alpha}$ in X, written $x = \mathcal{F}$ -lim x_{ξ} , if for every neighborhood V of x $\{\xi < \alpha : x_{\xi} \in V\} \in \mathcal{F}$.

A. I. Bernstein [Be] also discovered, in connection with problems in the theory of non-standard analysis, the \mathcal{F} -limits for the particular case when \mathcal{F} is an ultrafilter on ω . The concept of \mathcal{F} -limit was also used by Z. Frolík in [Fro3] prior to the appearance of Katetov's paper: when Frolík writes $x = \sum_y \{y_n\}$ he means precisely that $x = y - \lim x_n$. We should remark that the \mathcal{F} -limit points when they exist they are unique, since our spaces are Hausdorff. To study \mathcal{F} -limits for arbitrary filters \mathcal{F} it suffices to consider only ultrafilters as it shown in the following lemma which is taken from [GM; Lemma 1.2].

Lemma 1.2. Let \mathcal{F} be a filter on α , X a space and $(x_{\xi})_{\xi < \alpha}$ an α -sequence in X. Then $x = \mathcal{F} - \lim x_{\xi}$ iff $x = p - \lim x_{\xi}$ for every $p \in \beta(\alpha)$ with $\mathcal{F} \subseteq p$.

In virtue of Lemma 1.2, we will principally be concerned with ultrafilters. The notion of a cluster point of a subset of a topological space may be expressed in terms of ultrafilters as well:

Lemma 1.3. Let X be a space with $|X| = \alpha$ and $\emptyset \neq A \subseteq X$. Then, $x \in Cl_XA$ if and only if there are an α -sequence $(x_{\xi})_{\xi < \alpha}$ in A and $p \in \beta(\alpha)$ such that $x = p - \lim x_{\xi}$.

Proof. Necessity: Suppose that $x \in Cl_XA$. We may assume that A is infinite. Let $\{x_{\xi} : \xi < \alpha\}$ be an enumaration of X. Enumerate A as $\{x_{\xi_{\nu}} : \nu < \alpha\}$, we repeat elements if it is necessary. Then, $(x_{\xi_{\nu}})_{\nu < \alpha}$ is an α -sequence in A. We have that $\mathcal{B} = \{\{\nu < \alpha : x_{\xi_{\nu}} \in V\} : V \in \mathcal{N}(x)\}$ is a filter base on α . It then follows that if $p \in \beta(\alpha)$ and $\beta \subseteq p$, then $x = p - \lim_{\nu < \alpha} x_{\xi_{\nu}}$.

Sufficiency: Let $(x_{\xi})_{\xi < \alpha}$ be an α -sequence in A and $p \in \beta(\alpha)$ such that $x = p - \lim x_{\xi}$. If $V \in \mathcal{N}(x)$, then $\emptyset \neq \{\xi < \alpha : x_{\xi} \in V\}$. This shows that $x \in Cl_X A$. \square

V. Saks [Sa2] pointed out that any topological space is characterized by p-limit points. In fact, he proved that for any $A \subseteq X$ one has that

 $Cl_X A = \{x \in X : x \text{ is the } p\text{-limit point of some } \alpha\text{-sequence } (x_{\xi})_{\xi < \alpha} \text{ in } X \text{ for some } p \in \alpha^*\};$

this fact follows from Lemma 1.3.

Some of the classical concepts of general topology have their equivalent forms in tems of p-limit points, for $p \in \omega^*$ as follows:

Theorem 1.4. Let X be a space.

- (1) X is sequential iff for every non-closed subset $A \subseteq X$ there are $x \in X \setminus A$ and a sequence $(x_n)_{n < \omega}$ in A such that $x = p \lim x_n$ for every $p \in \omega^*$.
- (2) X is Fréchet-Urysohn iff for every $x \in Cl_X A$ there is a sequence $(x_n)_{n < \omega}$ in A such that $x = p \lim x_n$ for every $p \in \omega^*$.
- (3) X is countably compact iff for every countable subset $\{x_n : n < \omega\}$ of X there are $p \in \omega^*$ and $x \in X$ such that $x = p \lim x_n$.

In 1975, J. Ginsburg and V. Saks [GS] generalized the notion of p-limit point, for ultrafilters on ω by replacing sequences of points by sequences of non-empty subsets. This generalization is included in the next definition.

Definition 1.5. Let p be an ultrafilter on α and X a space. A point $x \in X$ is said to be an p-limit point of the α -sequence $(S_{\xi})_{\xi < \alpha}$ of non-empty subsets of X if for every neighborhood V of x, $\{\xi < \alpha : S_{\xi} \cap V \neq \emptyset\} \in p$.

In general, a sequence $(S_n)_{n<\omega}$ of non-empty subsets of a space X could have more than one p-limit point: for instance, if $S_n=\{\frac{1}{n+1}\}\times\mathbb{R}$ for each $n<\omega$, then we have that every point of $\{0\}\times\mathbb{R}$ is a p-limit point of $(S_n)_{n<\omega}$, for every $p\in\omega^*$. Hence, if $(S_\xi)_{\xi<\alpha}$ is an α -sequence of non-empty subsets of a space X and $p\in\alpha^*$, then $L(p,(S_\xi)_{\xi<\alpha})$ will denote the set of all p-limit points of $(S_\xi)_{\xi<\alpha}$ in X.

For pseudocompactness we have the following equivalent statement by using p-limit points.

Theorem 1.6. A space X is pseudocompact iff for every sequence $(V_n)_{n<\omega}$ of non-empty open subsets of X there is $p \in \omega^*$ such that $L(p, (V_n)_{n<\omega}) \neq \emptyset$.

By using several ulrafilters at the same time we may define two kinds of convergence.

Definition 1.7. Let $\emptyset \neq M \subseteq \alpha^*$, X a space and $(x_{\xi})_{\xi < \alpha}$ an α -sequence. For $x \in X$, we have:

- (1) x = M-weak-lim x_{ξ} if there is $p \in M$ such that $x = p \lim x_{\xi}$;
- (2) x = M-strong-lim x_{ξ} if $x = p \lim x_{\xi}$ for all $p \in M$.

In [Koc3] and in [Kom2], the authors consider the following convergence with respect to a set of ultrafilters: For $\emptyset \neq M \subseteq \alpha^*$ and $(x_{\xi})_{\xi < \alpha}$ an α -sequence in X, x = M-very-weak-lim x_{ξ} if for every $V \in \mathcal{N}(x)$ there is $p \in M$ such that $\{\xi < \alpha : x_{\xi} \in V\} \in p$. But this notion coincides with the notion of $Cl_{\beta(\alpha)}M$ -weak-limit.

Theorem 1.8. Let $\emptyset \neq M \subseteq \alpha^*$, X a space and $(x_{\xi})_{\xi < \alpha}$ an α -sequence. For $x \in X$, the following are equivalent.

- (1) $x = Cl_{\beta(\alpha)}M$ -weak-lim x_{ξ} ;
- (2) x = M-very-weak-lim x_{ξ} .
- **Proof.** (1) \Rightarrow (2): Suppose that $x = Cl_{\beta(\alpha)}M$ -weak-lim x_{ξ} . Then, there is $p \in Cl_{\beta(\alpha)}M$ such that $x = p \lim x_{\xi}$. Let $V \in \mathcal{N}(x)$. Then, we obtain that $A = \{\xi < \alpha : x_{\xi} \in V\} \in p$. Thus, $p \in \hat{A}$ and hence there is $q \in M$ such that $q \in \hat{A}$. It then follows that $\{\xi < \alpha : x_{\xi} \in V\} \in q$.
- (2) \Rightarrow (1): Assume that x = M-very-weak-lim x_{ξ} and that $x \neq p$ -lim x_{ξ} for every $p \in Cl_{\beta(\alpha)}M$. Then, for each $p \in Cl_{\beta(\alpha)}M$ there is $V_p \in \mathcal{N}(x)$ such that $A_p = \{\xi < \alpha : x_{\xi} \notin V_p\} \in p$. Since $Cl_{\beta(\alpha)}M$ is compact, then there is $\{p_0, \ldots, p_n\} \subseteq Cl_{\beta(\alpha)}M$ such that $Cl_{\beta(\alpha)}M \subseteq \bigcup_{i \leq n} \hat{A}_{p_i}$. Put $V = \bigcap_{i \leq n} V_{p_i}$. By assumption, there is $q \in M$ for which $A = \{\xi < \alpha : x_{\xi} \in V\} \in q$. Choose $k \leq n$ so that $A_{p_k} \in q$. Then, we have that $A \cap A_{p_k} \neq \emptyset$, but this is a contradiction. \square

The Rudin-Keisler (pre)-order on α^* is defined as follows: for $p,q\in\alpha^*$, $p\leq_{RK}q$ if there is $f\in{}^{\alpha}\alpha$ such that $\bar{f}(q)=p$. If $p\leq_{RK}q$ and $q\leq_{RK}p$, for $p,q\in\alpha^*$, then we say that p and q are RK-equivalent and write $p\approx_{RK}q$. It is known that $p\approx_{RK}q$ iff there is a permutation f of α such that $\bar{f}(p)=q$. For $p\in\alpha^*$, the type of p is the set $T(p)=\{q\in\alpha^*:p\approx_{RK}q\}$. For $p,q\in\alpha^*$, p< q means that $p\leq_{RK}q$ and p is not Rudin-Keisler equivalent to q. If $p\in\alpha^*$, then $P_{RK}(p)=\{q\in\alpha^*:q\leq_{RK}p\}\cup\alpha$ and if $M\subseteq\alpha^*$, then $P_{RK}(M)=\bigcup_{p\in M}P(p)$. Observe that $|P_{RK}(p)|\leq 2^{\alpha}$ and $|T_{RK}(p)|\leq 2^{\alpha}$, for each $p\in\alpha^*$. An other important order on α^* is the Rudin-Frolik order which is defined by $p\leq_{RF}q$ if there is an embedding $e:\omega\to\omega^*$ such that $\bar{e}(p)=q$ for $p,q\in\omega^*$. It is known that $\leq_{RF}\subseteq\leq_{RK}$ and they are completely different each other (see [CN2]).

The relationship between the Rudin-Keisler order and p-limit points is established in the next easy lemma.

Lemma 1.9. Let $p, q \in \alpha^*$. Then the following are equivalent.

- (1) $p \leq_{RK} q$;
- (2) if $(x_{\xi})_{\xi}$ is an α -sequence in a space X and $x = p \lim x_{\xi}$, then there is a function $f \in {}^{\alpha}\alpha$ such that $x = q \lim x_{f(\xi)}$.
- H. Gonshor [Go] noticed that the p-limit point of a sequence $(x_n)_{n<\omega}$ exists iff the function $f:\omega\to X$ defined by $f(n)=x_n$, for each $n<\omega$, can be extended to a continuous function $\omega\cup\{p\}\to X$. In this direction, V. Saks [Sa1] also noticed that $x=p-\lim x_n$ iff the function $f:\omega\to X$ defined by $f(n)=x_n$, for each $n<\omega$, satisfies that $\bar{f}(p)=x$. This observation holds

for any cardinal α : $x = p - \lim x_{\xi}$ for $p \in \alpha^*$ iff the function $f : \alpha \to X$ defined by $f(\xi) = x_{\xi}$, for each $\xi < \alpha$, satisfies that $\bar{f}(p) = x$. This allows to simplify our notation:

• we shall use in some cases " $f \in {}^{\alpha}X$ " instead of " $(x_{\xi})_{\xi < \alpha}$ is an α -sequence" and " $\bar{f}(p) = x$ " instead of " $x = p - \lim x_{\xi}$ ".

Thus, we have that x=M-weak-lim x_{ξ} iff the function $f \in {}^{\alpha}X$ defined by $f(\xi) = x_{\xi}$, for each $\xi < \alpha$, satisfies that $\bar{f}(p) = x$ for some $p \in M$, and x = M-strong-lim x_{ξ} iff the function, $f \in {}^{\alpha}X$ defined by $f(\xi) = x_{\xi}$, for each $\xi < \alpha$, satisfies that $\bar{f}(p) = x$ for all $p \in M$.

If $p, q \in \beta(\alpha)$, then the tensor product of p and q is

$$p \otimes q = \{A \subseteq \alpha \times \alpha : \{\xi < \alpha : \{\zeta < \alpha : (\xi, \zeta) \in A\} \in q\} \in p\}.$$

Then, $p \otimes q$ is an ultrafilter on $\alpha \times \alpha$ which can be considered as an ultrafilter on α via a fixed bijection between α and $\alpha \times \alpha$. It was pointed out by Katetov [Ka] that $p <_{RK} p \otimes q$ and $q <_{RK} p \otimes q$ for every $p, q \in \beta(\alpha)$.

Now, we give the following two concepts of general topology.

Definition 1.10. Let X be a space.

- (1) X is $< \alpha$ -bounded if $Cl_X A$ is compact for every $A \subseteq X$ with $|A| < \alpha$;
- (2) X is initially α -compact if every open cover \mathcal{U} of X with $|\mathcal{U}| \leq \alpha$ has a finite subcover.

Notice that initial ω -compactness is countable compactness.

2. Generalizations of Frechét-Urysohn and sequential spaces

The following definition is essential in our generalization of Frechét-Urysohn and sequential spaces.

Definition 2.1. Let $\emptyset \neq M \subseteq \alpha^*$ and X a space. For $\emptyset \neq A \subseteq X$, we define:

- (1) $A_W^M = \{x \in X : \exists f : \alpha \to A, \exists p \in M(\bar{f}(p) = x)\};$
- (2) $A_S^M = \{x \in X : \exists f : \alpha \to A, \ \forall p \in M(\bar{f}(p) = x)\};$
- (3) ([Koc3]) $A_W(M,0) = A$, $A_W(M,\lambda+1) = (A_W(M,\lambda))_W^M$, for an ordinal λ , and $A_W(M,\lambda) = \bigcup_{n \leq \lambda} A_W(M,\eta)$ if λ is a limit ordinal;
- (4) ([Koc3]) $A_S(M,0) = A$, $A_S(M,\lambda+1) = (A_S(M,\lambda))_S^M$ and $A_S(M,\lambda) = \bigcup_{\eta < \lambda} A_S(M,\eta)$ if λ is a limit ordinal.

We should remark that if $A \subseteq X$, then $x \in A_S^{\alpha^*}$ iff there is an α -sequence $(x_{\xi})_{\xi < \alpha}$ in A such that $x_{\xi} \to x$.

Next, we state the natural generalizations of the concepts of sequential and Frechét-Urysohn spaces.

Definition 2.2. Let $\emptyset \neq M \subseteq \alpha^*$ and X a space. Then:

- (1) ([Kom1], [Sav]) X is weakly M-sequential, if for every subset A of X, $Cl_X A = \bigcup_{\lambda < \alpha^+} A_W(M, \lambda)$;
- (2) ([Kom1], [Sav]) X is strongly M-sequential, if for every subset A of X, $Cl_XA = \bigcup_{\lambda < \alpha^+} A_S(M, \lambda)$;
- (3) ([Koc3]) X is a WFU(M)-space, if for every $A \subseteq X$, $Cl_X A = A_W^M = A_W(M, 1)$;
- (4) ([Koc3]) X is an SFU(M)-space, if for every $A \subseteq X$, $Cl_X A = A_S^M = A_S(M, 1)$.

We remark that a space X is weakly M-sequential (resp., strongly M-sequential) if and only if A is a non-closed subset of X, then $\exists f \in {}^{\alpha}X, \ \exists x \in (X \setminus A), \ \exists p \in M \ (\bar{f}(p) = x \land f[\alpha] \subseteq A)$ (resp., $\exists f \in {}^{\alpha}X, \ \exists x \in (X \setminus A), \ \forall p \in M \ (\bar{f}(p) = x \land f[\alpha] \subseteq A)$), and X is a WFU(M)-space (resp., SFU(M)-space) if and only if $A \subseteq X$ and $x \in Cl_XA$, then $\exists f \in {}^{\alpha}X, \ \exists p \in M \ (\bar{f}(p) = x \land f[\alpha] \subseteq A)$). If $p \in x \land f[\alpha] \subseteq A$ (resp., $\exists f \in {}^{\alpha}X, \ \forall p \in M \ (\bar{f}(p) = x \land f[\alpha] \subseteq A)$). If $p \in x \land f[\alpha] \subseteq A$) are sequential = strongly $\{p\}$ -sequential and $FU(\{p\})$ -space = $FU(\{p\})$ -space. In this case, we simply say p-sequential space and FU(p)-space, respectively, and we write A^p for $A_W^{\{p\}} = A_S^{\{p\}}$ and $A(p,\lambda)$ for $A_W(\{p\},\lambda) = A_S(\{p\},\lambda)$, for every ordinal λ .

Let us also remark that in [Koc3] the author considered different kind of \mathcal{P} -pseudo-radial and \mathcal{P} -radial spaces, where \mathcal{P} is a class of uniform ultrafilters on various cardinals (see also [N]); but this generalization is obvious and we shall not consider here these notions.

The following lema establishes the connection among Rudin-Keisler order, FU(p)-spaces and p-sequential spaces (a proof is available in [G2]). $\xi(p)$ denotes the subspace $\alpha \cup \{p\}$ of $\beta \alpha$.

Lemma 2.3. For $p, q \in \alpha^*$, the following are equivalent.

- (1) $p \leq_{RK} q$;
- (2) $\xi(p)$ is a FU(q)-space;
- (3) $\xi(p)$ is q-sequential;
- (4) every p-sequential space is q-sequential;
- (5) every FU(p)-space is a FU(q)-space.

Some of the classical notions of general topology are defined in our context as follows. For a space X, we have that

- (1) X is sequential iff X is strongly ω^* -sequential;
- (2) $t(X) \leq \alpha$ iff X is weakly α^* -sequential;
- (3) X is Frechét-Urysohn iff X is a $SFU(\omega^*)$ -space.
- (4) We recall that a space X is pseudoradial (or chain-net) if every non-closed $A \in X$ there is $x \in Cl_XA \setminus A$ and an α -sequence $(x_\xi)_{\xi < \alpha}$ such that $x_\xi \to x$, and X is radial (or $Frech\acute{e}t$ chain-net) if for every $x \in Cl_XA$ there is an α -sequence $(x_\xi)_{\xi < \alpha}$ in A such that $x_\xi \to x$ (these two classes of spaces were first introduced by Herrlich [He]). We then have that X is pseudoradial (resp., radial) iff there is a cardinal $\alpha \le |X|$ such that X is stronly α^* -sequential (resp., a $SFU(\alpha)$ -space).

In [BM], it was proved that there is a filter \mathcal{F} on ω having the property that every sequential space is an $FU(\mathcal{F})$ -space, and in [M] Malykhin proved that if the Novak number of ω^* (= the smallest cardinality of a cover by nowhere dense sets) is bigger than the continuum, then sequentiality coincides with weakly ω^* -sequentiality (called ultra-sequentiality in [M]).

If $p \in M \subseteq \alpha^*$, then

$$SFU(M)$$
 - space \Rightarrow $FU(p)$ - space \Rightarrow $WFU(M)$ - space \Downarrow

strong M – sequentiality \Rightarrow p – sequentiality \Rightarrow weak M – sequentiality

The following examples show that the arrows cannot be reversed.

Example 2.4. (1) For a free filter \mathcal{F} on α , $\xi(\mathcal{F}) = \alpha \cup \{\mathcal{F}\}$ will be the space in which α is discrete and the set $F \cup \{\mathcal{F}\}$, for $F \in \mathcal{F}$, is a basic neighborhood of \mathcal{F} . If \mathcal{F} is a free filter \mathcal{F} on α , then $M_{\mathcal{F}} = \{p \in \alpha^* : \mathcal{F} \subseteq p\}$ is a closed subset of α^* and $\xi(\mathcal{F})$ is a $SFU(M_{\mathcal{F}})$ -space. Indeed, $\xi(\mathcal{F})$ is a FU(p)-space for $p \in \alpha^*$ iff $\mathcal{F} \subseteq p$. If $\emptyset \neq M \subseteq \alpha^*$, then $\mathcal{F}_M = \{A \subseteq \alpha : M \subseteq A^*\}$ is a free filter on α . Thus, we have that $M = M_{\mathcal{F}_M}$ and $\mathcal{F} = \mathcal{F}_{M_{\mathcal{F}}}$, for $\emptyset \neq M \subseteq \alpha^*$ and for a free filter \mathcal{F} on α .

- (2) For $p \in U(\alpha)$, $\xi(p) = \alpha \cup \{p\}$ is a subspace of $\beta(\alpha)$ and is a FU(p)-space. If $p, q \in U(\alpha)$ and $p <_{RK} q$, then $\xi(q)$ is a FU(q)-space that is not p-sequential (by Lemma 2.3). Hence, $\xi(p)$ is a FU(q)-space that is not sequential and is a $WFU(\{p,q\})$ -space that is not a FU(p)-space.
- (3) Let $\mathcal{M} = (\mathcal{F}_i)_{i \in I}$, we allow repetition, be an I-sequence of free ultrafilters on arbitrary cardinals. Then $\Xi(\mathcal{M}) = \bigoplus_{i \in I} \xi(\mathcal{F}_i)$ will denote the topological sum of the spaces $\xi(\mathcal{F}_i)'s$. It is not hard to prove that $\Xi(\mathcal{M})$ is weakly $(\bigcup_{i \in I} M_{\mathcal{F}_i})$ -sequential.

- (4) If $\emptyset \neq M \subseteq \alpha^*$, then the space $\Xi(M) = \bigoplus_{p \in M} \xi(p)$ is weakly M-sequential and if there are $p, q \in M$ which are RK-incomparable, then $\Xi(M)$ is neither a FU(p)-space nor a FU(q)-space.
- (5) The Arens space $S_2 = \{x\} \cup \{x_n : n < \omega\} \cup \{x_{n,m} : (n,m) \in \omega \times \omega\}$, where $x_n \to x$ and $x_{n,m} \to x_n$ for every $m < \omega$, is a sequential space that is not Frechét-Urysohn.
- (6) The sequential spaces S_n , for $n > \omega$ introduced in [AF] have their p-sequential version for $p \in U(\alpha)$. In fact, for $p \in U(\alpha)$ and $1 \le n < \omega$, we define

$$S_n(p) = \{x\} \bigcup_{1 \le k \le n} \{x_{\xi_1, \dots, \xi_k} : \xi_1, \dots, \xi_k \in \alpha\}$$

and the topology on $S_n(p)$ satisfies that

- (i) $x = p \lim_{\xi_1 \to \alpha} x_{\xi_1};$
- (ii) $x_{\xi_1,...,\xi_{k-1}} = p \lim_{\xi_k \to \alpha} x_{\xi_1,...,\xi_{k-1},\xi_k}$ for every $(\xi_1,...,\xi_{k-1}) \in \alpha^{k-1}$ and for every $1 < k < \alpha$;
 - (iii) The set $\{x_{\xi_1,\dots,\xi_n}: (\xi_1,\dots,\xi_n)\in\alpha^n\}$ is discrete.

It is shown in [G1] that $S_n(p)$ can be embedded in α^* and $S_n(p)$ is a p-sequential space that is not a FU(p)-space for every $p \in U(\alpha)$ and for every $n < \omega$.

(7) For $p \in \omega^*$ and for each $\nu \leq \omega_1$, we may defined, by transfinite induction, a p-sequential space $S_{\nu}(p)$ that generalizes the space S_{ν} defined in [AF] (for the details see [G2]). For $p \in \omega^*$ and for $\nu \leq \omega_1$, it is also possible to embed $S_{\nu}(p)$ in $\beta(\omega)$. \square

We omit the proof of the next theorem.

Theorem 2.5. Let $\emptyset \neq N \subseteq M \subseteq \alpha^*$. Then:

- (1) weak N-sequentiality \Rightarrow weak M-sequentiality;
- (2) $strong\ M$ -sequentiality \Rightarrow $strong\ M$ -sequentiality;
- (3) WFU(N)-space $\Rightarrow WFU(M)$ -space;
- (4) SFU(M)-space $\Rightarrow SFU(N)$ -space;
- (5) strong M-sequentiality = strong $(Cl_{\beta(\alpha)}(M))$ -sequentiality;
- (6) SFU(M)-space = $SFU(Cl_{\beta(\alpha)}M)$ -space.

W. W. Comfort and S. Negrepontis ([CN1], [CN2]) proved that the Rudin-Keisler order is 2^{α} upward directed. In the next theorem we give two statements which are equivalent to Comfort-Negrepontis' theorem.

Theorem 2.6. For a cardinal α , the following are equivalent.

- (1) If $S \subseteq \beta(\alpha)$ with $|S| \le 2^{\alpha}$, then there is $q \in U(\alpha)$ such that $p <_{RK} q$ for all $p \in S$;
- (2) If X is a space with $t(X) \leq \alpha$ and $|X| \leq 2^{\alpha}$, then there is $p \in U(\alpha)$ such that X is a FU(p)-space.

Proof. (1) \Rightarrow (2): This is Theorem 3.12 of [G2].

(2) \Rightarrow (1): Let $S \subseteq \beta(\alpha)$ with $|S| \leq 2^{\alpha}$. Then the space $\Xi(S)$ satisfies that $t(\Xi(S)) = \alpha$ and $|\Xi(S)| \leq 2^{\alpha}$. By hypothesis, there there is $p \in U(\alpha)$ such that $\Xi(S)$ is a FU(p)-space. Hence, $\xi(q)$ is a FU(p)-space for each $q \in S$ and hence, by Lemma 2.3, $q \leq_{RK} p$ for each $q \in S$. \square

3. Generalizations of countable compactness

The characterization of countable compactness given in Theorem 1.4 suggests the study of the following classes of spaces.

Definition 3.1. Let $\emptyset \neq M \subseteq \alpha^*$.

- (1) ([Kom2], [Sav]) A space X is quasi M-compact if for every $f \in {}^{\alpha}X$ there is $p \in M$ such that $\bar{f}(p) \in X$;
- (2) ([Be], [Sa2], [Wo]) A space X is M-compact if for every $f \in {}^{\alpha}X$, $\bar{f}(p) \in X$ for all $p \in M$;
- (3) ([Koc2], [Koc3]) A space X is strongly M-compact if there is a point $x \in X$ such that for every $f \in {}^{\alpha}X$, $\bar{f}(p) = x$ for all $p \in M$.

For $\emptyset \neq M \subseteq \alpha^*$, we have that M-compactness implies quasi M-compactness. We observe that $(\alpha^* \setminus U(\alpha))$ -compactness coincides with $< \alpha$ -boundedness (see Theorem 1.3 in [G1]) and quasi ω^* -compactness coincides with countable compactness.

We also mention two results from [Koc3].

- (1) Every initially α -compact WFU(M)-space (resp. SFU(M)-space) is quasi M-compact (resp. strongly M-compact);
- (2) If X is a strongly M-compact space, then X is weakly M-sequential iff every strongly M-compact subspace A of X is closed in X.

The topological properties which are productive, closed-hereditary and surjective are characterized by using ultrafilters as follows.

Theorem 3.2. ([KS]) Let \mathcal{P} be a topological property which is productive, closed-hereditary and surjective. A space X of cardinality α has \mathcal{P} if and only

if X is $\mathcal{P}(\alpha)$ -compact, where $\mathcal{P}(\alpha)$ is the maximal (M-compact)-reflexion of the discrete space α .

As a consequence of Theorem 3.2, we have that M-compactness for $\emptyset \neq M \subseteq \alpha^*$ is productive, closed-hereditary and surjective. But, quasi M-compactness is not productive; for instance, there is a countably compact space X such that $X \times X$ is not pseudocompact (see [GJ; 9.15]).

If $\mathcal{P} = M$ -compactness for $\emptyset \neq M \subseteq \alpha^*$, then the maximal \mathcal{P} -reflexion of a space X, denoted by $\beta_M(X)$, has the following properties:

- (1) $\beta_M(X) = \bigcap \{Y : X \subseteq Y \subseteq \beta(X), Y \text{ is } M \text{compact } \};$
- (2) $\beta_M(X)$ is M-compact;
- (3) X is dense in $\beta_M(X)$;
- (4) for every continuous function $f: X \to Z$ such that Z is M-compact, we have that $\bar{f}[\beta_M(X)] \subseteq Z$;
- (5) up to a homeomorphism fixing X pointwise, $\beta_M(X)$ is the only space satisfying (2), (3) and (4).

For an arbitrary space X and for $\emptyset \neq M \subseteq \alpha^*$, the M-compact reflexion $\beta_M(X)$ can be constructed step by step:

Let $\Phi_0(M,X) = X$, and $\Phi_{\lambda+1}(M,X) = \{\bar{f}(p) : f : \alpha \to \Phi_{\lambda}(M,X), p \in M\}$ for an ordinal λ and $\Phi_{\lambda}(M,X) = \bigcup_{\eta < \lambda} \Phi_{\eta}(M,X)$ for a limit ordinal λ . Then, we have that $\beta_M(X) = \bigcup_{\lambda < \alpha^+} \Phi_{\lambda}(M,X)$.

Hence, we have that for every space X and for $\emptyset \neq M \subseteq \alpha^*$, $|\beta_M(X)| \leq |M| \cdot |X|^{\alpha}$.

The next result is a direct application of Comfort-Negrepontis' theorem (see Theorem 2.6).

Theorem 3.3. ([G1]) If $\emptyset \neq M \subseteq \alpha^*$ and $|M| \leq 2^{\alpha}$, then there is $p \in U(\alpha)$ such that p-compactness implies M-compactness.

The authors of [GS] proved that X^{α} is countably compact for all cardinal numbers α iff there is $p \in \omega^*$ such that X is p-compact. Saks [Sa2] extended this result for initial α -compactness and S. Garcia-Ferreira [G1] improved Saks' theorem by using decomposable ultrafilters as it stated in the following theorem. First, we recall that $p \in U(\alpha)$ is decomposable if for every $\omega \leq \gamma \leq \alpha$ there is $p_{\gamma} \in U(\gamma)$ such that $p_{\gamma} \leq p$.

Theorem 3.4. Let X be a space. The following are equivalent.

- (1) X^{γ} is initially α -compact for all cardinals γ ;
- (2) $X^{2^{2^{\alpha}}}$ is initially α -compact;
- (3) $X^{|X|^{\alpha}}$ is initially α -compact;

(4) there is $p \in U(\alpha)$ decomposable such that X is p-compact.

H. Donder [Do] has shown that in the core model every ultrafilter is decomposable. Thus, in the core model we have that X^{γ} is initially α -compact for all cardinal γ iff there is $p \in U(\alpha)$ such that X is p-compact. On the other hand, it is shown in [G6] that if $p \in U(\alpha)$, for a strong limit cardinal α , satisfies that $q \leq p$ implies that either $q \in \omega^*$ or $p \in U(\alpha)$ (these ultrafilters are called indecomposable), then $\beta_p(\alpha)$ is not initially α -compact. Prikry [P] proved that if $p \in U(\alpha)$ is α -complete, then there is a generic extension in which any ultrafilter extending p is indecomposable and α is a strong limit with $cf(\alpha) = \omega$.

The existence of two initially α -compact spaces whose product is not initially α -compact for a regular cardinal α is still unknown in ZFC: E. K. van Douwen [vD] constructed an example assuming GCH and Nyikos and Vaughan [NV] proved that if $\alpha^{++} \leq 2^{\omega}$, then there is a family of α^{++} initially α -compact spaces whose product is not countably compact. The following partial answer is taken from [G1].

Theorem 3.5. If initial α -compactness is productive, then there is $p \in U(\alpha)$ decomposable such that initial α -compactness coincides with p-compactness.

A characterization of intial α -compactness is given in the next theorem (a proof is available in [St]; see also [N]).

Theorem 3.6. For a space X the following are equivalent.

- (1) X is initially α -compact;
- (2) for every $\omega \leq \gamma \leq \alpha$ and for every $f : \gamma \to X$ there is $p \in U(\gamma)$ such that $\bar{f}(p) \in X$.

Theorem 3.6 suggests the next generalization of quasi M-compactess.

Definition 3.7. Let α be a cardinal and let $\mathcal{M} = \{M_i : i \in I\}$ be an arbitrary set of non-empty subsets of α^* . Then, a space X is said to be quasi \mathcal{M} -compact if X is quasi M_i -compact for every $i \in I$.

If $\emptyset \neq M \subseteq \alpha^*$, then quasi M-compactness agrees with quasi $\{M\}$ -compactness, and if $\mathcal{M} = \{p_i : i \in I\} \subseteq \alpha^*$, then X is quasi \mathcal{M} -compact iff X is p_i -compact for all $i \in I$. If $p, q \in \omega^*$ satisfy that r < q for all $r \in \beta_p(\omega)$, then $\beta_p(\omega)$ is p-compact, but it is not quasi $\{\{p\}, \{q\}\}\}$ -compact.

For $\omega \leq \gamma \leq \alpha$, $\mathcal{M}(\gamma, \alpha)$ will denote an arbitrary set $\{M_{\kappa} : \gamma \leq \kappa \leq \alpha\}$ of non-empty subsets of α^* such that $M_{\kappa} \subseteq U(\kappa)$ for every $\gamma \leq \kappa \leq \alpha$. Using this terminology, we have that a space X is initially α -compact if and only if there is a set $\mathcal{M}(\omega, \alpha)$ such that X is quasi $\mathcal{M}(\omega, \alpha)$ -compact.

For a cardinal α , let \mathcal{C}_{α} will denote the class of all spaces X with the property that for every initially α -compact space Y, $X \times Y$ is initially α -compact. The class \mathcal{C}_{ω} was introduced by Frolík [Fro2] and he characterized the spaces which are in \mathcal{C}_{ω} . For cardinals higher than ω we have the following theorem.

For $\omega \leq \gamma \leq \alpha$, we set

$$\mathcal{A}(\gamma,\alpha) = \{U(\gamma) \cap K : K \subseteq \alpha^*, \alpha \cup K \text{ is initially } \alpha - \text{compact } \},$$

and $\mathcal{M}_{\alpha} = \bigcup_{\omega < \gamma < \alpha} \mathcal{A}(\gamma, \alpha)$.

Theorem 3.8. ([G7]) For a space X, the following are equivalent:

- (1) $X \in \mathcal{C}_{\alpha}$;
- (2) X is quasi \mathcal{M}_{α} -compact.

The following theorem is due to Savchenko [Sav] and Kombarov [Kom1] (for $\alpha = \omega$).

Theorem 3.9. Let $\emptyset \neq M \subseteq \alpha^*$. If X is a paracompact weakly M-sequential space and Y is a collectionwise normal M-compact space, then $X \times Y$ is collectionwise normal.

The next definition characterizes the spaces X for which X^{γ} is initially α -compact for some cardinal γ .

Definition 3.10. ([G7]) Let $\emptyset \neq M \subseteq \alpha^*$ and let κ be a cardinal with $1 \leq \kappa$. Then, we say that X is (κ, M) -compact if for every κ -sequence $(f_{\xi})_{\xi < \kappa}$ of functions in ${}^{\alpha}X$, there is $p \in M$ such that $\bar{f}_{\xi}(p) \in X$ for each $\xi < \kappa$.

Theorem 3.11. ([G7]) Let X be a space and let α and κ be cardinals with $1 \leq \kappa$. The following are equivalent.

- (1) X^{κ} is initially α -compact;
- (2) for each cardinal γ with $\omega \leq \gamma \leq \alpha$ there is $\emptyset \neq M_{\gamma} \subseteq U(\gamma)$ such that X is (κ, M_{γ}) -compact;
 - (3) X is $(\kappa, U(\gamma))$ -compact for every cardinal $\omega \leq \gamma \leq \alpha$.

Now, we give some results about when $\beta_M(\alpha) \in \mathcal{C}_{\alpha}$, for $\emptyset \neq M \subseteq \alpha^*$.

Theorem 3.12. ([G7]) If there is $\emptyset \neq M \subseteq \omega^*$ with $\beta_M(\omega) \in \mathcal{C}_{\omega}$, then $\beta_M(\omega) = \beta(\omega)$.

It is shown in [G7] that there is $\emptyset \neq M \subseteq \omega^*$ such that $\beta_M(\omega) \neq \beta(\omega)$ and $|\beta_M(\omega)| = 2^{2^{\omega}}$. Unfortunately, the following question remains open.

Question 3.13. ([G7]) Let $\alpha > \omega$ be a regular cardinal. Is there $\emptyset \neq M \subseteq \alpha^*$ such that $\beta_M(\alpha) \in \mathcal{C}_\alpha$ and $\beta_M(\alpha) \neq \beta(\alpha)$?

The following (pre)-order on α^* was introduced by W.W. Comfort in [G4] and is a very important tool to study the *p*-compact like properties.

Definition 3.14. For $p, q \in \alpha^*$, we say that $p \leq_C q$ if every q-compact space is p-compact.

It is evident that $\leq_{RK} \subseteq \leq_C$ (for a proof of the fact that these two orders are different see [G4; Th. 2.8]). If $p \leq_C q$ and $q \leq_C p$, for $p,q \in \alpha^*$, then we write $p \approx_C q$. The Comfort type of $p \in U(\alpha)$ is the set $T_C(p) = \{q \in \alpha^* : p \approx_C q\}$. It is proved in [G6; Lemma 3.4] that if $p \in U(\alpha)$, then $T_C(p) \subseteq U(\alpha)$ and $|\{T_{RK}(q) : p \approx_C q\}| \geq \omega$. If $p,q \in \alpha^*$, then $p <_C q$ means that $p \leq_C q$ and p is not Comfort equivalent to q. A useful characterization of the Comfort-order is given in the next theorem.

Theorem 3.15. ([G4], [G6]) For $p, q \in \alpha^*$, the following are equivalent:

- (1) $p \leq_C q$;
- (2) $\beta_p(\alpha) \subseteq \beta_q(\alpha)$;
- (3) $p \in \beta_q(\alpha)$;
- (4) $\exists f \in {}^{\alpha}\beta_q(\alpha) \ (\bar{f}(q) = p \notin f[\alpha]);$
- (5) $\beta_q(\alpha)$ is p-compact;
- (6) $\beta_q(\alpha) \cap \alpha^*$ is p-compact.

It is a direct consequence of Theorem 3.15 that if $p \in \alpha^*$, then $P_C(p) = \{q \in \alpha^* : q \leq_C p\} \cup \alpha = \beta_p(\alpha)$.

Next, we state some of the properties of $T_C(p)$ for $p \in \alpha^*$ (for definitions see [CN2]).

Theorem 3.16. For $p \in U(\alpha)$, we have that

- (1) if $p \in \omega^*$, then $T_C(p)$ contains a subset S such that (S, \leq_{RF}) is order isomorphic to the reals;
- (2) ([G4]) if $p \in \omega^*$ is RK-minimal, then every two points of $T_C(p)$ are RF-comparable;
- (3) ([G4]) if $p, r, s \in \omega^*$ satisfy that $s \leq_C p$, $r \leq_C p$ and s and r are RF-incomparable, then $(T_C(p), \leq_{RF})$ is not a linearly ordered set;
 - (4) ([G4]) if $p \in \omega^*$, then $T_C(p)$ is countably compact;
 - (5) ([G4]) if $p \in \omega^*$ is a P-point, then $T_C(p)$ is p-compact;
- (6) ([G7]) if $p, q \in \omega^*$ are RK-minimal and RK-incomparable, then $T_C(p) \times T_C(q)$ is not countably compact;

(7) ([G8]) if $p, q, r \in \omega^*$ satisfy that $r \leq_C p$ and $r \leq_C q$ and r is a P-point of ω^* , then $T_C(p) \times T_C(q)$ is r-compact;

If
$$c_p = |\{T_{RK}(q) : p \approx_C q\}|$$
, then

- (8) ([G6]) if $\alpha \leq c_p$, then $\alpha < c_p \leq 2^{\alpha}$;
- (9) ([G6]) if p is countably complete, then $2^{\omega} \leq c_p = c_p^{\omega} \leq 2^{\alpha}$;
- (10) ([G6]) if p is decomposable, then $c_p = 2^{\alpha}$;
- (11) ([G6]) if p is regular, then $c_p = 2^{\alpha}$;
- (12) ([G6]) if $p \in U(\aleph_n)$, then $c_p = 2^{\aleph_n}$ for every $n < \omega$;
- (13) ([G6]) if $\omega < \alpha$ and p is RK-minimal, then $c_p = \omega$.

We do not know the response to the next question in ZFC.

Question 3.17. If $p \in U(\aleph_{\omega})$, must $c_p = 2^{\aleph_{\omega}}$?

The property that says "Rudin-Keisler ordering is downward directed" is known as the set-theoretic principle Near Coherence of Filters, NCF. Shelah [BS] has defined a model of ZFC in which NCF holds and MA implies the negation of NCF. This principle NCF is equivalent to any one of the next assertions.

Theorem 3.18. ([G4]) The following are equivalent.

- (1) $\forall p, q \in \omega^* \exists r \in \omega^* (r \leq_{RK} p \land r \leq_{RK} q);$
- (2) $\forall p, q \in \omega^* \exists r \in \omega^* (r \leq_C p \land r \leq_C q);$
- (3) if X is p-compact and Y is q-compact, for $p, q \in \omega^*$, then $X \times Y$ is countably compact;
 - (4) $\forall p, q \in \omega^*(\beta_p(\omega) \cap \beta_q(\omega) \neq \omega).$

It is well-known [BI] that if we assume MA, then there are $p,q\in\beta(\omega)$ such that p and q are RK-minimal and RK-incomparable; hence, $\beta_p(\omega)\cap\beta_q(\omega)=\omega$ (see [G4]). Thus, MA implies the existence of two ultrafilters $p,q\in\omega^*$ for which there are a p-compact space and a q-compact space Y whose product $X\times Y$ is not countably compact. All the statements of Theorem 3.18 hold in a model of NCF.

It is a theorem of W.W. Comfort and Ch. Waiveris ([CW], [Wa]) that if X is either an F-space or realcompact, then there is a set $\{X_{\xi}: \xi < 2^{2^{\omega}}\}$ of countably compact (extra countably compact) subspaces of $\beta(X)$ such that $X_{\xi} \cap X_{\zeta} = X$ for $\xi < \zeta < 2^{2^{\omega}}$. Using p-limit points, V. Saks [Sa3] showed that these spaces can be chosen pairwise non-homeomorphic. In this direction, we shall present a similar result for F-spaces that is independent of the axioms of ZFC. We need two lemmas.

Lemma 3.19. Let X be a space and let $p \in \omega^*$ be RK-minimal. Then $\beta_p(X) = X \cup \{\bar{f}(p) : f \in {}^{\omega}\beta_p(X) \text{ is an embedding }\}.$

Proof. Put $Y = X \cup \{\bar{f}(p) : f \in {}^{\omega}\beta_p(X) \text{ is an embedding } \}$. It is evident that $Y \subseteq \beta_p(X)$. We shall verify that Y is p-compact. Indeeed, let $f \in {}^{\omega}Y$ be an arbitrary function. We may assume that $\bar{f}(p) \notin f[\omega]$. By Lemma 2.16 of [G4], there is $A \in p$ such that $f|_A$ is an embedding. Now, we choose $B \subseteq A$ so that $B \in p$ and $|A \setminus B| = |B| = \omega$. Define a bijection $h : \omega \to A$ such that $h|_B$ is the identity and $g = f \circ h$. Then, $g : \omega \to \beta_p(X)$ is an embedding and $\bar{g}(p) = \bar{f}(p)$ and hence $\bar{f}(p) \in Y$. This shows that Y is p-compact and so $\beta_p(X) = Y$. \square

Lemma 3.20. ([FKZ]) Let X be an F-space and let $f, g : \omega \to X$ be two embeddings. If $\bar{f}(p) = \bar{g}(q)$ for $p, q \in \omega^*$, then p and q are RF-comparable.

Theorem 3.21. Assume MA. Let X be a compact F-space. Then, there is a set $\{X_{\xi} : \xi < 2^{2^{\omega}}\}$ of subspaces of $\beta(X)$ such that

- (i) X_{ξ} is p_{ξ} -compact for some $p_{\xi} \in \omega^*$ for each $\xi < 2^{2^{\omega}}$;
- (ii) $X_{\xi} \cap X_{\zeta} = X$ for $\xi < \zeta < 2^{2^{\omega}}$.

In addition, if X is not countably compact, then the spaces $X'_{\xi}s$ can be chosen pairwise non-homeomorphic.

Proof. By Theorem 14.25 of [GJ], we have that $\beta(X)$ is an F-space as well. It was shown by A. Blass [Bl] that if we assume MA, then there is a set $\{p_{\xi}: \xi < 2^{2^{\omega}}\}$ of RK-minimal points of ω^* which are pairwise RK-incomparable. For $\xi < 2^{2^{\omega}}$, we define $X_{\xi} = \beta_{p_{\xi}}(X)$. We only need to verify clause (ii). Let $\xi < \zeta < 2^{2^{\omega}}$ and assume that there is $z \in X_{\xi} \cap X_{\zeta} \cap (\beta(X) \setminus X)$. By Theorem 3.15, there are two functions $f: \omega \to X_{\xi}$ and $f: \omega \to X_{\zeta}$ such that $\bar{f}(p_{\xi}) = z = \bar{g}(p_{\zeta})$. According to Lemma 3.19, we may suppose that f and g are embeddings. So, by Lemma 3.20, p_{ξ} and p_{ζ} are RK-comparable, which is a contradiction. Finally, assume that X is not countably compact. Then, $X \neq X_{\xi}$ for every $\xi < 2^{2^{\omega}}$. If X_{ξ} is homeomorphic to X_{ζ} , for $\xi < \zeta < 2^{2^{\omega}}$, then X_{ξ} would be p_{ζ} -compact, so $X_{\zeta} \subseteq X_{\xi}$, a contradiction since $X_{\xi} \cap X_{\zeta} = X$. \square

We should remark that in a model of NCF, the discrete space ω does not satisfy the conclusion of Theorem 3.21. In fact, assuming NCF, if $p, q \in \omega^*$, then there is $r \in \omega^*$ such that $r \leq_{RK} p$ and $r \leq_{RK} q$ and then $\omega \neq \beta_r(\omega) \subseteq \beta_p(\omega) \cap \beta_q(\omega)$.

For $p \in U(\alpha)$, the spaces which quasi $P_{RK}(p)$ -compact are called almost p-compact in [G7]. This name is because if X is quasi $P_{RK}(p)$ -compact and $f: \alpha \to X$ is a function, then there $\sigma \in {}^{\alpha}\alpha$ such that $\bar{\sigma}(p) \in \alpha^*$ and $\bar{f}(\bar{\sigma}(p)) \in X$.

For every $p \in \omega^*$, it is clear that

p-compactness \implies almost p-compactness \implies countable compactness.

We give two examples to show that these three concepts are different each other.

Example 3.22. ([G7) Let $p \in \omega^*$.

(1) An almost p-compact space that is not p-compact: Our space Γ_p will be constructed by transfinite induction. Put $\Gamma_0 = \omega$ and assume that Γ_μ has been defined for $\mu < \nu < \omega_1$. Then, define

$$\Gamma_{\nu} = \{ \bar{f}(q) : f : \omega \to \bigcap_{\mu < \nu} \Gamma_{\mu} \text{ is an embedding } \bar{f}(q) \neq p, q \in T_{RK}(p) \}.$$

We set $\Gamma_p = \bigcap_{\nu < \omega_1} \Gamma_{\nu}$. Since $p \notin \Gamma_p$, then Γ_p cannot be p-compact. It is not hard to see that Γ_p is almost p-compact.

(2) A countably compact space that is not almost p-compact: We define $\Delta_p = \omega \cup (\beta(\omega) \setminus P_{RK}(p))$. It is evident that Δ_p cannot be almost p-compact and since $|P_{RK}(p)| \leq 2^{\omega}$, Δ_p must be countably compact. \square

As an other application of Theorem 2.6 is that if a countably compact space has cardinality not bigger than 2^{ω} , then the space is almost p-compact for some $p \in \omega^*$. A more general statement is the following.

Theorem 3.23. ([G7]) If X_{ξ} is initially α -compact and $|X_{\xi}| \leq 2^{\alpha}$ for $\xi < 2^{\alpha}$, then there is $p \in U(\alpha)$ such that X_{ξ} is almost p-compact for every $\xi < 2^{\alpha}$.

The almost p-compactness for a RK-minimal ultrafilter $p \in \omega^*$ has the following property.

Theorem 3.24. ([G7]) For $p \in \omega^*$, the following are equivalent.

- (1) p-is RK-minimal;
- (2) quasi $T_{RK}(p)$ -compactness agrees with almost p-compactness.

By using almost p-compactness, the Rudin-Keisler order has the next equivalent statement:

Theorem 3.25. ([G7]) For $p, q \in \omega^*$, the following are equivalent.

- (1) $p \leq_{RK} q$;
- (2) every almost p-compact space is almost q-compact.

It is pointed out in [GS] that the type $T_{RK}(p)$ for $p \in U(\alpha)$ cannot be countably compact, but for the Comfort-types we have:

Theorem 3.26. ([G7]) For $p \in \omega^*$, we have that $T_C(p)$ is almost p-compact.

The following questions will provide information about the topological behaviour of the Comfort-types.

Question 3.27. If $p \in U(\alpha)$ is not RK-minimal, must $T_C(p)$ be countably compact?

Question 3.28. If $p \in \omega^*$ is not RK-minimal, must $T_C(p)$ p-compact?

The answer is in the positive fashion for a RK-minimal ultrafilter on ω .

4. Cardinal invariants

Theorem 2.6 leads us to consider the following cardinal invariant.

Definition 4.1. For a space X, we define

$$\tau_{FU}(X) = \min\{\alpha : \exists p \in U(\alpha) \ (X \text{ is a } FU(p)\text{-space})\}.$$

For any space X, we have that $t(X) \leq \tau_{FU}(X)$ and if $\tau_{FU}(X) \leq \alpha$, then there is $q \in U(\alpha)$ such that X is a FU(q)-space. According to Theorem 2.6, if $t(X) = \alpha$ and $|X| \leq 2^{\alpha}$, then $\tau_{FU}(X) \leq \alpha$ and hence $\tau_{FU}(X) = t(X)$. Note that if X is a FU(p)-space for $p \in U(\alpha)$, then $\tau_{FU}(X) \leq ||p||$. The fact that $|X| \leq 2^{2^{d(X)}}$ (see 1.5.3 in [En]) implies that $\tau_{FU}(X) \leq 2^{2^{d(X)}}$. But, if X is a WFU(M)-space, $M \subseteq \alpha^*$, then $|X| \leq 2^{d(X)}$ ([Koc3]) so that for such spaces X we have $\tau_{FU}(X) \leq 2^{d(X)}$.

The following example shows that the functions t and τ_{FU} are different.

Example 4.2. Let $X = \Xi(\omega^*)$. Then, $t(X) = \omega$. Suppose that $\tau_{FU}(X) = \omega$. Then, there is $q \in \omega^*$ such that X is a FU(q)-space. Hence, $\xi(p)$ is a FU(q)-space for every $p \in \omega^*$. In virtue of Lemma 1.9, we have that $p \leq_{RK} q$ for every $p \in \omega^*$; that is, $|P(q)| = 2^c$, which is a contradiction. \square

The proof of the following lemma is a direct application of Theorem 2.6.

Lemma 4.3. For every $p \in U(\alpha)$ there is a set $\{p_{\nu} : \nu < \alpha^{+}\} \subseteq U(\alpha)$ such that

- (1) $p_0 = p$;
- (2) $p_{\nu+1} \approx_{RK} p \otimes p_{\nu}$ for every $\nu < \alpha^+$;
- (3) $p_{\nu} < p_{\mu}$ whenever $\nu < \mu < \alpha^{+}$.

Lemma 4.4. ([GMT; Lemma 1.4]) Let $p, q \in \alpha^*$ and X a space.

(1) If $p \leq_{RK} q$, then $A^p \subseteq A^q$ for every $A \subseteq X$.

(2) If $\{p_{\nu} : \nu < \alpha^{+}\} \subseteq U(\alpha)$ satisfies the conclusion of Lemma 4.3 for p, then $A(p,\nu) \subseteq A(p_{\nu},1)$ for every $\nu < \alpha^{+}$ and for every $A \subseteq X$.

The next theorem generalizes Theorem 3.5 of [G2] for arbitrarily higher cardinals.

Theorem 4.5. If X is p-sequential for $p \in U(\alpha)$, then there is $q \in U(\alpha)$ such that X is a FU(p)-space.

Proof. Let $\{p_{\nu}: \nu < \alpha^+\} \subseteq U(\alpha)$ satisfy the conditions of Lemma 4.3. According to Theorem 2.6, there is $q \in U(\alpha)$ such that $p_{\nu} < q$ for every $\nu < \alpha^+$. We claim that X is a FU(q)-space. In fact, for $A \subseteq X$ we have that $Cl_XA = \bigcup_{\lambda < \alpha^+} A(p,\lambda)$. In virtue of Lemma 4.4, we have that $A(p,\lambda) \subseteq A(p_{\lambda},1)$ for every $\lambda < \alpha^+$. Applying again Lemma 4.4, we have that $A(p_{\lambda},1) \subseteq A(q,1)$. Therefore, $Cl_XA = A(q,1)$. This shows that X is a FU(q)-space. \square

It then follows from Theorem 4.5 that, for every space X,

$$\tau_{FU}(X) = \min\{\alpha : \exists p \in U(\alpha) \ (X \text{ is } p\text{-sequential})\}.$$

The next result is a corollary of Theorem 2.6.

Corollary 4.6. For a cardinal α , the following are equivalent.

- (1) $\tau_{FU}(U(\alpha)) = \gamma;$
- (2) $2^{2^{\alpha}} \leq 2^{\gamma}$.

The degree of sequentiality of a weakly (strongly) M-sequential space is given in the next definition.

Definition 4.7. Let X be a space. Then:

- (1) if X is weakly M-sequential for some $\emptyset \neq M \subseteq \alpha^*$, we define $\sigma_W^M(X) = \min\{\lambda \leq \alpha^+ : \forall A \subseteq X(Cl_XA = A_W(M, \lambda))\};$
- (2) if X is strongly M-sequential for some $\emptyset \neq M \subseteq \alpha^*$, we define $\sigma_S^M(X) = \min\{\lambda \leq \alpha^+ : \forall A \subseteq X(Cl_X A = A_S(M, \lambda))\}.$

Notice that X is weakly (resp., strongly) M-sequential, for some $\emptyset \neq M \subseteq \alpha^*$, if and only if $\sigma_W^M(X)$ (resp., $\sigma_S^M(X)$) exists [Koc3]. For a space X, we have that $\tau_{FU}(X) \leq \alpha$ if and only if $\sigma_S^M(X)$ exists. A space X is SFU(M)-space (resp., WFU(M)-space) if and only if $\sigma_S^M(X) = 1$ (resp., $\sigma_W^M(X) = 1$). If $M = \{p\}$ for some $p \in U(\alpha)$, then we write $\sigma_p(X) = \sigma_W^M(X) = \sigma_S^M(X)$.

The cardinal invariants stated in the following definition, for (pseudo) radial spaces, were introduced by Lj. Kočinac in [Koc1].

Definition 4.8. Let X be a space and let $\emptyset \neq M \subseteq \alpha^*$.

(1) if $x \in X$, then

$$rt_W^M(x,X) = \min\{\lambda : x \in A_W(M,1) \Rightarrow \exists B \in [A]^{\leq \lambda} \ (x \in B_W(M,1))\};$$

(2) if $x \in X$, then

$$rt_S^M(x,X) = \min\{\lambda : x \in A_S(M,1) \Rightarrow \exists B \in [A]^{\leq \lambda} \ (x \in B_S(M,1))\};$$

- (3) $rt_W^M(X) = \sup\{rt_W^M(x, X) : x \in X\};$
- (4) $rt_S^M(X) = \sup\{rt_S^M(x, X) : x \in X\}.$

If $M = \{p\}$ for some $p \in U(\alpha)$, then we write $rt^p(x, X) = rt_W^M(x, X) = rt_S^M(x, X)$ and $rt^p(X) = rt_W^M(X) = rt_S^M(X)$, for any space X. If X is strongly M-sequential (resp., a SFU(M)-space), then $t(X) \leq rt_W^M(X)$ (resp., $t(X) \leq rt_S^M(X)$). For an arbitrary space X, $rt^p(X) \leq \tau_{FU}(X)$, where $p \in U(\alpha)$ is the ultrafilter which witnesses that X is a FU(p)-space.

The proof of the next theorem is left to the reader.

Theorem 4.9. Let X be a space and let $\emptyset \neq M \subseteq \alpha^*$.

(1) if X is weakly M-sequential, then $t(x,X) \leq rt_W^M(x,X)$ for every $x \in X$ and

$$t(X) \le rt_W^M(X) \le \min\{\|p\| : p \in M\} \le \alpha;$$

(2) if X is strongly M-sequential, then $t(x, X) \leq rt_S^M(X)$ for every $x \in X$ and

$$t(X) \le rt_S^M(X) \le \min\{\|p\| : p \in M\} \le \alpha;$$

- (3) if X is a WFU(M)-space, then $t(X) = rt_W^M(X)$;
- (4) if X is a SFU(M)-space, then $t(X) = rt_S^M(X)$.

Now, we give an alternative definition of the tightness of a space.

Theorem 4.10. Let X be a space. If $t(X) = \gamma$, then $t(x, X) = rt_W^{U(\gamma)}(x, X)$ for every $x \in X$ and $t(X) = rt_W^{U(\gamma)}(X)$.

Proof. First, notice that X is weakly $U(\gamma)$ -sequential. Let $x \in X$. If $x \in Cl_X A$, then there is $B \in [A]^{\leq \gamma}$ such that $x \in Cl_X B$. Hence, by Lemmas 1.3 and 1.9, there is $p \in U(\gamma)$ and an γ -sequence $(x_{\xi})_{\xi < \gamma}$ in B such that $x = p - \lim x_{\xi}$. Thus, $x \in B_W(U(\gamma, 1))$ and $|B| \leq \gamma$. This, shows that $t(x, X) \geq rt_W^{U(\gamma)}(x, X)$. The equality follows from Theorem 4.9. Therefore, $t(X) = rt_W^{U(\gamma)}(X)$. \square

An application of Theorem 4.10 is that if $\Xi(\omega^*)$ is a FU(p)-space for $p \in U(\tau_{FU}(\Xi(\omega^*)))$, then $rt^p(\Xi(\omega^*) = \omega < \tau_{FU}(\Xi(\omega^*))$.

Lemma 4.11. Let X be a space and $(x_{\xi})_{\xi < \alpha}$ an α -sequence in X converging to $x \in X$. If $\psi(x, X) \leq \alpha$, then we have that

- (1) if $\psi(x,X) < cf(\alpha)$, then $(x_{\xi})_{\xi < \alpha}$ is eventually constant;
- (2) if $cf(\alpha) \leq \psi(x,X)$, then there is a sub γ -sequence of $(x_{\xi})_{\xi < \alpha}$ that converges to x.

Proof. Put $\gamma = \psi(x,X)$. Let $\{V_{\nu} : \nu < \gamma\} \subseteq \mathcal{N}(x)$ be a pseudo-base at x. For each $\nu < \gamma$, we pick $\xi_{\nu} < \alpha$ such that $\xi_{\nu} \in U_{\nu}$ and if $\xi_{\nu} \leq \zeta < \alpha$, then $x_{\zeta} \in U_{\nu}$. Suppose that $(x_{\xi})_{\xi < \alpha}$ is not eventually constant. Then, we may assume that $x \neq x_{\xi}$ for every $\xi < \alpha$. Since $\{x\} = \bigcap_{\nu < \gamma} V_{\nu}$, we must have that the set $\{\xi_{\nu} : \nu < \gamma\}$ is cofinal in α and hence $cf(\alpha) \leq \gamma$. Without loss of generality, we suppose that $\xi_{\nu} < \xi_{\mu}$ whenever $\nu < \mu < \gamma$. Now, we shall show that $\xi_{\nu} \to x$. Fix $V \in \mathcal{N}(x)$. Then, there is $\theta < \alpha$ such that if $\theta \leq \zeta < \alpha$, then $x_{\zeta} \in V$. Choose $\nu < \gamma$ so that $\theta < \xi_{\nu}$. Hence, if $\nu < \mu < \gamma$, then $x_{\xi_{\mu}} \in V$. Thus, $x_{\xi_{\nu}} \to x$ as required. \square

Lemma 4.11 implies the next result.

Lemma 4.12. Let X be a space and $(x_{\xi})_{\xi < \alpha}$ an α -sequence in X converging to $x \in X$. If $\psi(x, X) \leq cf(\alpha)$, then $A_S(\alpha^*, \lambda) \subseteq A_S(\gamma^*, \lambda)$ for every $A \subseteq X$ and for every cardinal λ .

Now, we have two consequences of Lemmas 4.11 and 4.12.

Theorem 4.13. Let X be a space such that $\gamma = \psi(X) \leq \alpha$. Then, we have that

- (1) if X is strongly α^* -sequential, then X is strongly γ^* -sequential;
- (2) if X is a $FU(\alpha^*)$ -space, then X is a $SF(\gamma^*)$ -space.

Corollary 4.14. Let X be a space.

- (1) ([Kocl]) A pseudo-radial space of countable pseudo-charecter is sequential;
 - (2) ([A1]) A radial space of countable pseudo-charecter is Frechét-Urysohn.

Definition 4.15. ([Koc3]) Let X be a space and let $\emptyset \neq M \subseteq \alpha^*$. We define

- (1) $d_W^M(X) = \min\{|A| : X = A_W(M,1)\};$
- (2) $d_S^M(X) = \min\{|A| : X = A_S(M,1)\};$

In the context of pseudo-radial spaces, $d_S^{\alpha^*}(X)$ was introduced in [Koc1]. For a space X, we have that $d(X) \leq \min\{d_W^M(X), d_S^M(X)\}$.

The density cardinal function can be defined as follows.

Theorem 4.16. For any space X, we have that

$$d(X) = d_W^{U(d(X))}(X).$$

Proof. We know that $d(X) \leq d_W^{U(d(X))}(X)$. If D is a dense subset of X with |D| = d(X), then by Lemma 1.3, we obtain that $X = A_W(d(X)^*, 1)$. Hence, $d(X) \geq d_W^{U(d(X))}(X)$. \square

Question 4.17. Is there an example of a space X such that it is FU(p)-space for some $p \in U(\tau_{FU}(X))$ and $d(X) < d^p(X)$?

From Theorem 2.6 it follows that if $|X \setminus D| \le 2^{d(X)}$ for a dense subset D of X with |D| = d(X), then $d(X) = d^p(X)$ for some $p \in U(d(X))$.

The next theorem is taken from [Koc3] (see also [G2]).

Theorem 4.18. Let $\emptyset \neq M \subset \alpha^*$ and let X be a weakly M-sequential space. Then:

- (1) For every $A \subseteq X$, $|A_W^M| \le 2^{|A|}$ and, in particular, $|X| \le 2^{d_W^M(X)}$;
- (2) $|X| \leq d_W^M(X)^{\alpha}$.

If X is a WFU(M)-space, we have

(3) $|X| \leq 2^{d(X)}$.

In a similar way one can prove the following result.

Theorem 4.19. Let $\emptyset \neq M \subseteq \alpha^*$. If X is a strongly M-sequential space, then $|X| \leq 2^{d_S^M(X)}$.

We end this section by the following result shown independently by Kočinac and Savchenko.

Theorem 4.20. ([Koc2], [Sav]) If X is a compact strongly M-sequential space, $\emptyset \neq M \subseteq \omega^*$, then $|X| \leq 2^{c(X)}$.

5. Mappings and sequential properties

Recall that a continuous mapping $f: X \to Y$ is pseudo-open if for every $y \in Y$ and for every open subset U of X with $f^{-1}(y) \subseteq U$, $y \in int(f[U])$. Call a mapping $f: X \to Y$ M-continuous, $M \subseteq \alpha^*$, if for every α -sequence $(x_{\xi}: \xi \in \alpha)$ that weakly M-converges to $x \in X$, the α -sequence $(f(x_{\xi}): \xi \in \alpha)$ weakly M-converges to f(x). We shall say that a mapping $f: X \to Y$ is M-sequence covering if whenever $(y_{\xi}): \xi \in \alpha)$ weakly M-converges to a point $y \in Y$, then there are points $x_{\xi} \in f^{-1}(y_{\alpha})$ and $x \in f^{-1}(y)$ such that $(x_{\xi}): \xi \in \alpha)$ weakly M-converges to x.

The characterization of sequential and Frechét-Urysohn spaces due to S.P. Franklin [Fr] and F. Siwiec [Si] can be generalized as follows. (Some incorrectnes in papers cited below are corrected here.)

Theorem 5.1. ([Koc2], [Koc3], [Koc4]) Let $\emptyset \neq M \subseteq \alpha^*$ and let X be a space. Then,

- (1) X is weakly M-sequential iff there are a set I and an I-sequence $\mathcal{M} = (p_i)_{i \in I}$ of free ultrafilters on α such that $p_i \in M$ for each $i \in I$ and X is a quotient image of the space $\Xi(\mathcal{M})$;
- (1a) X is weakly M-sequential iff every M-continuous mapping defined on X is continuous;
- (1b) X is weakly M-sequential iff every M-sequence covering mapping $f: Y \to X$ onto X is quotient;
- (2) X is strongly M-sequential iff there are a set I and an I-sequence $\mathcal{M} = (\mathcal{F}_i)_{i \in I}$ of free filters on α such that $\mathcal{F}_M \subseteq \mathcal{F}_i$ for each $i \in I$ and X is a quotient image of the space $\Xi(\mathcal{M})$;
- (3) X is a WFU(M)-space iff there are a set I and an I-sequence $\mathcal{M} = (p_i)_{i \in I}$ of free ultrafilters on α such that $p_i \in M$ for each $i \in I$ and X is a pseudo-open image of the space $\Xi(\mathcal{M})$;
- (3a) X is a WFU(M)-space iff every M-sequence covering mapping (from a space Y) onto X is pseudo-open;
- (4) X a SFU(M)-space iff there are a set I and an I-sequence $\mathcal{M} = (\mathcal{F}_i)_{i \in I}$ of free filters on α such that $\mathcal{F}_M \subseteq \mathcal{F}_i$ for each $i \in I$ and X is a pseudo-open image of the space $\Xi(\mathcal{M})$.

The cardinal function τ_{FU} introduced in Section 4 can also be characterized in terms of mappings.

If \mathcal{F} is a filter on α and λ is a cardinal number, then $\Xi(\mathcal{F},\lambda)$ will denote the space that is the topological sum of λ -many copies of the space $\xi(\mathcal{F})$. Notice that $|\Xi(p,\lambda)| = \alpha \cdot \lambda$ and $\tau(\Xi(p,\lambda)) = \alpha$, for every $p \in U(\alpha)$ and for every cardinal λ . The next result is a consequence of Theorems 4.5 and 5.1.

Corollary 5.2. For a space X the following are equivalent.

- (1) $\alpha = \tau_{FU}(X)$;
- (2) there are a cardinal $\lambda \leq |X|^{\alpha}$ and $p \in U(\alpha)$ such that X is a quotient image of the space $\Xi(p,\lambda)$;
- (3) there are a cardinal $\lambda \leq |X|^{\alpha}$ and $p \in U(\alpha)$ such that X is a pseudoopen image of the space $\Xi(p,\lambda)$.

We should remark that closedness of projections in a topological product may be described by using properties considered in the previous sections. **Theorem 5.3.** ([Koc2], [Kom1]) Let $\emptyset \neq M \subseteq \alpha^*$. If X is a strongly M-sequential space and Y a quasi- $Cl_{\beta\alpha}M$ -compact space, then the projection $\pi_X: X \times Y \to X$ is closed.

We are going now to consider some relations between p-sequential-like properties and cleavability of topological spaces. We shall restrict our atention only to the case $\alpha = \omega$.

Definition 5.4. ([A2], [Koc5]) If \mathcal{P} is a class of topological spaces and \mathcal{M} is a class of continuous mappings, then a space X is said to be \mathcal{M} -cleavable (resp. \mathcal{M} -pointwise cleavable) over \mathcal{P} if for every $A \subset X$ (resp. every $x \in X$) there exist $Y \in \mathcal{P}$ and $f \in \mathcal{M}$, $f: X \to Y$, such that f(X) = Y and $f^{-1}f(A) = A$ (resp. $f^{-1}f(x) = \{x\}$).

We also need the following notion.

Definition 5.5. ([GMT]) Let $p \in \omega^*$. A space X is called *p-closed* if every *p*-compact subspace of X is closed.

The following simple results is useful in what follows.

Lemma 5.6. If a space X is cleavable over the class K of all p-closed spaces, then X is a p-closed space.

Using the fact that p-compact p-closed spaces are precisely p-sequential spaces [GMT], from Lemma 5.6 we obtain

Theorem 5.7. ([Koc6]) If a p-compact space X is cleavable over the class of p-closed spaces, then X is p-sequential.

Every p-sequential space is p-closed. Therefore, we have this corollary.

Corollary 5.7'. ([Koc6]) If a p-compact space X is cleavable over the class of p-sequential spaces, then X is p-sequential.

The following theorem is also from [Koc6].

Theorem 5.8. Let $p \in \omega^*$.

- (1) If a compact space X is cleavable over the class K of ccc p-sequential spaces, then X is a $WFU(\omega^*)$ -space.
- (2) If a separable p-compact space X is cleavable over the class K of p-closed spaces, then X is a $WFU(\omega^*)$ -space (and p-sequential).
- (3) If a space X is closed pointwise cleavable over the class of FU(p)-spaces, then X is also a FU(p)-space.

From Theorems 3.4 and 3.5 in [Be], Theorem 5.8 and the fact (2) preceding Theorem 3.2, one derives the following result.

Theorem 5.9. ([Koc6]) If a countably compact space X is closed pointwise cleavable over the class C of Fréchet-Urysohn spaces, then X is ω -bounded.

The following theorem is a special case of Theorem 23 in [A2] (which states that if a countably compact space is cleavable over the class of sequential spaces, then it is also sequential), but under a special assumption the proof is very easy and follows from our considerations.

Theorem 5.10. Suppose that the Novak number of ω^* exceeds c. If an ω^* -compact space (in paricular, compact space) X is cleavable over the class K of sequential spaces, then X is also sequential.

Every ω -bounded space is p-compact for every $p \in \omega^*$. A.V. Arhangel'skii has remarked that if an ω -bounded space is cleavable over the class of spaces of countable tightness, then it itself has countable tightness [A2]. So, the following question is quite natural.

Question 5.11. Let a p-compact space X be cleavable over the class of spaces of countable tightness. Is the tightness of X countable?

At the end of this section we give one result concerning function spaces.

For a space X, let $C_{\pi}(X)$ denote the space of all continuous real-valued functions on X with the pointwise topology. Sequential-like properties of $C_{\pi}(X)$ have been studied in [GT3], [GT4] and [T] (see also [GMT]), where some important results of Gerlitz and Nagy [GN] were generalized. Recall that a family \mathcal{G} of subsets of a space X is called an ω -cover for X if for every finite subset A of X there is a member $G \in \mathcal{G}$ such that $A \subseteq G$.

Definition 5.12. ([GT3]) Let $p \in \omega^*$. A space X is said to have property γ_p if for every open ω -cover \mathcal{G} of X there is a sequence $(G_n : n \in \omega) \subset \mathcal{G}$ such that $X = \bigcup_{A \in p} \bigcap_{n \in A}$.

Theorem 5.13. ([GT3]) Let $p \in \omega^*$. A space X has γ_p iff the space $C_{\pi}(X)$ is an FU(p)-space.

The following question remains unsolved.

Question 5.14. ([GMT]) Is $C_{\pi}(X)$ an FU(p)-space if it is a p-sequential space?

6. Generalizations of pseudocompactness

The characterization of pseudocompactness given in Theorem 1.6 leads to the study of the following class of spaces.

Definition 6.1. Let $\emptyset \neq M \subseteq \alpha^*$. Then, a space X is called M-psedocompact if for every α -sequence $(V_{\xi})_{\xi < \alpha}$ of non-empty open subsets of X, there is $p \in M$ such that $L(p, (V_{\xi})_{\xi < \alpha}) \neq \emptyset$.

If $p \in U(\alpha)$, we simply say p-pseudocompact instead of $\{p\}$ -pseudocompact. The concept of p-pseudocompactness for $p \in \omega^*$ was introduced by J. Ginsburg and V. Saks in [GS], and for arbitrary cardinals was considered in [G8]. Ginsburg and Saks [GS] showed that if $p \in \omega^*$ is not a P-point, then $T_{RK}(p)$ is a pseudocompact space that is not countably compact (in fact, $T_{RK}(p)$ is never countably compact for every $p \in \omega^*$). This result can be improved as follows.

Theorem 6.2. ([G4]) If $p \in \omega^*$ is not a P-point, then there is $q \in \omega^*$ such that $T_{RK}(p)$ is q-pseudocompact.

It is not difficult to see that p-pseudocompactness, for $p \in U(\alpha)$, is productive and preserved under surjections. But, it is not closed-hereditary:

Example 6.3. Let $p \in \omega^*$ be a non-P-point. By Theorem 6.2, we may choose $q \in \omega^*$ for which $T_{RK}(p)$ is q-pseudocompact. Since $T_{RK}(p)$ is not countably compact, there is a discrete closed subset D of $T_{RK}(p)$. Then, we have that $T_{RK}(p)$ is q-pseudocompact and D is a closed subset of $T_{RK}(p)$ that is not r-pseudocompact for any $r \in \omega^*$. \square

If $p \in M \subseteq \alpha^*$, then p-compactness implies M-pseudocompactness. But, M-compactness is not in general preserved under arbitrary products (see [GJ; 9.15]). For $p \in U(\alpha)$, we also have that every p-compact space is p-pseudocompact. The next example shows that the converse does not hold.

Example 6.4. ([G6]) Let $p \in U(\alpha)$ and consider $\beta_p(\alpha)$. First, we state some properties of $T_{RK}(p)$ that we shall need:

- (i) $|\beta_p(\alpha)| \leq 2^{\alpha}$;
- (ii) ([G6; Th. 2.3], [CN2; 12.21]) $|T_{RK}(p)| = |\alpha \alpha/p| > \alpha$
- (iii) (see [GS; Lemma 5.1]) if $D \subseteq T_{RK}(p)$ is strongly discrete, then D does not have any accumulation point in $T_{RK}(p)$;

Now, we put $\Gamma_0 = P_{RK}(p)$. By Lemma 3.5 of [G6], there is $q \in (U(\alpha) \cap \beta_p(\alpha)) - \Gamma_0$. Notice that $T_{RK}(q) \subseteq \beta_p(\alpha) - \Gamma_0$. Assume that Γ_{ν} has been defined, for $\nu < \theta < \alpha^+$, so that

(1)
$$\Gamma_{\nu} \subseteq \beta_{p}(\alpha) - T_{RK}(q)$$
 for $\nu < \theta$; and

(2) if $D \in [\Gamma_{\nu} \cap \alpha^*]^{\alpha}$ is strongly discrete in $\beta(\alpha)$ and $\nu + 1 < \theta$, then $(Cl_{\beta(\alpha)}D) \cap \Gamma_{\nu+1} \neq \emptyset$ for $\nu < \theta$.

If θ is a limit ordinal, then we set $\Gamma_{\theta} = \bigcup_{\nu < \theta} \Gamma_{\nu}$. Suppose that $\theta = \nu + 1$. For each strongly discrete subset $D \in [\Gamma_{\nu} \cap \alpha^*]^{\alpha}$ we choose $r_D \in Cl_{\beta(\alpha)}D - T_{RK}(q)$ (this is possible by clause (iii)). Then, we define $\Gamma_{\theta} = \Gamma_{\nu} \cup \{r_D : D \in [\Gamma_{\nu} \cap \alpha^*]^{\alpha}$ is strongly discrete $\}$. We define $\Gamma(p) = \bigcup_{\theta < \alpha^+} \Gamma_{\theta}$. Notice that $\alpha \subseteq \Gamma(p) \subseteq \beta_p(\alpha)$. Since $T_{RK}(q) \subseteq \beta_p(\alpha) - \Gamma(p)$, we have that Γ_p cannot be p-compact, but it is countably compact. Let $(V_{\xi})_{\xi < \alpha}$ be a sequence of nonempty clopen subsets of Γ_p . By the Disjoint Refinement Lemma (see [CN2; Lemma 7.5]), there is a set $\{A_{\xi} : \xi < \alpha\}$ of pairwise disjoint infinite subsets of α such that $\emptyset \neq \hat{A}_{\xi} \cap \Gamma(p) \subseteq V_{\xi}$. For each $\xi < \alpha$ we pick $f(\xi) \in A_{\xi} \cap \Gamma(p)$ and consider the function $f \in {}^{\alpha}\alpha$. Then, we have that $\bar{f}(p) \in \Gamma_0 \subseteq \Gamma_p$ and $\bar{f}(p) \in L(p, (V_{\xi})_{\xi < \alpha})$. This shows that Γ_p is p-pseudocompact. $\cdot \square$

Question 6.5. Does there exist a countably compact space X such that X is p-pseudocompact for all $p \in \omega^*$ and X is not p-pseudocompact for any $p \in \omega^*$?

The proof of the next result resembles the proof of Theorem 1.5 of [G5].

Theorem 6.6. For $p, q \in \alpha^*$, the following are equivalent.

- (1) $p \leq_{RK} q$;
- (2) every q-pseudocompact space is p-pseudocompact;
- (3) $P_{RK}(q)$ is p-pseudocompact;
- (4) there is a partition $\{A_{\xi}: \xi < \alpha\}$ of α such that $q \in L(p,(\hat{A}_{\xi})_{\xi < \alpha})$.

It is evident that ω^* -pseudocompactness = pseudocompactness. But, if $p \in U(\alpha)$ is ω_1 -complete, then p-compactness does not imply pseudocompactness as it is stated in the next theorem; a proof of Theorem 6.7 is available in [G8] and uses Theorem 6.6. Recall that $p \in U(\alpha)$ is γ -complete if $\bigcap_{\xi < \kappa} A_{\xi} \in p$ whenever $A_{\xi} \in p$ for every $\xi < \kappa$ and for every $\kappa < \gamma$.

Theorem 6.7. ([G8]) Let $\gamma \leq \alpha$. For $p \in U(\alpha)$, the following are equivalent.

- every p-compact space is countably compact;
- (2) every p-compact space is pseudocompact;
- (3) $\beta_p(X)$ is pseudocompact for every space X;
- (4) p is not ω_1 -complete;
- (5) every p-pseudocompact space is pseudocompact.

Thus if $p \in U(\alpha)$ is ω_1 -complete, then ω is p-compact and is not pseudocompact.

We saw in Theorem 3.4 that all the powers of a space X are countably compact iff there is $p \in \omega^*$ such that X is p-compact. The following example is due to Ginsburg and Saks gave and it is an example of a space all whose powers are pseudocompact and it is not p-pseudocompact for any $p \in \omega^*$ (an example that is also countably compact can be found in [G6; Ex. 3.6]).

Example 6.8. For each $p \in U(\alpha)$, let $X_p = \beta(\alpha) - \{p\}$. Then, we have that all the powers of $X = \prod_{p \in U(\alpha)} X_p$ are pseudocompact, since X_p is locally compact and pseudocompact for every $p \in U(\alpha)$. But, X_p is not q-pseudocompact for any $q \in \omega^*$. \square

We now turn to characterize the spaces in which all powers are pseudo-compact.

Definition 6.9. ([G5]) Let $\varnothing \neq M \subseteq \alpha^*$ and let κ be a cardinal with $1 \leq \kappa$. A space X is said to be (κ, M) -pseudocompact if for every κ -sequence $\left((V_{\zeta}^{\xi})_{\zeta < \alpha}\right)_{\xi < \kappa}$ of α -sequences of non-empty open subsets of X, there is $p \in M$ such that $L(p, (V_{\zeta}^{\xi})_{\zeta < \alpha}) \neq \varnothing$ for all $\xi < \kappa$.

If $\emptyset \neq M \subseteq \alpha^*$, then (1, M)-pseudocompact coincides with M-pseudocompactness. The spaces such that either some finite power of it is pseudocompact or all its powers are pseudocompact are characterized in the next theorem.

Theorem 6.10. ([G5]) Let $1 \le \gamma \le \omega$ and let X be a space. Then, X^{γ} is pseudocompact if and only if there is $\emptyset \ne M \subseteq \omega^*$ such that (γ, M) -pseudocompact.

If $p \in \omega^*$, then we the space $\Sigma(p) = \alpha \cup T_{RK}(p)$ satisfies that all its powers are pseudocompact: this fact was shown by W.W. Comfort [C] and Z. Frolík [Fro3]. We should mention that Theorem 2.6 of [G5] which was stated as an improvement of this fact is wrong, but some of its implications are correct:

Lemma 6.11. Let $\emptyset \neq M \subseteq \omega^*$ and X a space with $\omega \subseteq X \subseteq \beta(\omega)$. Then, X is (ω, M) -pseudocompact if and only if for every sequence $(f_n)_{n < \omega}$ in ${}^{\omega}\omega$ there is $p \in M$ such that $\bar{f}_n(p) \in X$ for every $n < \omega$.

Proof. Necessity: Let $(f_n)_{n<\omega}$ be a sequence in ${}^{\omega}\omega$. Then, we have that $((\{f_n(m)\})_{m<\omega})_{n<\omega}$ is a sequence of sequences of non-empty open subsets of X. By assumption, there is $p \in M$ such that for each $n < \omega$ there is $q_n \in L(p,(\{f_n(m)\})_{m<\omega}\cap X$. Hence, we must have that $q_n = p - \lim_{m\to\infty} f_n(m)$ for each $n < \omega$ and then $\bar{f}_n(p) = q_n \in X$ for each $n < \omega$.

Sufficiency: Let $((\{\hat{A}_m^n\})_{m<\omega})_{n<\omega}$ be a sequence of sequences of nonempty basic open subsets of ω^* . For each $n<\omega$, we choose $f_n\in{}^{\omega}\omega$ so that $f_n(m) \in A_m^n$ for every $m < \omega$. Then, there is $p \in M$ such that $\bar{f}_n(p) \in X$ for every $n < \omega$. If $q_n = \bar{f}_n(p)$ for $n < \omega$, then we have that $q_n \in L(p, (\{\hat{A}_m^n\})_{m < \omega})$. Therefore, X is (ω, M) -pseudocompact. \square

Theorem 6.12. For $\emptyset \neq M \subseteq \omega^*$ and $p \in \omega^*$. If $T_{RK}(p) \cap M$ is dense in ω^* , then $\Sigma(p)$ is (ω, M) -pseudocompact.

Proof. We apply Lemma 6.11. Let $(f_n)_{n<\omega}$ be a sequence in ${}^{\omega}\omega$. By induction we may choose $A_n \in [\omega]^{\omega}$ so that

- (1) $A_{n+1} \subseteq A_n$ for every $n < \omega$;
- (2) if $n < \omega$, then either $f_n(A_n)$ is singleton or $f_n|_{A_n}$ is one-to-one.

Since ω^* is an almost P-space, the set $\bigcap_{n<\omega} \hat{A}_n$ has non-empty interior. Hence, $\varnothing \neq \bigcap_{n<\omega} \hat{A}_n \cap T_{RK}(p) \cap T_{RK}(M)$. Pick $q \in \bigcap_{n<\omega} \hat{A}_n \cap T_{RK}(p) \cap T_{RK}(M)$ and put $\bar{f}_n(p) = p_n$ for each $n < \omega$. Thus, if $n < \omega$, then we have that either $p_n \in \omega \subseteq \Sigma(p)$ or $p_n \in T_{RK}(p) \subseteq \Sigma(p)$, as required. \square

For $\emptyset \neq M \subseteq \omega^*$, we let $T_{RK}(M) = \bigcup_{p \in M} T_{RK}(p)$.

Theorem 6.13. For $\emptyset \neq M \subseteq \omega^*$ and $p \in \omega^*$. If $\Sigma(p)$ is (ω, M) -pseudocompact, then $T_{RK}(p) \cap T_{RK}(M)$ is dense in ω^* .

Proof. Suppose that $\Sigma(p)$ is (ω, M) -pseudocompact. Let $A \in [\omega]^{\omega}$ which is enumerated as $\{a_n : n < \omega\}$. Then there are $q \in M$ and $r \in T_{RK}(p)$ such that $r = q - \lim a_n$. Hence, $r \approx_{RK} q$ and $r \in A^*$. So, $r \in A^* \cap T_{RK}(p) \cap T_{RK}(M)$. \square

Corollary 6.14. Let $\emptyset \neq M \subseteq \omega^*$ be such that $T_{RK}(M) = M$ and $p \in \omega^*$. Then, the following are equivalent.

- (1) $T_{RK}(p) \cap M$ is dense in ω^* ;
- (2) $\Sigma(p)$ is (ω, M) -pseudocompact.

It is a consequence of Corollary 6.14 that $\Sigma(p)$ is $T(p)_{RK}$ -pseudocompact for every $p \in \omega^*$. The only possibility for $\Sigma(p)$ to be p-pseudocompact is stated in the next theorem. We need a lemma which is a direct application of Lemma 6.11.

Lemma 6.15. ([G5]) Let $\omega \neq X \subseteq \beta(\omega)$. Then, X is p-pseudocompact if and only if $P_{RK}(p) \subseteq X$.

Theorem 6.16. ([G5]) For $p \in \omega^*$, the following are equivalent.

- (1) $\Sigma(p)$ is p-pseudocompact;
- (2) $\Sigma(p)$ is q-pseudocompact for some $q \in \omega^*$;

(3) p is RK-minimal.

Thus, if $p \in \omega^*$ is not RK-minimal, then $\Sigma(p)$ is $T_{RK}(p)$ -pseudocompact and is not p-pseudocompact. Next, we give an example of a space that is $T_{RK}(p)$ -pseudocompact and is not p-pseudocompact without requiring the RK-minimal property.

Theorem 6.17. For $p \in \omega^*$, the space $\Sigma(p) \setminus \{p\}$ is $T_{RK}(p)$ -pseudocompact and it is not p-compact.

Proof. Put $S_p = \Sigma(p) \setminus \{p\}$. By Lemma 6.15, we have that S_p cannot be p-pseudocompact. Let $(A_n)_{n<\omega}$ be a sequence of non-empty subsets of ω . Let $f \in {}^\omega$ such that $f(n) \in A_n$ for every $n < \omega$. If there is $A \in [\omega]^\omega$ such that $f|_A$ is constant and $A \notin p$, then we choose $q \in A^* \cap T_{RK}(p)$ and then we have that $q \in S_p$ and $q \in L(p, (\hat{A}_n \cap S_p)_{n<\omega})$. If this is not the case, then we may find $B \in [\omega]^\omega$ so that $B \notin p$ and $f|_B$ is one-to-one. Hence, if $r \in B^* \cap T_{RK}(p)$, then $r \in S_p$ and $r \in L(p, (\hat{A}_n \cap S_p)_{n<\omega})$. \square

We notice that if $p,q \in \omega^*$ are RK-minimal, then $P_{RK}(p) \cap P_{RK}(q) = \omega$ and hence $P_{RK}(p) \times P_{RK}(q)$ is not pseudocompact, but $P_{RK}(p)$ is p-pseudocompact and $P_{RK}(q)$ is q-pseudocompact (by Lemma 6.15). In a model M of NCF, we have that $M \models \omega^*$ has not P-points and so RK-minimal points do not exist in M (see [BS]). Hence, in this model M, if X is p-pseudocompact and Y is q-pseudocompact for $p,q \in \omega^*$, then there is $r \in P_{RK}(p) \cap P_{RK}(q) \cap \omega^*$ such that $X \times Y$ is pseudocompact.

Some generalizations of bisequential, biradial and absolutely countably compact spaces the authors will publish somewhere else.

References

- [A1] A.V. Arhangel'skii, On some properties of radial spaces, Mat. Zametki 27 (1980), 95-104.
- [A2] A.V. Arhangel'skii, The general concept of cleavability of topological spaces, Topology Appl. 44 (1992), 3-23.
- [AF] A.V. Arhangel'skii, S.P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320.
- [Be] A.I. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193.
- [Bl] A.R. Blass, The Rudin-Keisler ordering of P-points, Trans. Amer. Math. Soc. 179 (1973), 145-166.
- [BM] B. Boldjiev, V.I. Malykhyn, The sequentiality is equivalent to the F-Fréchet-Urysohn property, Comment. Math. Univ. Carolinae 31 (1990), 23-25.
- [BS] A.R. Blass, S. Shelah, There may be simple P_{ω_1} -points and P_{ω_2} -points and the Rudin-Keisler ordering may be downword directed, Ann. Math. Logic 33 (1987), 213-243.

- [C] W.W. Comfort, A nonpseudocompact product space whose finite subproducts are pseudocompact, Math. Ann. 170 (1967), 41-42.
- [CN1] W.W. Comfort, S. Negrepontis, On families of large oscillation, Fund. Math. 75 (1972), 275-290.
- [CN2] W.W. Comfort, S. Negrepontis, The Theory of Ultrafilters, Grundlehren der Mathematischen Wissenschaften, Vol. 211, Springer-Verlag, 1974.
- [CW] W.W. Comfort, Ch. Waiveris, Intersection of countably compact subspaces of Stone-Čech compactifications, Russian Math. Surveys 35:3 (1980), 79-89.
- [Do] H.D. Donder, Regularity of ultrafilters and the core model, Israel J. Math. 63 (1988), 289-322.
- [vD] E.K. van Douwen, The product of two normal initially κ-compact spaces, Trans. Amer. Math. Soc. 336 (1993), 509-521.
- [En] R. Engelking, General Topology, Sigma Series in Pure Math., Vol. 6, Heldermann-Verlag, Berlin, 1989.
- [FKZ] R. Frankiewicz, K. Kunen, P. Zbierski, On inhomogeneity of products of F-compact spaces, Fund. Math. 129 (1988), 35-38.
- [Fr] S.P. Franklin, Spaces in which the sequences suffice, Fund. Math. 57 (1965), 107-115.
- [Fro1] Z. Frolík, The topological product of countably compact spaces, Czech. J. Math. 10 (1960), 329-338.
- [Fro2] Z. Frolík, On two problems of W.W. Comfort, Comment. Math. Univ. Carolinae 8 (1967), 139-144.
- [Fro3] Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.
- [G1] S. García-Ferreira, Some remarks on initial α-compactness, < α-boundedness and p-compactness, Topology Proc. 15 (1990), 11-28.
- [G2] S. García-Ferreira, On FU(p)-spaces and p-sequential spaces, Comment. Math. Univ. Carolinae 32 (1991), 161-171.
- [G3] S. García-Ferreira, On free p-compact groups, Ann. New York Acad. Sci. 659 (1992), 68-77.
- [G4] S. García-Ferreira, Three orderings on $\beta(\omega) \setminus \omega$, Topology Appl. **50** (1993), 199–216.
- [G5] S. García-Ferreira, Some generalizations of pseudocompactness, Ann. New York Acad. Sci. 728 (1994), 22-31.
- [G6] S. García-Ferreira, Comfort types of ultrafilters, Proc. Amer. Math. Soc. 120 (1994), 1251-1260.
- [G7] S. García-Ferreira, Quasi M-compact spaces, Czech. J. Math. 46 (1996), 161-177.
- [G8] S. García-Ferreira, On α-psedocompactness, p-pseudocompactness and p-compactness, preprint.
- [GJ] L. Gillman, M. Jerison, Rings of Continuous Functions, Graduate Texts in Mathematics, Vol. 43, Springer-Verlag, 1976.
- [GM] S. García-Ferreira, V.I. Malykhin, p-sequentiality and p-Fréchet-Urysohn property of Franklin compact spaces, Proc. Amer. Math. Soc. 124 (1996), 2267-2273.

- [GMT] S. García-Ferreira, V.I. Malykhin, A. Tamariz-Mascarua, Solutions and problems on convergence structures to ultrafilters, Questions and Answers in Gen. Top. 13 (1995), 103-122.
- [GN] J. Gerlitz, Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151-161.
- [Go] H. Gonshor, Remarks on a paper of Bernstein, Fund. Math. 74 (1972), 195-196.
- [GS] J. Ginsburg, V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418.
- [GT1] S. García-Ferreira, A. Tamariz-Mascarua, On p-sequential p-compact spaces, Comment. Math. Univ. Carolinae 34 (1993), 347-356..
- [GT2] S. García-Ferreira, A. Tamariz-Mascarua, The α-boundification of α, Proc. Amer. Math. Soc. 118 (1993), 1301-1311.
- [GT3] S. García-Ferreira, A. Tamariz-Mascarua, p-sequential like properties in function spaces, Comment. Math. Univ. Carolinae 35 (1994), 753-771.
- [GT4] S. García-Ferreira, A. Tamariz-Mascarua, p-Frechét-Urysohn property of function spaces, Topology Appl. 58 (1994), 157-172.
- [He] H. Herrlich, Quotienten geordneter Räume and folgenkonvergenz, Fund. Math. 61 (1967), 79-81.
- [Ka] M. Katetov, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173– 189.
- [Koc1] Lj. Kočinac, A note on pseudo-radial spaces, Math. Balcanica 11 (1981); (unpublished).
- [Koc2] Lj. Kočinac, On P-sequential spaces, Interim Report of the Prague Topol. Symp. 2 (1987), 39.
- [Koc3] Lj. Kočinac, A generalization of chain net spaces, Publ. Inst. Math. (Beograd) 44(58) (1988), 109-114.
- [Koc4] Lj. Kočinac, On P-chain-net spaces, Publ. Inst. Math. (Beograd) 46(60) (1989), 188-192.
- [Koc5] Lj. Kočinac, Cardinal invariants and cleavability: something old and something new, PU.M.A 5 (1994), 105-125.
- [Koc6] Lj. Kočinac, p-sequential spaces and cleavability, (to appear).
- [Kom1] A.P. Kombarov, On a theorem of A.H. Stone, Soviet Math. Dokl. 27 (1983), 544-547 (= Doklady AN SSSR 270 (1983), 38-40).
- [Kom2] A.P. Kombarov, Compactness and sequentiality with respect to a set of ultrafilters, Moscow Univ. Math. Bull. 40 (1985), 155-158.
- [KS] V. Kannan, T. Soundararajan, Properties that are productive, closed-hereditary and surjective, Topology Appl. 12 (1981), 141-146.
- [M] V.I. Malykhin, The sequentiality and the Fréchet-Urysohn property with respect to ultrafilters, Acta Univ. Carolinae - Math. Phys. 31 (1990), 65-69.
- [N] P.J. Nyikos, Convergence in Topology, In: Recent Progress in General Topology (M. Hušek, J. van Mill, eds.), Elsevier Science Publishers B.V., 1992, pp. 537-570.
- [NV] P.J. Nyikos, J.E. Vaughan, Sequentiality compact Franklin-Rajagopalan spaces, Proc. Amer. Math. Soc. 101 (1987), 149-155.

- [P] K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. 68 (1970).
- [Sa1] V. Saks, Countably Compact Topological Groups, Doctoral Dissertation, Wesleyan University, 1972.
- [Sa2] V. Saks, Ultrafilter invariants in topological spaces, Trans. Amer. Math. Soc. 241 (1978), 79-97.
- [Sa3] V. Saks, Extra countably compact spaces, Canad. Math. Bull. 26 (1983), 473-481.
- [Sav] I. A. Savchenko, Convergence with respect to ultrafilters and the collectionwise normality of products, Moscow Univ. Math. Bull. 43 (1988), 45-47.
- [Si] F. Siwiec, Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl. 1 (1971), 143-154.
- [St] R.M. Stephenson, Jr., Initially κ-compact and related spaces, In: Handbook of Set-theoretic Topology (K. Kunnen, J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 603-632.
- [T] A. Tamariz-Mascarúa, Countable product of function spaces having p-Fréchet-Urysohn like properties, preprint.
- [V] J.E. Vaughan, Countably compact and sequentially compact spaces, In: Handbook of Set-theoretic Topology (K. Kunen, J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 569-602.
- [Wa] Ch. Waiveris, Intersection of countably compact subspaces of $\beta(X)$, Topology Proc. 4 (1979), 177–191.
- [Wo] R.G. Woods, Topological extension properties, Trans. Amer. Math. Soc. 210 (1975), 365-385.

Instituto de Matemáticas, Ciudad Universitaria (UNAM), 04510 México, D. F E-mail: sgarcia@zeus.ccu.umich.mx garcia@servidor.unam.mx

FACULTY OF PHILOSOPHY, UNIVERSITY OF NIŠ, 18000 NIŠ, YUGOSLAVIA E-mail: kocinac@archimed.filfak.ni.ac.yu kocinac@kalca.junis.ni.ac.yu