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Abstract. In this paper a general iterative method for sol-

ving one type of stochastic integrodifferential equation is pre- |
sented. Sufficient conditions for almost sure convergence of a |
sequence of iterations to the strong solutien of the original ‘
equation are given.

1., Preliminaries

Tet ,F,P) be a complete probability space on which all ran-
dom variasbles and random processes are defined. Tet W = (Wt,g%},
tefo,7], T = const >0, be a standard k-dimenzional Wiener process
adapted to a filtration satisfying the usual conditions.

Let us inbroduce some notions and conditions which are needed
in our discussion. #First of all, real functions

a: [o ,TJ XRkX Rl“l_.* Rk a, : fo ’T] XR}_X Rm._-pHL
b : [0,I]XR XR —R @R, b, ¢ [0,TIXRXR —>R ®R,
¥ JXRk-“*Rm ¥, + IR R

W : JXR_—”R ) s
k m lyn H JX;{k-—’Rm

J = {(tgs) : (t,s)e[o,T],X[o,T], Sﬁt}a n ell,
are assumed bo be Borel-measursble with respect to their

argunmente and they are continucus in € and in (t,s8). The matrices
b and b , n€N, are uniformly nonsingular with the norm Il
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o] = Zl e l,blg , and || is an usual Euclid norm. A1l
functions satlsfy the Lipschitz condition and the condition of
the restriction on growth, ie. ther exiet a constant K >0 and
& positive function M(t,s) with J'j/u-e(t s)dsdt < o=, such that
for all xx% €Ry, vy eRm, te o, and (t,8) €J, we have

I 2

|a(t, x50 -at x| + 1o (b x5 -b (6 iy | < K( Jaclx?] + lv5"1),
|Pt,5,4)- Pt .5, + ]V(t,s,x')-—‘f’(t,s,x“)ls H—(t,s)-]x—x"l :
[aCt,x, 3] + [ot,x,3) <€ 22 +)x)+|3]),

|¥C6,5,2)] + |Wt,5,%)] <&(1 +1x|),

Aad)

and analogously for 8y by ¥y end ¥, nel.

In the paper [LI-] is proved that under these conditions there
exists an unique strong, almost surely conbinuous solution of the
stochastie integrodii‘ferential equation ( shortly SIDE )

(1.2) () = X, + 5a<s x(s) H’cu,u %(u))du)ds +
+
+ Jb(s,x(s) SV(u,u,x(uDdu)dW( s), X(0) = %, ,
[v]

where J( is a random variable 'neasu:c-able with respect to g‘; and
B{|2.1°} <« o= a1s0, supE{L{(t)l e

2. Main results and proofs

In the present paper one iterative method for solving the
SIDE (1.2) will be described. The idea of this investigation goes
back to the papers [3] and [5} tresting an analogous iterative pro-
cedure for solving stochastic differential equation of Ito type.
Now the seguence of iterations, ie. the sequence of stochastic
vrocesses {Xn,n&N} - {(Xn(t),te[o,‘l"]),n eli} will be formed as
follows

- X o= (;‘{1(1:) yt€fo,T]) is arbitery stochastic vrocess with

£(0) = Ko and s;:ng{[;{l(t])C‘} < oo )

= X = Q‘{m_lkt),te[o;i]) is on unigue shrons solution of




t
(2.1) X ,1(t) =%, + San(s,Xm_i(s).,Ss‘fn(s,u,Xn+l(u))du)ds %
o] Q

' S
+ b (8,1, 1(8), J¥ (syu,x ,  (w)awan(s), X, ,(0) = X, .
4] Q

The main problem is to give some conditions of a closeness
of the functions a ,b , P, and WD, nell, with the functions a,
b, ¥ and ¥ respectively, such that the sequence of solutions
{Xn,neN} converges almost surely to the solution X as n—» es ,

THEOREM. Let the functions a, b, ¥, Y, a , b, ¥, and ¥,
nell, be defined as the above and let the conditions

(2.2) ) up {laCt,x,3)-8, (6 x| + [ oCt,x,3)-b (b,x,5) |} < ==

=] t,x,¥

and

(2.3) Z sup {,‘f’(t,s,x)—}"n(t,s,x)l + ]Y(t,S,X)—‘f;\(t,s,x)]} < e<
N=4t,8,x"

be satisfied. Then the sequence of solubions {_Xn,n eN} of the
equations (2.1) converges almost surely, uniformly in iy te[o,T],
to the solution X of the equation (1.2) as n— oo,

PROOF. By subtraction of the equations (1.2) and (2.1),
we have

+ t
(2.4) LORS SHORNINOLERS EROETON
where < s
A (s) = a(s,X(s),éY’(s,u,X(u))du) - a,(s,X,(s) ,oj P (syu,X_ 1 (w))au),
S s
By(s) = b(s,X(s), Ks,u,x(u))aw) ~ b, (5, 1 (s) ,g‘f’n(s,u,){n_]_l(u))du).

Applying the Cauchy-Schwartz inequality and one of the basic
properties of stochastic integrals of Ito type ( see [2]), we obtain

5 t
(2.5)  E{[2(6)-%,, 1 (0)|%} < 26f5{|4,()|%}as + 25{[B, ()]s,

In order to estimate each of these integrals, we will des-
cribe them as
AD_CS) = f A '(5)3 BH(S) = Z“: Bni(s)"

—
4 nli

= L=4
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where

Bp(8) = a(s,X(s), Sv’cu,u X(u))dw)-a(s,X,(s), I?’cs u, %, (W) aw)
A5(8) = a(s,x (s) JP (5,u,%, (W))du)-a_(s,X <s> 5r<s u,X_(u))du),
Ans(s) = a (s,X, (s) j}o(s u, X (w))du)-a (s,%(s), ﬁo (s,u,%(u))du),
8.,(8) = a_(s,%(s) 5‘{’ (s,u,X(w))du)-a, (s, (s) J}a (8,0, , ;(u))au),

and similarly for Bn(s). Clearly, each of these integrals must be
estimated. Denote

(2.8) E{sup[[a(t X (4 jr(t s,X (s))ds) -
- a,(t,X (%) jr (t,8,X (s))ds]2 ot ,x () W(t s,X_(s))ds)-

- b, (5,X,(t), j‘f’(t s,X (s))dS)HE]}
and
(2.7) 6, = Bfsun[|¥(s,5,2,()) - Y,(6,8,%,(s))|2 +
48
+|¥(t,8,2,(8)) - Yob,8,2_(s)) 2] }.
From (1,1) and (2.7), adding some terms, we have
S
]Anl(s)lﬁg K[]X(s)—Xn(s), 4—é}&s,u)|x(u)—Xn(u)ldu + Sns] "
Since gn(t) = E{IX(t)—Xn(t)lg} is nonnegative, continuous
and integrable function on [o,T], we obtain finally
t 2 s 2,2
éE{]Anl(sﬂe}ds = ?;Kgé['j’n(s) + sSng(s,u)-fn(u)du]ds + 32%1:—
v}

From (2.6) it follows
t
éE{IAnecs)lg}ds < gt

1:Es:n_nl:Llr:u:'lgjr.,,
jE{IAnB(S)I }ds 2K25[9n(s) + Sé/L (s u)fn(u)du]ds

and
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¢ 2 2 ® 2
éE{lAm(sﬂ jds < 2K g[gml(s) * sé,u« (s,0)§,,,(Wdu]ds.
From the preceding relations we get

t 5 Sf- t
(2.8) éE{]An(sﬂ las = t gE{‘Ani(s)‘e}ds <
+ S
< 20K22[§n(5> + sé)l?(s,u)?n(u)du]ds +

+
8K2J[fn+1(s) * Sj;LE(S,Uan+1(u)dUst + 25§32t3 + 4£it.

It is not difficult to conclude that jE{]B (s)| }ds can
be estimated as LE“A (s) | }ds because the functions b, ¥, b
and 'Pn sabisfy the same initiel conditions as a, ?’, B and }"
respectively.

From (2.4) we get

t
fne1(8) < 2(t+1)05 E{|2,()|%}as.
Irf d= 2(T+1)201{2max{T,1}, A= 2(T+l)4m5x{KgT§,’I‘}, it follows

1t 5
(2.9) g () <df[¢ (=) +§f.@(s,u)9n(u)au]ds +
0

¢ ~ 2 . -
ol [Paq () é/w (s,w9,,,(Wau]ds + B(52 + €2).
[v]

From the last inequality it is not easy to obtain some esti-
mation f ?n+l(t) Because of that, an estimation for the sum
S (‘b) j’n(t), pelN, will be determined. Since supE{]A(t)|2}<°°
t

and supEUX (t)|2} < eo , it follows that
J—S[Yl(t) * .Y/u‘g('bss)fl(@ds] dt = ¢, c=const<oes,
9] 0

From (2.9), summing up the terms on the right side and on
the left side, =dding

+ £ -
oLS [Sp+1(5) +S/L‘-(S,u)9p+l(u)du]ds
0 4]

on the right side, we get
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£ s -
Sp+l(t) = 2°L§[sp+l(s) +§f&2(s,u)sp+l(u)du]ds +ﬁ%(5ﬁ + E§> +c

If we apply one version of the well-known Gronwall-Bellman
inequality, we come to the estimation

t S
Sp-t-l(t) < [r_l,:é_z(gi + 5121) + c]-exp(EOLS[l +S/_L2(s,u)du]ds).

Therefore, in accordance with the conditions for the function

M(t,s) on the interval [o T], one upper bound for sp+l(t) can be
found as
p
2 2
(2.10) Sp+1(t) = cl.[(}‘;(an +En) + c] i

where Cy >0 1s the corresponding constant.
From (2.4) it follows

sup b (e)-x_, , ()]

O'\_/\._i

‘A (s)' as + supISB (s)aw(s)| .

Using the Cauchy-Schwartz inequality, (2.8), (2.9) and one
well-known inequality for stochastic integrals of Ito type ( see
[2]), we come to the conclusion that

E{sup| (t)—Xn+l(t)l2} < 2[”SE{|A (s)|%}as +
+ L!-SE{[B (s)|2_}ds<d,j[g (s} +S/'4. G, u}fn(u)au]ds +

- 45[9mlta) +j# (5,0 1 (Wan]as + @52 + €2),

where eﬁ and [5 are some constants similar to o and[i Hence, sam-
ming up the terms on the right side end on the left side of the

zst relation, and from the estimstion (2.10) for 8 +1(t), we
obtain

iE{Supi“{(t>_x l(t) ]9} <

N=

< 2.,Lj[u1)+1 5) S# (8,0t Jltw,cu]d’: + ij[flﬂs‘ +

- P f\
5/}_ \C' 1 |§] \-Ll)fu'\ ﬁL—{S f _‘(.;‘ (_;2 -+ [.3"2(52 i E{f-‘

b
ne el ki)
36




where Co and fguare the corresponding constants. According To

the Chebyshev®s inequality, we have

L P{owp ie)-t, (] > €} <

o e

- 2 Al ! = 2

& BE Bl X)Xy (91} = o Lin TR lopp ()5 017 <
<Ae 26y ¢ e ] .

From the conditions (2.2) and (2.%) and from the notions

(2.6) and (2.7) for §_ and &, it follows that the series 52;52
n =

(- -]
2 v oo
and :\L:,"&n are convergent, and hence %P{Sgpla(t)—xn+1(t)128} < oo,

By the Borel-Cantelli’s lemma and the Weierstrass® uniform con-
vergence theorem, it follows that the sequence of stochastic
processes {Xn)nJEN} converges almost surely, uniformly in &,
tefo,T], to the solution X of the SIDE (1.2) as n—eo, as it was

reguired.
QED

Notice that the proof of the Theorem is different as the
proof of the analogous theorem in the paper [3]. The main dif-
ference is in finding an estimation for §h+l(t) from the reccu-
rence inequation (2.9). It seems that it is not possible to obtein
it directly and for this reason the sums are used.

The conditions of the Theorem could be weskened. All functions
could be random. Then the conditions (l.l), (2.2) and (2.3) have
to be valid almost surely. lMoreover, in the iterative procedure,
(2.2) and (2.3) could be replaced by

ok +
(2.11) %%E{Sgp[]a(t,Xn(t);EY(t,s,Xn(s))ds) &
Y £
- an(t,}cn(t),j}"n(t,s,xn(s))ds|2 + ”b(t,Xn(t),‘S)Y(t,s,}(n(s))ds) -
0
- b

+
n(t,xn<t>,évnct.s,xn<s>>ds|]2]} < oo

Analogously to the consideration in [3], moreover in [5],
we use the notion Z-algorithm for this iterative procedure. Since
the solution X , 4 of the equation (2.1) with the functions a,, by

yn and Vh is determined, the sequence
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{(an(t 2 X3 ¥) ,bn(t 2 X33 )y (fn(t »S9%) , l‘l}n(t »8,%)) 41 EN}

determined sequence for the Z-alporithm is ¢zlled, OF course,
this iterative procedure depends on the choice of ¢
Process and determined Sequence. Because of the fact that the

SIDE (1.2) is very complicated for selving, our main problem is

to find some determined Sequence in order that the SIDl-g (2+1)
can be solved.

he starting

Now one simple form of deternined sequence will be described
approximating only the functions a and b with linear funections
8, and b, ne€N, If a,b, P and ¥ satisfy the conditions from the
Prelimineries, end ir {g(,n(t),n eN} ang {ﬁn(t),n eN} are sequ-
ences of continuous, uniformly bounded functions on [o,T], then
the sequence of the fuhections

{(an(t »X) ,bn(t 3 %) P! EN} .

t
= {0 (=% _()) + a(t,xnct),gfct,-s,xn(s))as),
+
Pn(8)x-X,(6)) + b(t,x_(8), ¥t,8,%,(s))ds)),n en}
Q

is the determined Sequence for the Z-algorithm. The proof is si-
miler gs in (3] and it will be omit here. Note that the condition
(2.11) is satisfied, because the sum of the series ig equal to
Zero. Also, note that this approximation is one linesrisation of
the original equation (1.2) and, at least
possible to express the solutions of the &
waye. It is clear that the usual Picard-
approximations is a specisl case of the
= ﬂn(t)s ©, nekN,

It would be very

theorethicaly, it is
IDE-s (2.1) in the known

Lindel8f method of succesive
Z-algorithm, if dh(t) =

interesting to form some other determined
sequences, such that the eguations (2.1) could be effectively sol-
ved. Of course, it is a very strict requirvement and it will be
difficult to make such algorithm. Finally,
iterative method could be applyed to other
example using the results in the paper [1]
tended to SIDE-g involving stochagtic int

let us note that this
types of 8IDE-s, for

« Also, it could be ex-
egrals with respect to
any continuous martingale and martingale measure.
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Jankovié Svetlana

JEDNA OPSTA ITERATIVNA METODA ZA RESAVANJE
SLUGAJNIH INTEGRODIFERENCIJALNIH JEDNACGINA

U ovom radu rezmatrana je jedna opsta iterativna metoda

za refavanje slufajne integrodiferencijalne jednaline (l.2) po-
modu niza slufajnih jednadina (2.1). Deti su doveljni uslovi za
skoro izvesnu konvergenciju niza iteracija ka strogom resenju

jednadine (1l.2). OpStost ove metode treba shvetiti u smislu da
se zao razlidit izbor koeficijenata jednadina (2.1) dobijaju po-
sebne iterabivne metode. Pokazano je da je Picard-Lindel8fova

metoda sukcesivnih aproksimacija Jjedan takav poseban slgoritam.

Filozofski fakultet
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