R. Dimitrijević, Lj. Kočinac SOME CLÁSSES OF CONNECTED NEIGHBOURHOOD SPACES

(Received 4. 3. 1987.)

Abstract. In this paper some results about "- and V-topological spaces[1] are extended to a class of neighbourhood spaces.

0. Introduction

Throughout this paper notation and terminology concerning neighbourhood spaces are the same as in the books [4] and [5]. By a neighbourhood space we understand a pair ($^{\text{Y}}$, $^{\text{T}}$) consisting of a non-empty set $^{\text{Y}}$ and a mapping Tassigning to each set $^{\text{AC}}$ $^{\text{Y}}$ a set $^{\text{TAC}}$ $^{\text{X}}$ such that the following conditions are satisfied for every $^{\text{A}}$, $^{\text{BC}}$ $^{\text{X}}$:

- (i) $T\emptyset = \emptyset$; (ii) ACTA; (iii) $T(A \cup B) = TA \cup TB$. Let (X,T) be a neighbourhood space. Then
- 1) Two subsets A and B of X are called \mathcal{T} -separated (or simply, separated) if they are non-empty and $(\mathcal{T} \land \cap B) \cup (\land \cap \mathcal{T}B) = \emptyset$. X is connected if it cannot be represented as the union of two \mathcal{T} -separated subsets.
- 2) When X is represented as the union of two separated sets A and B, we shall write X = A + B. If X = A + B and A contains a set M and B contains a set N, we write X = A(M) + B(N).
- 3) We shall say that a set $E\subset X$ separates the sets $M,N\subset X$ if there exist two sets $A,B\subset X$ such that $X\setminus E=A(M)+B(N)$.
- 4) X is called a T_o -space if for any two distinct points x,y in X at least one of the relation x $\not\in T_V$ and $y \not\in T_X$ is satisfied.

AMS Subject Classification (1980): 54405, 54D05 UDK 513.83

- X is a T_1 -space if for each $x \in X$ one has $\forall x = x$.
 - The following two lemmas are well known (see [2]).
- 0.1. LEMMA. Let C be a connected subspace of a connected neighbourhood space (X,\mathcal{T}) . If $X \setminus C = A + B$, then the sets $A \cup C$ and $B \cup C$ are connected.
- 0.2. LEMMA. Let C be a connected subspace of a connected neighbourhood space (X,C). If K is a component of the subspace $X \setminus C$, then $X \setminus K$ is connected.

1. Neighbourhood W-spaces

1.1. DEFINITION. A neighbourhood space (X,T) is called a (neighbourhood) <u>W-space</u> if it is connected and for any two disjoint connected sets A,B \subset X the set $TA \cap TB$ has at most one point.

The proofs of the following two propositions are easy, and so we omit them.

- 1.2. PROPOSITION. Every neighbourhood W-space is a T_0 -space.
- 1.3. PROPOSITION. If (X,T) is a neighbourhood W-space and (Y,6) is a connected subspace of X, then Y is a W-space.
- 1.4. THEOREM. A connected neighbourhood space (Y, \mathcal{T}) is a W-space if and only if the boundary of each component in the complement of any non-empty connected proper subset of X is a single point.

PROOF. Let X be a W-space. Take an arbitrary non-empty connected proper subset C of X and let K be a component in X\C. By Lemma 0.2 the set X\K is connected. Therefore, for disjoint connected sets X\K and K we have $|\mathcal{T}K\cap\mathcal{T}(X\setminus K)| = |bd(K)| \le 1$. If $bd(K) = \emptyset$, then would follow that $X = K + (X\setminus K)$ which contradicts the fact that X is connected. So, |bd(Y)| = 1.

To prove the converse, suppose, on the contrary, that there exist two disjoint connected sets A,BCY with $|TA \cap TB| \ge 2$. Let $x,y \in TA \cap TB$, $x \ne y$. If K is the component of X\A containing B, then from TBCTK we have $x,y \in TK$. On the other hand, $A \subset X \setminus K$ implies $x,y \in T(X \setminus K)$. Hence $x,y \in T \cap T(X \setminus K) = bd(Y)$ which contradicts our assumption. This means that X is a W-space. The theorem is proved.

The following three theorems prove that the class of W-spaces is wide enough. Recall that a connected neighbourhood space X is called treelike if for any two distinct points $x,y \in X$ there is a point $z \in X$ that separates x and y (see [3]). A connected neighbourhood space X is said to be biconnected if it is not the union of two disjoint nondegenerate connected subspaces (a connected set is called degenerate if it consists of a single point).

1.5. THEOREM. Every biconnected \mathbf{T}_1 neighbourhood space is a W-space.

PROOF. Let (X,\mathcal{T}) be a biconnected neighbourhood space and let A and B be disjoint connected subsets of X. If K is a component of X\A, then, according to Lemma 0.2, the set X\K is connected. As X is biconnected, then either |K| = 1 or $|X \setminus K| = 1$. In the first case $|\mathcal{T}B| \le 1$ and in the second case $|\mathcal{T}A| \le 1$, i.e. $\mathcal{T}A \cap \mathcal{T}B$ has at most one point. Hence X is a W-space.

1.6. THEOREM. Every treelike neighbourhood space (X, τ) is a W-space.

PROOF. Suppose contrary to the statement of the theorem that there are two disjoint connected subsets A and B of X such that $|TA\cap TB| \ge 2$. Let $x,y \in TA\cap TB$, $x \ne y$. Since X is treelike we can choose a point $z \in X$ which separates x and y: $X \setminus \{z\} = M(x) + N(y)$. We have two possibilities:

- (i) $z \notin TAUTB$. In this case $(TAUTB) \cap M$ and $(TAUTB) \cap N$ make a disconnection of the (connected) set TAUTB which is impossible.
- (ii) $z \in \text{TAUTB}$. If $z \in \text{TAVTB}$, then $\text{TB} \cap \mathbb{N}$ and $\text{TB} \cap \mathbb{N}$ is a disconnection of the set TB which is a contradiction since the last set is connected. If $z \in \text{TA} \cap \text{TB}$, then either $\text{TA} \setminus \{z\}$ or $\text{TB} \setminus \{z\}$ would not be connected, which is impossible [5].

In both cases (i) and (ii) we have a contradiction and thus the set TACTB has at most one point, i.e. X is a W-space.

1.7. THEOREM. If (Y, \mathcal{X}) is a connected T_1 neighbourhood space in which the intersection of any two connected subspace is connected, then Y is a Y-space.

PROOF. Let A and B be disjoint connected subsets of X. Suppose that there are distinct points x and y in the set $\mathcal{T}^{1} \cap \mathcal{T}^{n}$.

Then from $A \subset A \cup \{v,y\} \subset \mathbb{T}A$ and $B \subset B \cup \{x,v\} \subset \mathbb{T}^B$ it follows that the sets $A \cup \{x,y\}$ and $B \cup \{x,y\}$ are connected [5]. By hypothesis, then $(A \cup \{x,y\}) \cap (B \cup \{x,y\}) = \{x,y\}$ is a connected subset of \mathbb{X} , which is impossible since \mathbb{X} is a \mathbb{T}_1 -space. So $\mathbb{T}_A \cap \mathbb{T}_B$ has at most one point and the theorem is proved.

2. Neighbourhood V-spaces

Let C be a connected subspace of a connected neighbourhood space (X,X). A point $x \in C$ is called an end point of C if $C \setminus \{x\}$ is a connected set.

2.1. DEFINITION. A connected T_1 neighbourhood space (Y,T) is called a (neighbourhood) <u>V-space</u> if every connected subset of X has at most one end point.

The simple proof of the following proposition will be omit-

- 2.2. PROPOSITION. A connected subspace of a neighbourhood V-space is a V-space.
- 2.3. THEOREM. A connected T_1 neighbourhood space (X, $\mathfrak T$) is a V-space if and only if every connected proper subspace of X has at most one end point.

PROOF. The necessity is obvious, and so we only need to prove the sufficiency. Suppose to the contrary that X has two distinct end points x and y. We shall first prove that in this case the set $X \setminus \{x,y\}$ must be connected. Assume $X \setminus \{x,y\} = A + B$. Since A is both open and closed in the sets $X \setminus \{x\}$ and $X \setminus \{y\}$, by. Lemma 0.1 $A \cup \{x\}$ and $A \cup \{y\}$ are connected. Thus $A \cup \{x,y\}$ is a connected proper subset of X with two distinct end points (x and y) which contradicts the assumption. So, $X \setminus \{x,y\}$ is connected. Second, we prove that for any $z \in X \setminus \{x,y\}$ the set $X \setminus \{z\}$ is not connected. Indeed, if $X \setminus \{z\}$ is connected, then $X \setminus \{x,z\}$ and $X \setminus \{y,z\}$ are also connected and therefore $X \setminus \{z\}$ would be a connected proper subset of X with two distinct end points (x and y) which is again a contradiction. The assertion $X \setminus \{z\}$ is not connected for all $z \in X \setminus \{x,y\}$ is proved. We have to consider two cases:

(i) $X \setminus \{z\} = M(x) + N(y)$; (ii) $Y \setminus \{z\} = M(x,y) + N$. (i) The set $M \cup \{z\}$ is connected according to Lemma 0.1. Moreover, it is a proper subset of X with two distinct end points x and z. Indeed, connectedness of X\{x} implies that the set $((M\cup\{z\})\setminus\{x\})\cap(X\setminus\{x\})=(M\cup\{z\})\setminus\{x\}$ is connected, so that x is an end point of $M\cup\{z\}$. On the other hand, z is an end point of $M\cup\{z\}$ because M is a component in X\{z}. We have a contradiction. (ii) In the same way as above one can easily check that the set $M\cup\{z\}$ is a connected proper subset of X having two end points x and y which is again a contradiction.

Hence, in both cases we obtain a contradiction and thus \mathbf{Y} must have at most one end point. This completes the proof of the theorem.

Now, we shall see that on a neighbourhood V-space (X, \mathcal{X}), in a natural manner, one can introduce a partial order as follows: x < y iff y is contained in some open component of $X \setminus \{x\}$.

2.4. THEOREM. < is a partial order on (X,T).

(b) < is transitive. Let x < y and y < z. It is clear that $x \neq z$, because otherwise x = y by (a). There are open connected sets $U, V \subset X$ such that $X \setminus \{x\} = U(y) + A$ and $X \setminus \{y\} = V(z) + B$. Now x < z will follow from the fact $z \in U$. To prove this, suppose, on the contrary, $z \in A$. $A \cup \{x\}$ is connected in X (by Lemma 0.1), and therefore it is connected in $X \setminus \{y\}$ [5]. But then $A \cup \{x\} \subset V$ because V is a component in $X \setminus \{y\}$. Thus $x \in V$. This means that y < x holds, which is a contradiction. So, $z \in U$ and the proof of (b) is complete. The theorem is proved.

2.5. THEOREM. Let (X,T) be a neighbourhood V-space. Then

the set $\{y \in X: y < x\}$ is linearly ordered for every $x \in X$.

PROOF. Let a,b \in {y \in X: y < x}. We shall prove that a and b are comparable. Suppose that this is not true. Then there exist open connected sets U and V such that X\{a} = A(b) + U(x) and X\{b} = B(a) + V(x). The connected set U \cup {a} is contained in X\{b} and therefore we have U \cup {a} \subset B which implies $x \in$ U. This contradiction shows that a and b are comparable and the theorem is proved.

REFERENCES

- [1] A.E. BROUWER, Treelike spaces and related connected topological spaces, Mathematical Centre Tracts 75, Mathematisch Centrum, Amsterdam, 1977.
- [2] E. ČECH Topological Spaces (revised by Z. Frolik and M. Katetov), Czech. Academy of Sciences, Prague, 1966.
- [3] R. DIMITRIJEVIĆ and Lj. KOČINAC, On treelike neighbourhood spaces, Matem. vesnik 39(1987)
- [4] Z.P. MAMUZIĆ, Introduction to general topology, Noordhoff, Gronningen, 1963.
- [5] Z.P. MAMUZIĆ, Koneksni prostori, Matematički institut, knjiga 11, Beograd, 1974.

R. Dimitrijević, Lj. Kočinac

NEKE KLASE POVEZANIH OKOLINSKIH PROSTORA

U. radu su neki rezultati u vezi sa topološkim W- i V-prostorima (detaljno izloženi u [1]) prošireni na klasu okolinskih prostora koji zadovoljavaju aksiom distributivnosti (prema terminologiji iz [4]).

Filozofski fakultet 18000 Niš, Jugoslavija