Stojan Bogdanović

INFLATIONS OF SEMIGROUPS AND SEMIRINGS (Received 5.5.1987.)

Abstract. Inflations of semigroups are studied in [2]. In the present paper another construction for n-inflation of a semigroup will be given. Also, we describe an n-inflation of a semiring.

1.

Let S and T be two disjoint semigroups and suppose that T has a zero element. A semigroup V is said to be an (ideal) extension of S by T if it contains S as an ideal and the Rees factor - semigroup V/S is isomorphic to T. V is a retract extension of S if there exists a homomorphism Φ of V onto S and $\Phi(x)=x$ for all $x\in S$. In this case we call Φ a retraction.

For undefined notions and notations we refer to [3].

DEFINITION. A semigroup S is an n-inflation of a semigroup T if S^{n+1} T and S is a retract exitension of T.

M.S.Putcha and J.Weissglass, [4] considered an n-inflation of a semigroup, but in another sense.

AMS Subject Classification (1980): Primary 20 M $_{\rm JDM}$ 512.8

THEOREM 1. Let T be a semigroup. To each $a \in T$ we associate a family of sets X_i^a , i=1,2,...,n such that

$$a \in X_1^a , \quad X_1^a \cap X_j^b = \emptyset \quad \text{if} \quad i \neq j$$
 (1.1)
$$X_1^a \cap X_j^b = \emptyset \quad \text{if} \quad a \neq b.$$

Let

$$\Phi \overset{(a,b)}{\underset{(\textbf{i},\textbf{j})}{\cdots}} \colon \ \textbf{X}^{a}_{\textbf{i}} \ \textbf{x} \ \textbf{X}^{b}_{\textbf{j}} \ \rightarrow \ \bigcup_{\nu=1}^{\textbf{i}-1} \ \textbf{X}^{ab}_{\nu} \quad , \ 2 \ \underline{\leq} \ \textbf{i} \ \underline{\leq} \ \textbf{n}$$

(1.2)

$$\Phi$$
 (x,y) = Φ (x,b) = ab (1,1)

be functions for which

(1.3)
$$(\forall s \leq i-1) (\forall t \leq j-1) \Phi (ab,c) (a,b) (x,y),z) = \Phi (a,bc) (x,k) (i,j) (x,y),z) = \Phi (x,t) (x,$$

Let $Y_a = \bigcup_{i=1}^n X_i^a$ and define a multiplication on $S = \bigcup_{a \in T} Y_a$

by: for $x \in Y_a$, $y \in Y_b$,

$$x * y = \Phi$$

$$(x,y) \quad \text{if} \quad x \in X_{i}^{a}, \quad y \in X_{j}^{b}, \quad 1 \leq i, j \leq n.$$

Then (S,*) is an n-inflation of a semigroup T.

Conversely, every n-inflation can be so constructed.

PROOF. Let $x,y,z\in S$. Then there exist a,b,c $\in T$ such that $x\in Y_a$, $y\in Y_b$, $z\in Y_c$, i.e. $x\in X_i^a$, $y\in X_j^b$, $z\in X_k^c$ for some $1\leq i,j,k\leq n$. Assume that $i,j\neq 1$. Then

$$(x * y)*z = \Phi$$
 $(x,y)*z$, Φ
 $(x,y)*z$, Φ
 $(x,y)*z$, Φ
 $(x,y)*z$, Φ
 $(x,y)*z$

$$= \Phi (s,k) (a,b) (x,y),z) (s,k) (i,j)$$

$$x*(y*z) = x* \Phi_{(j,k)}(y,z) , \Phi_{(j,k)}(y,z) \in X^{bc}, 1 \leq t \leq j-1$$

$$= \Phi_{(i,t)}^{(a,bc)}(x, \Phi_{(j,k)}(y,z))$$

and by (1.3) we have associativity. If at least of i and j is equal 1, for example $2 \le i$, j=1, then by (1.2) we have that

$$(x*y)*z = \Phi (x,y)*z, \quad \Phi (x,y) \in X_s^{ab}, \quad 1 \le i-1$$

$$= \Phi (s,k) \quad (\Phi (x,y) \in X_s^{ab}, \quad 1 \le i-1$$

$$= \Phi (s,k) \quad (\Phi (x,y) \in X_s^{ab}, \quad 1 \le i-1$$

$$x*(y*z) = x*(bc) = abc$$

and by (1,3) we have associativity.

Therefore, (S,*) is a semigroup.

Assume $u \in S^{n+1}$, i.e. $u = s_1 * s_2 * \dots * s_{n+1}$, $s_r \not\in T$, $r=1,2,\dots,n+1$. Let $s_r \in X_n^r$, where $a_r \in T$. Then

$$\begin{aligned} & u = s_1 * s_2 * \cdots * s_{n+1} \\ &= \Phi_{(n,n)}^{(a_1,a_2)} (s_1,s_2) * s_3 * \cdots * s_{n+1}, \quad \Phi_{(n,n)}^{(a_1,a_2)} (s_1,s_2) = u_1 \in X_{t_1}^{a_1a_2}, 1 \le t_1 \le n-1 \\ & = \Phi_{(t_1,n)}^{(a_1a_2,a_3)} (u_1,s_3) * s_4 * \cdots * s_{n+1}, \quad \Phi_{(t_1,n)}^{(a_1a_2,a_3)} (u_1,s_3) = u_2 \in X_{t_2}^{a_1a_2a_3}, \quad 1 \le t_2 \le n-2 \end{aligned}$$

$$\begin{array}{c} \vdots \\ (a_{1}a_{2}\cdots a_{n-1},a_{n}) \\ = \Phi \\ (t_{n-2},n) \end{array} \qquad \begin{array}{c} (a_{1}a_{2}\cdots a_{n-1},a_{n}) \\ (u_{n-2},s_{n}) * s_{n+1}, \quad \Phi \\ (t_{n-2},n) \end{array} \qquad \begin{array}{c} (a_{1}a_{2}\cdots a_{n-1},a_{n}) \\ (u_{n-2},s_{n}) \end{array} = \\ \end{array}$$

$$u_{n-1} \in X_{t_{n-1}}^{a_1 a_2 \cdots a_n}, 1 \le t_{n-1} \le 1$$

$$= \ \Phi_{(1,n)}^{(a_1 a_2 \cdots a_{n'} a_{n+1})} (u_{n-1}, s_{n+1})$$

In other cases $(s_r \in X_k^r, l \le k_r < n)$ it is clear that $u \in T$. Hence, $s^{n+1} \subseteq T$.

Define a mapping $\Phi: S = \bigcup Y_a \to T$ by $\Phi(Y_a) = a$. For any $x,y \in S$ there exist $a,b \in T$ such that $x \in Y_a$, $y \in Y_a$, i. e. $x \in X_i^a$, $y \in X_j^b$ for some $1 \le i$, $j \le n$. Now

$$(x*y) = \Phi(\Phi(x,y)), \Phi(x,y) \in X_k^{ab} \subseteq Y_{ab}$$

for some $1 \le k \le i-1$. If i=1, then by (1.2) we have that (a,b) Φ (x,y)=ab Θ Y ab. Now by the definition of Φ we obtain (i,j)

$$\Phi(x*y) = ab = \Phi(x)\Phi(y).$$

It is clear that $\Phi(x)=x$ for every $x\in T$ and that T is an ideal of S. Therefore, S is a retract extension of T.

Conversely, let n be the smalest positive integer such that $S^{n+1} \subseteq T$ and let Φ be a retraction of S onto T. Assume the following sets (ideals) of S:

$$A_{i} = \{x \in S: xS^{i} \subseteq T\}, i=1,2,...,n-1$$

It is clear that $T\subseteq A_1\subseteq A_2\subseteq \ldots\subseteq A_{n-1}$. For $a\in T$ we define the sets: $Y_{a} = \Phi^{-1}(a)$,

$$x_1^a = x_a \cap A_1$$

$$x_2^a = y_a \cap (A_2 - A_1)$$

$$\vdots$$

$$x_{n-1}^{a} = Y_{a} \cap (A_{n-1} - A_{n-2})$$

$$x_n^a = x_a \cap (s-A_{n-1})$$
.

It is clear that the conditions (1,1) hold for every X_i^a and X_i^b ; $1 \le i, j \le n$.

If $a \in T$, then $Y_a = \bigcup_{i=1}^n X_i^a$ and $S = \bigcup_{a \in T} Y_a$. For $x,y \in S$ There exist $a,b \in T$ such that $x \in A_y$, $y \in Y_b$. By Proposition 1.1. [2] we have that

$$(1.4) Y_a Y_b \subseteq Y_{ab}$$

Let $x \in X_i^a$, $y \in X_j^b$, $2 \le i \le n$, $1 \le i \le n$. Then

$$xy s^{i-1} \subseteq xs^{i} \subseteq T$$

and by (1.4) we have that $xy \in X_k^{ab} \subseteq Y_{ab}$ for some $1 \le k \le i-1$. Therefore,

 $x \in X_i$, $y \in X_j \Rightarrow xy \in \bigcup_{v=1}^{i-1} X_v^{ab}$.

If i=1 or y=b, then $xy \in Y_{ab} \cap T=\{ab\}$. In this way the functions ϕ (a,b) are defined and the conditions (1.3) hold. (i,j)

2.

A non empty set S with two binary associative operations "+" and "." for which the distributive law holds:

$$x(y+z)=xy+xz$$
, $(x+y)z=xz+yz$

for every x,y,z \in S is a <u>semiring</u>. A subsemiring A of a semiring S is an ideal of S if A is an additive and multiplicative ideal of S. On S we define a relation ρ_A with: $x\rho_A y \Leftrightarrow x=y$ or x,y \in A. Then S/A (or S/ ρ_A) is the Rees factor semiring modA. It is clear that S/A is a semiring with a zero element and for every a \in S/A:

$$(2.1) a=0=0+a=0=a0=0a.$$

Let H and T be the disjoint semirings and T has a zero ((2.1) holds). A semiring S is an ideal extension of a semiring H by a semiring T if H is an ideal of S and S/H=T. Let H be a subsemiring of semirings S and S' and let f be a homomorphism of S into S' leaving every element of H fixed, then f is a H-homomorphism. H is a retract of S if there exists a H-homomorphism f of S onto H, in this case we call f a

retraction. If, in addition, H is and ideal of S, then H is a retract ideal of S and S is a retract extension of H.

DEFINITION. A semiring S is an n-inflation of a semiring H if $(n+1)S\subseteq H$, $S^{n+1}\subseteq H$ and S is a retract extension of H.

THEOREM 2. Let (H,+,.) be a semiring. To each $a \in T$ we associate a family of sets X_i^a , i=1;2,...,n such that

(2.2)
$$a \in X_1^a$$
, $X_i^a \cap X_j^b = \emptyset$ if $i \neq j$

$$(2.3) x_{\underline{i}}^{a} \cap x_{\underline{j}}^{b} = \emptyset \quad \underline{\underline{if}} \quad a \neq b.$$

Let.

$$(2.4) \qquad \qquad \stackrel{\text{(a,b)}}{\Phi}_{(i,j)} : \stackrel{\text{x}}{X_i} \times \stackrel{\text{x}}{X_j} \rightarrow \bigcup_{\nu=1}^{i-1} \stackrel{\text{x}^{a+b}}{\nu} , \quad i \geq 2$$

(2.5)
$$\Phi (x,y) = \Phi (x,b) = a+b$$
 (1,1)

(2.6)
$$\Psi_{(i,j)}^{(a,b)} : X_i \times X_j \rightarrow \bigcup_{\nu=1}^{i-1} X_{\nu}^{ab}, \quad i \geq 2$$

(2.7)
$$\Psi_{(1,j)}^{(a,b)}(x,y) = \Psi_{(i,1)}^{(a,b)}(x,b) = ab$$

be functions for which

(2.8)
$$(\forall s \leq i-1) (\forall t \leq j-1) \Phi_{(s,k)} (\Phi_{(i,j)} (x,y),z) =$$

$$\Phi$$
 (a,b+c) (b,c) Φ (y,z)) (i,t) (j,k)

(2.9)
$$(\forall s \leq i-1) (\forall t \leq j-1) \ \forall (ab,c) \ (a,b) \ (\forall x,y),z) = (s,k) \ (i,j)$$

(2.10)
$$(\forall s \leq j-1) (\forall p, q \leq i-1) \ \forall (a,b+c) (x, \Phi (b,c) (y,z)) = (i,s) (i,s) (x, \Phi (j,k))$$

(ab,ac) (a,b) (a,c)

$$\Phi$$
 (Ψ (x,y), Ψ (x,z))
(p,q) (i,j) (i,k)

(2.11)
$$(\forall s, p \leq i-1) (\forall q \leq j-1) \forall (a+b,c) (a+b,c) (x,y),z) = (s,k) (i,j)$$

$$(a+c),b+c)$$
 (a,c) (b,c) (p,q) (a,k) (a,c) (b,c) (a,c) (b,c) (a,c)

for all a,b,c \in H , where $2 \le i \le n$; $1 \le j \le n$

Let $Y_a = \bigcup_{i=1}^n A_i^a$ and define two operations I and o on $S = \bigcup_{a \in H} Y_a$ by :

$$x \perp y = \Phi_{(i,j)}(x,y)$$

$$x \in X_{i}^{a}, y \in X_{j}^{b}, \quad 1 \leq i, j \leq n$$

$$x \circ y = \Psi_{(i,j)}(x,y)$$

Then (S, 1,0) is an n-inflation of a semiring H.

Conversely, every n-inflation of a semiring can be so constructed.

PROOF. Let x,y,z \in S. Then there exist a,b,c \in H such that $x \in Y_a$, $y \in Y_b$, $z \in Y_c$, i.e. $x \in X_i^a$, $y \in X_j^b$, $z \in X_k^c$, for some $1 \le i,j,k \le n$. So

$$\Psi_{(i,k)}^{(a,c)}(x,z) \in X_{q}^{ac}, \ \underline{1} \leq p, \underline{q} \leq i-1$$

(ab,ac) (a,b) (a,c)
=
$$\Phi$$
 (Ψ (x,y), Ψ (x,z))
(p,q) (i,j) (i,k)

and by (2.10) we have that $xo(y \perp z) = (xoy) \perp (xoz)$. In a similar way it can be proved that $(x \perp y) \circ z = (xoz) \perp (yoz)$. Now by Theorem 1.we have that (S, \perp, o) is an n-inflation of a semiring (H, +, .).

Conversely, let n be the smalest positive integer such that $(n+1)S\subseteq H$, $S^{n+1}\subseteq H$ and let Φ be a retraction of S onto H. Assume the following subsemigroups of S:

$$C_i = A_i \cap B_i$$
 , $i=1,2,...,n-1$

and for any $a \in H$ we define the sets: $Y_a = \phi^{-1}(a)$.

$$X_1^a = Y_a \cap C_1$$

$$x_2^a = y_a \cap (c_2 - c_1)$$

.

$$x_{n-1} = y_a \cap (c_{n-1} - c_{n-2})$$

$$X_n = Y_a \cap (S-c_{n-1})$$
.

It is clear that the conditions (2.2) and (2.3) hold for every x_i^a and x_j^b , $1 \le i, j \le n$.

If $a \in H$, then $Y_a = \bigcup_{i=1}^n X_i^a$ and so $S = \bigcup_{a \in H} Y_a$. For $x, y \in S$ there exist $a, b \in H$ such that $x \in Y_a$, $y \in Y_b$. So by Theorem 1. [1] we have that

$$(2.12) Y_a + Y_b \subseteq Y_{a+b}, Y_a Y_b \subseteq Y_{ab}.$$

Let $x \in X_i^a$, $y \in X_j^b$, $2 \le i, j \le n$. Then

 $x+y+(i-1)S\subseteq x+iS\subseteq H$, $xyS^{i-1}\subseteq xS^{i}\subseteq H$.

So by (2.12) $x+y \in X_k^{a+b} \subseteq Y_{a+b}$, $xy \in X_k^{ab} \subseteq Y_{ab}$ for some $1 \le k \le i-1$.

Therefore,

$$x+y \in \bigcup_{v=1}^{i-1} x^{a+b}$$
, $xy \in \bigcup_{v=1}^{i-1} x_v^{ab}$.

If i=1 or y=b, then

$$x+y \in Y_{a+b} \cap H= \{a+b\}$$
, $xy \in Y_{ab} \cap H=\{ab\}$.

In this way functions $\Phi_{(i,j)}^{(a,b)}$ and $\Psi_{(i,j)}^{(i,j)}$ from (2.4)-(2.7) are defined and the conditions (2.8)-(2.11) hold.

REFERENCES

- [1] S.Bogdanović, On extensions of semirings determined by partial homomorphisms, Zbornik radova Filozofskog fakulteta u Nišu 10(1986), 185-188.
- [2] S.Bogdanović and S.Milić, Inflations of semigroups, Publ. Inst. Math. 41(55), 1987.
- [3] M.Petrich, Introduction to semigroups, Merill Publ.Comp. Ohio 1973.
- [4] M.S.Putcha and J.Weissglass, Semigroup satisfying variable identities II, Trans. Amer. Math. Soc. 168 (1972),113-119.

Stojan Bogdanović

INFLACIJE POLUGRUPA I POLUPRSTENA

U ovom radu daje se jedna nova konstrukcija za inflacije polugrupa različita od one iz [2]. Data je i konstrukcija za n-inflacije poluprstena.

Ekonomski fakultet 18000 Niš Jugoslavija